| /* SHA module */ |
| |
| /* This module provides an interface to NIST's Secure Hash Algorithm */ |
| |
| /* See below for information about the original code this module was |
| based upon. Additional work performed by: |
| |
| Andrew Kuchling (akuchlin@mems-exchange.org) |
| Greg Stein (gstein@lyra.org) |
| */ |
| |
| /* SHA objects */ |
| |
| #include "Python.h" |
| |
| |
| /* Endianness testing and definitions */ |
| #define TestEndianness(variable) {int i=1; variable=PCT_BIG_ENDIAN;\ |
| if (*((char*)&i)==1) variable=PCT_LITTLE_ENDIAN;} |
| |
| #define PCT_LITTLE_ENDIAN 1 |
| #define PCT_BIG_ENDIAN 0 |
| |
| /* Some useful types */ |
| |
| typedef unsigned char SHA_BYTE; |
| |
| #if SIZEOF_INT == 4 |
| typedef unsigned int SHA_INT32; /* 32-bit integer */ |
| #else |
| /* not defined. compilation will die. */ |
| #endif |
| |
| /* The SHA block size and message digest sizes, in bytes */ |
| |
| #define SHA_BLOCKSIZE 64 |
| #define SHA_DIGESTSIZE 20 |
| |
| /* The structure for storing SHS info */ |
| |
| typedef struct { |
| PyObject_HEAD |
| SHA_INT32 digest[5]; /* Message digest */ |
| SHA_INT32 count_lo, count_hi; /* 64-bit bit count */ |
| SHA_BYTE data[SHA_BLOCKSIZE]; /* SHA data buffer */ |
| int Endianness; |
| int local; /* unprocessed amount in data */ |
| } SHAobject; |
| |
| /* When run on a little-endian CPU we need to perform byte reversal on an |
| array of longwords. */ |
| |
| static void longReverse(SHA_INT32 *buffer, int byteCount, int Endianness) |
| { |
| SHA_INT32 value; |
| |
| if ( Endianness == PCT_BIG_ENDIAN ) |
| return; |
| |
| byteCount /= sizeof(*buffer); |
| while (byteCount--) { |
| value = *buffer; |
| value = ( ( value & 0xFF00FF00L ) >> 8 ) | \ |
| ( ( value & 0x00FF00FFL ) << 8 ); |
| *buffer++ = ( value << 16 ) | ( value >> 16 ); |
| } |
| } |
| |
| static void SHAcopy(SHAobject *src, SHAobject *dest) |
| { |
| dest->Endianness = src->Endianness; |
| dest->local = src->local; |
| dest->count_lo = src->count_lo; |
| dest->count_hi = src->count_hi; |
| memcpy(dest->digest, src->digest, sizeof(src->digest)); |
| memcpy(dest->data, src->data, sizeof(src->data)); |
| } |
| |
| |
| /* ------------------------------------------------------------------------ |
| * |
| * This code for the SHA algorithm was noted as public domain. The original |
| * headers are pasted below. |
| * |
| * Several changes have been made to make it more compatible with the |
| * Python environment and desired interface. |
| * |
| */ |
| |
| /* NIST Secure Hash Algorithm */ |
| /* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */ |
| /* from Peter C. Gutmann's implementation as found in */ |
| /* Applied Cryptography by Bruce Schneier */ |
| /* Further modifications to include the "UNRAVEL" stuff, below */ |
| |
| /* This code is in the public domain */ |
| |
| /* UNRAVEL should be fastest & biggest */ |
| /* UNROLL_LOOPS should be just as big, but slightly slower */ |
| /* both undefined should be smallest and slowest */ |
| |
| #define UNRAVEL |
| /* #define UNROLL_LOOPS */ |
| |
| /* The SHA f()-functions. The f1 and f3 functions can be optimized to |
| save one boolean operation each - thanks to Rich Schroeppel, |
| rcs@cs.arizona.edu for discovering this */ |
| |
| /*#define f1(x,y,z) ((x & y) | (~x & z)) // Rounds 0-19 */ |
| #define f1(x,y,z) (z ^ (x & (y ^ z))) /* Rounds 0-19 */ |
| #define f2(x,y,z) (x ^ y ^ z) /* Rounds 20-39 */ |
| /*#define f3(x,y,z) ((x & y) | (x & z) | (y & z)) // Rounds 40-59 */ |
| #define f3(x,y,z) ((x & y) | (z & (x | y))) /* Rounds 40-59 */ |
| #define f4(x,y,z) (x ^ y ^ z) /* Rounds 60-79 */ |
| |
| /* SHA constants */ |
| |
| #define CONST1 0x5a827999L /* Rounds 0-19 */ |
| #define CONST2 0x6ed9eba1L /* Rounds 20-39 */ |
| #define CONST3 0x8f1bbcdcL /* Rounds 40-59 */ |
| #define CONST4 0xca62c1d6L /* Rounds 60-79 */ |
| |
| /* 32-bit rotate */ |
| |
| #define R32(x,n) ((x << n) | (x >> (32 - n))) |
| |
| /* the generic case, for when the overall rotation is not unraveled */ |
| |
| #define FG(n) \ |
| T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; \ |
