| #include "rotatingtree.h" |
| |
| #define KEY_LOWER_THAN(key1, key2) ((char*)(key1) < (char*)(key2)) |
| |
| /* The randombits() function below is a fast-and-dirty generator that |
| * is probably irregular enough for our purposes. Note that it's biased: |
| * I think that ones are slightly more probable than zeroes. It's not |
| * important here, though. |
| */ |
| |
| static unsigned int random_value = 1; |
| static unsigned int random_stream = 0; |
| |
| static int |
| randombits(int bits) |
| { |
| int result; |
| if (random_stream < (1U << bits)) { |
| random_value *= 1082527; |
| random_stream = random_value; |
| } |
| result = random_stream & ((1<<bits)-1); |
| random_stream >>= bits; |
| return result; |
| } |
| |
| |
| /* Insert a new node into the tree. |
| (*root) is modified to point to the new root. */ |
| void |
| RotatingTree_Add(rotating_node_t **root, rotating_node_t *node) |
| { |
| while (*root != NULL) { |
| if (KEY_LOWER_THAN(node->key, (*root)->key)) |
| root = &((*root)->left); |
| else |
| root = &((*root)->right); |
| } |
| node->left = NULL; |
| node->right = NULL; |
| *root = node; |
| } |
| |
| /* Locate the node with the given key. This is the most complicated |
| function because it occasionally rebalances the tree to move the |
| resulting node closer to the root. */ |
| rotating_node_t * |
| RotatingTree_Get(rotating_node_t **root, void *key) |
| { |
| if (randombits(3) != 4) { |
| /* Fast path, no rebalancing */ |
| rotating_node_t *node = *root; |
| while (node != NULL) { |
| if (node->key == key) |
| return node; |
| if (KEY_LOWER_THAN(key, node->key)) |
| node = node->left; |
| else |
| node = node->right; |
| } |
| return NULL; |
| } |
| else { |
| rotating_node_t **pnode = root; |
| rotating_node_t *node = *pnode; |
| rotating_node_t *next; |
| int rotate; |
| if (node == NULL) |
| return NULL; |
| while (1) { |
| if (node->key == key) |
| return node; |
| rotate = !randombits(1); |
| if (KEY_LOWER_THAN(key, node->key)) { |
| next = node->left; |
| if (next == NULL) |
| return NULL; |
| if (rotate) { |
| node->left = next->right; |
| next->right = node; |
| *pnode = next; |
| } |
| else |
| pnode = &(node->left); |
| } |
| else { |
| next = node->right; |
| if (next == NULL) |
| return NULL; |
| if (rotate) { |
| node->right = next->left; |
| next->left = node; |
| *pnode = next; |
| } |
| else |
| pnode = &(node->right); |
| } |
| node = next; |
| } |
| } |
| } |
| |
| /* Enumerate all nodes in the tree. The callback enumfn() should return |
| zero to continue the enumeration, or non-zero to interrupt it. |
| A non-zero value is directly returned by RotatingTree_Enum(). */ |
| int |
| RotatingTree_Enum(rotating_node_t *root, rotating_tree_enum_fn enumfn, |
| void *arg) |
| { |
| int result; |
| rotating_node_t *node; |
| while (root != NULL) { |
| result = RotatingTree_Enum(root->left, enumfn, arg); |
| if (result != 0) return result; |
| node = root->right; |
| result = enumfn(root, arg); |
| if (result != 0) return result; |
| root = node; |
| } |
| return 0; |
| } |