| E = D; D = C; C = R32(B,30); B = A; A = T |
| |
| /* specific cases, for when the overall rotation is unraveled */ |
| |
| #define FA(n) \ |
| T = R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n; B = R32(B,30) |
| |
| #define FB(n) \ |
| E = R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n; A = R32(A,30) |
| |
| #define FC(n) \ |
| D = R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n; T = R32(T,30) |
| |
| #define FD(n) \ |
| C = R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n; E = R32(E,30) |
| |
| #define FE(n) \ |
| B = R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n; D = R32(D,30) |
| |
| #define FT(n) \ |
| A = R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n; C = R32(C,30) |
| |
| /* do SHA transformation */ |
| |
| static void |
| sha_transform(SHAobject *sha_info) |
| { |
| int i; |
| SHA_INT32 T, A, B, C, D, E, W[80], *WP; |
| |
| memcpy(W, sha_info->data, sizeof(sha_info->data)); |
| longReverse(W, (int)sizeof(sha_info->data), sha_info->Endianness); |
| |
| for (i = 16; i < 80; ++i) { |
| W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]; |
| |
| /* extra rotation fix */ |
| W[i] = R32(W[i], 1); |
| } |
| A = sha_info->digest[0]; |
| B = sha_info->digest[1]; |
| C = sha_info->digest[2]; |
| D = sha_info->digest[3]; |
| E = sha_info->digest[4]; |
| WP = W; |
| #ifdef UNRAVEL |
| FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); |
| FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); |
| FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); |
| FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); |
| FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); |
| FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); |
| FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); |
| FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); |
| sha_info->digest[0] += E; |
| sha_info->digest[1] += T; |
| sha_info->digest[2] += A; |
| sha_info->digest[3] += B; |
| sha_info->digest[4] += C; |
| #else /* !UNRAVEL */ |
| #ifdef UNROLL_LOOPS |
| FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); |
| FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); |
| FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); |
| FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); |
| FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); |
| FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); |
| FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); |
| FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); |
| #else /* !UNROLL_LOOPS */ |
| for (i = 0; i < 20; ++i) { FG(1); } |
| for (i = 20; i < 40; ++i) { FG(2); } |
| for (i = 40; i < 60; ++i) { FG(3); } |
| for (i = 60; i < 80; ++i) { FG(4); } |
| #endif /* !UNROLL_LOOPS */ |
| sha_info->digest[0] += A; |
| sha_info->digest[1] += B; |
| sha_info->digest[2] += C; |
| sha_info->digest[3] += D; |
| sha_info->digest[4] += E; |
| #endif /* !UNRAVEL */ |
| } |
| |
| /* initialize the SHA digest */ |
| |
| static void |
| sha_init(SHAobject *sha_info) |
| { |
| TestEndianness(sha_info->Endianness) |
| |
| sha_info->digest[0] = 0x67452301L; |
| sha_info->digest[1] = 0xefcdab89L; |
| sha_info->digest[2] = 0x98badcfeL; |
| sha_info->digest[3] = 0x10325476L; |
| sha_info->digest[4] = 0xc3d2e1f0L; |
| sha_info->count_lo = 0L; |
| sha_info->count_hi = 0L; |
| sha_info->local = 0; |
| } |
| |
| /* update the SHA digest */ |
| |
| static void |
| sha_update(SHAobject *sha_info, SHA_BYTE *buffer, int count) |
| { |
| int i; |
| SHA_INT32 clo; |
| |
| clo = sha_info->count_lo + ((SHA_INT32) count << 3); |
| if (clo < sha_info->count_lo) { |
| ++sha_info->count_hi; |
| } |
| sha_info->count_lo = clo; |
| sha_info->count_hi += (SHA_INT32) count >> 29; |
| if (sha_info->local) { |
| i = SHA_BLOCKSIZE - sha_info->local; |
| if (i > count) { |
| i = count; |
| } |
| memcpy(((SHA_BYTE *) sha_info->data) + sha_info->local, buffer, i); |
| count -= i; |
| buffer += i; |
| sha_info->local += i; |
| if (sha_info->local == SHA_BLOCKSIZE) { |
| sha_transform(sha_info); |
| } |
| else { |
| return; |
| } |
| } |
| while (count >= SHA_BLOCKSIZE) { |
| memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); |
| buffer += SHA_BLOCKSIZE; |
| count -= SHA_BLOCKSIZE; |
| sha_transform(sha_info); |
| } |
| memcpy(sha_info->data, buffer, count); |
| sha_info->local = count; |
| } |
| |
| /* finish computing the SHA digest */ |
| |
| static void |
| sha_final(unsigned char digest[20], SHAobject *sha_info) |
| { |
| int count; |
| SHA_INT32 lo_bit_count, hi_bit_count; |
| |
| lo_bit_count = sha_info->count_lo; |
| hi_bit_count = sha_info->count_hi; |
| count = (int) ((lo_bit_count >> 3) & 0x3f); |
| ((SHA_BYTE *) sha_info->data)[count++] = 0x80; |
| if (count > SHA_BLOCKSIZE - 8) { |
| memset(((SHA_BYTE *) sha_info->data) + count, 0, |
| SHA_BLOCKSIZE - count); |
| sha_transform(sha_info); |
| memset((SHA_BYTE *) sha_info->data, 0, SHA_BLOCKSIZE - 8); |
| } |
| else { |
| memset(((SHA_BYTE *) sha_info->data) + count, 0, |
| SHA_BLOCKSIZE - 8 - count); |
| } |
| |
| /* GJS: note that we add the hi/lo in big-endian. sha_transform will |
| swap these values into host-order. */ |
| sha_info->data[56] = (hi_bit_count >> 24) & 0xff; |
| sha_info->data[57] = (hi_bit_count >> 16) & 0xff; |
| sha_info->data[58] = (hi_bit_count >> 8) & 0xff; |
| sha_info->data[59] = (hi_bit_count >> 0) & 0xff; |
| sha_info->data[60] = (lo_bit_count >> 24) & 0xff; |
| sha_info->data[61] = (lo_bit_count >> 16) & 0xff; |
| sha_info->data[62] = (lo_bit_count >> 8) & 0xff; |
| sha_info->data[63] = (lo_bit_count >> 0) & 0xff; |
| sha_transform(sha_info); |
| digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); |
| digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); |
| digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); |
| digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff); |
| digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); |
| digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); |
| digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); |
| digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff); |
| digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); |
| digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); |
| digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); |
| digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff); |
| digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); |
| digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); |
| digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); |
| digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff); |
| digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); |
| digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); |
| digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); |
| digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff); |
| } |
| |
| /* |
| * End of copied SHA code. |
| * |
| * ------------------------------------------------------------------------ |
| */ |
| |
| staticforward PyTypeObject SHAtype; |
| |
| |
| static SHAobject * |
| newSHAobject(void) |
| { |
| return (SHAobject *)PyObject_New(SHAobject, &SHAtype); |
| } |
| |
| /* Internal methods for a hashing object */ |
| |
| static void |
| SHA_dealloc(PyObject *ptr) |
| { |
| PyObject_Del(ptr); |
| } |
| |
| |
| /* External methods for a hashing object */ |
| |
| static char SHA_copy__doc__[] = |
| "Return a copy of the hashing object."; |
| |
| static PyObject * |
| SHA_copy(SHAobject *self, PyObject *args) |
| { |
| SHAobject *newobj; |
| |
| if (!PyArg_ParseTuple(args, ":copy")) { |
| return NULL; |
| } |
| if ( (newobj = newSHAobject())==NULL) |
| return NULL; |
| |
| SHAcopy(self, newobj); |
| return (PyObject *)newobj; |
| } |
| |
| static char SHA_digest__doc__[] = |
| "Return the digest value as a string of binary data."; |
| |
| static PyObject * |
| SHA_digest(SHAobject *self, PyObject *args) |
| { |
| unsigned char digest[SHA_DIGESTSIZE]; |
| SHAobject temp; |
| |
| if (!PyArg_ParseTuple(args, ":digest")) |
| return NULL; |
| |
| SHAcopy(self, &temp); |
| sha_final(digest, &temp); |
| return PyString_FromStringAndSize((const char *)digest, sizeof(digest)); |
| } |
| |
| static char SHA_hexdigest__doc__[] = |
| "Return the digest value as a string of hexadecimal digits."; |
| |
| static PyObject * |
| SHA_hexdigest(SHAobject *self, PyObject *args) |
| { |
| unsigned char digest[SHA_DIGESTSIZE]; |
| SHAobject temp; |
| PyObject *retval; |
| char *hex_digest; |
| int i, j; |
| |
| if (!PyArg_ParseTuple(args, ":hexdigest")) |
| return NULL; |
| |
| /* Get the raw (binary) digest value */ |
| SHAcopy(self, &temp); |
| sha_final(digest, &temp); |
| |
| /* Create a new string */ |
| retval = PyString_FromStringAndSize(NULL, sizeof(digest) * 2); |
| if (!retval) |
| return NULL; |
| hex_digest = PyString_AsString(retval); |
| if (!hex_digest) { |
| Py_DECREF(retval); |
| return NULL; |
| } |
| |
| /* Make hex version of the digest */ |
| for(i=j=0; i<sizeof(digest); i++) { |
| char c; |
| c = (digest[i] >> 4) & 0xf; |
| c = (c>9) ? c+'a'-10 : c + '0'; |
| hex_digest[j++] = c; |
| c = (digest[i] & 0xf); |
| c = (c>9) ? c+'a'-10 : c + '0'; |
| hex_digest[j++] = c; |
| } |
| return retval; |
| } |
| |
| static char SHA_update__doc__[] = |
| "Update this hashing object's state with the provided string."; |
| |
| static PyObject * |
| SHA_update(SHAobject *self, PyObject *args) |
| { |
| unsigned char *cp; |
| int len; |
| |
| if (!PyArg_ParseTuple(args, "s#:update", &cp, &len)) |
| return NULL; |
| |
| sha_update(self, cp, len); |
| |
| Py_INCREF(Py_None); |
| return Py_None; |
| } |
| |
| static PyMethodDef SHA_methods[] = { |
| {"copy", (PyCFunction)SHA_copy, METH_VARARGS, SHA_copy__doc__}, |
| {"digest", (PyCFunction)SHA_digest, METH_VARARGS, SHA_digest__doc__}, |
| {"hexdigest", (PyCFunction)SHA_hexdigest, METH_VARARGS, SHA_hexdigest__doc__}, |
| {"update", (PyCFunction)SHA_update, METH_VARARGS, SHA_update__doc__}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyObject * |
| SHA_getattr(PyObject *self, char *name) |
| { |
| if (strcmp(name, "blocksize")==0) |
| return PyInt_FromLong(1); |
| if (strcmp(name, "digest_size")==0 || strcmp(name, "digestsize")==0) |
| return PyInt_FromLong(20); |
| |
| return Py_FindMethod(SHA_methods, self, name); |
| } |
| |
| static PyTypeObject SHAtype = { |
| PyObject_HEAD_INIT(NULL) |
| 0, /*ob_size*/ |
| "sha.SHA", /*tp_name*/ |
| sizeof(SHAobject), /*tp_size*/ |
| 0, /*tp_itemsize*/ |
| /* methods */ |
| SHA_dealloc, /*tp_dealloc*/ |
| 0, /*tp_print*/ |
| SHA_getattr, /*tp_getattr*/ |
| }; |
| |
| |
| /* The single module-level function: new() */ |
| |
| static char SHA_new__doc__[] = |
| "Return a new SHA hashing object. An optional string " |
| "argument may be provided; if present, this string will be " |
| " automatically hashed."; |
| |
| static PyObject * |
| SHA_new(PyObject *self, PyObject *args, PyObject *kwdict) |
| { |
| static char *kwlist[] = {"string", NULL}; |
| SHAobject *new; |
| unsigned char *cp = NULL; |
| int len; |
| |
| if (!PyArg_ParseTupleAndKeywords(args, kwdict, "|s#:new", kwlist, |
| &cp, &len)) { |
| return NULL; |
| } |
| |
| if ((new = newSHAobject()) == NULL) |
| return NULL; |
| |
| sha_init(new); |
| |
| if (PyErr_Occurred()) { |
| Py_DECREF(new); |
| return NULL; |
| } |
| if (cp) |
| sha_update(new, cp, len); |
| |
| return (PyObject *)new; |
| } |
| |
| |
| /* List of functions exported by this module */ |
| |
| static struct PyMethodDef SHA_functions[] = { |
| {"new", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__}, |
| {"sha", (PyCFunction)SHA_new, METH_VARARGS|METH_KEYWORDS, SHA_new__doc__}, |
| {NULL, NULL} /* Sentinel */ |
| }; |
| |
| |
| /* Initialize this module. */ |
| |
| #define insint(n,v) { PyModule_AddIntConstant(m,n,v); } |
| |
| DL_EXPORT(void) |
| initsha(void) |
| { |
| PyObject *d, *m; |
| |
| SHAtype.ob_type = &PyType_Type; |
| m = Py_InitModule("sha", SHA_functions); |
| |
| /* Add some symbolic constants to the module */ |
| d = PyModule_GetDict(m); |
| insint("blocksize", 1); /* For future use, in case some hash |
| functions require an integral number of |
| blocks */ |
| insint("digestsize", 20); |
| insint("digest_size", 20); |
| } |