| from test.support import requires_IEEE_754, cpython_only | 
 | from test.test_math import parse_testfile, test_file | 
 | import test.test_math as test_math | 
 | import unittest | 
 | import cmath, math | 
 | from cmath import phase, polar, rect, pi | 
 | import platform | 
 | import sys | 
 | import sysconfig | 
 |  | 
 | INF = float('inf') | 
 | NAN = float('nan') | 
 |  | 
 | complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]] | 
 | complex_infinities = [complex(x, y) for x, y in [ | 
 |         (INF, 0.0),  # 1st quadrant | 
 |         (INF, 2.3), | 
 |         (INF, INF), | 
 |         (2.3, INF), | 
 |         (0.0, INF), | 
 |         (-0.0, INF), # 2nd quadrant | 
 |         (-2.3, INF), | 
 |         (-INF, INF), | 
 |         (-INF, 2.3), | 
 |         (-INF, 0.0), | 
 |         (-INF, -0.0), # 3rd quadrant | 
 |         (-INF, -2.3), | 
 |         (-INF, -INF), | 
 |         (-2.3, -INF), | 
 |         (-0.0, -INF), | 
 |         (0.0, -INF), # 4th quadrant | 
 |         (2.3, -INF), | 
 |         (INF, -INF), | 
 |         (INF, -2.3), | 
 |         (INF, -0.0) | 
 |         ]] | 
 | complex_nans = [complex(x, y) for x, y in [ | 
 |         (NAN, -INF), | 
 |         (NAN, -2.3), | 
 |         (NAN, -0.0), | 
 |         (NAN, 0.0), | 
 |         (NAN, 2.3), | 
 |         (NAN, INF), | 
 |         (-INF, NAN), | 
 |         (-2.3, NAN), | 
 |         (-0.0, NAN), | 
 |         (0.0, NAN), | 
 |         (2.3, NAN), | 
 |         (INF, NAN) | 
 |         ]] | 
 |  | 
 | class CMathTests(unittest.TestCase): | 
 |     # list of all functions in cmath | 
 |     test_functions = [getattr(cmath, fname) for fname in [ | 
 |             'acos', 'acosh', 'asin', 'asinh', 'atan', 'atanh', | 
 |             'cos', 'cosh', 'exp', 'log', 'log10', 'sin', 'sinh', | 
 |             'sqrt', 'tan', 'tanh']] | 
 |     # test first and second arguments independently for 2-argument log | 
 |     test_functions.append(lambda x : cmath.log(x, 1729. + 0j)) | 
 |     test_functions.append(lambda x : cmath.log(14.-27j, x)) | 
 |  | 
 |     def setUp(self): | 
 |         self.test_values = open(test_file) | 
 |  | 
 |     def tearDown(self): | 
 |         self.test_values.close() | 
 |  | 
 |     def assertFloatIdentical(self, x, y): | 
 |         """Fail unless floats x and y are identical, in the sense that: | 
 |         (1) both x and y are nans, or | 
 |         (2) both x and y are infinities, with the same sign, or | 
 |         (3) both x and y are zeros, with the same sign, or | 
 |         (4) x and y are both finite and nonzero, and x == y | 
 |  | 
 |         """ | 
 |         msg = 'floats {!r} and {!r} are not identical' | 
 |  | 
 |         if math.isnan(x) or math.isnan(y): | 
 |             if math.isnan(x) and math.isnan(y): | 
 |                 return | 
 |         elif x == y: | 
 |             if x != 0.0: | 
 |                 return | 
 |             # both zero; check that signs match | 
 |             elif math.copysign(1.0, x) == math.copysign(1.0, y): | 
 |                 return | 
 |             else: | 
 |                 msg += ': zeros have different signs' | 
 |         self.fail(msg.format(x, y)) | 
 |  | 
 |     def assertComplexIdentical(self, x, y): | 
 |         """Fail unless complex numbers x and y have equal values and signs. | 
 |  | 
 |         In particular, if x and y both have real (or imaginary) part | 
 |         zero, but the zeros have different signs, this test will fail. | 
 |  | 
 |         """ | 
 |         self.assertFloatIdentical(x.real, y.real) | 
 |         self.assertFloatIdentical(x.imag, y.imag) | 
 |  | 
 |     def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323, | 
 |                            msg=None): | 
 |         """Fail if the two floating-point numbers are not almost equal. | 
 |  | 
 |         Determine whether floating-point values a and b are equal to within | 
 |         a (small) rounding error.  The default values for rel_err and | 
 |         abs_err are chosen to be suitable for platforms where a float is | 
 |         represented by an IEEE 754 double.  They allow an error of between | 
 |         9 and 19 ulps. | 
 |         """ | 
 |  | 
 |         # special values testing | 
 |         if math.isnan(a): | 
 |             if math.isnan(b): | 
 |                 return | 
 |             self.fail(msg or '{!r} should be nan'.format(b)) | 
 |  | 
 |         if math.isinf(a): | 
 |             if a == b: | 
 |                 return | 
 |             self.fail(msg or 'finite result where infinity expected: ' | 
 |                       'expected {!r}, got {!r}'.format(a, b)) | 
 |  | 
 |         # if both a and b are zero, check whether they have the same sign | 
 |         # (in theory there are examples where it would be legitimate for a | 
 |         # and b to have opposite signs; in practice these hardly ever | 
 |         # occur). | 
 |         if not a and not b: | 
 |             if math.copysign(1., a) != math.copysign(1., b): | 
 |                 self.fail(msg or 'zero has wrong sign: expected {!r}, ' | 
 |                           'got {!r}'.format(a, b)) | 
 |  | 
 |         # if a-b overflows, or b is infinite, return False.  Again, in | 
 |         # theory there are examples where a is within a few ulps of the | 
 |         # max representable float, and then b could legitimately be | 
 |         # infinite.  In practice these examples are rare. | 
 |         try: | 
 |             absolute_error = abs(b-a) | 
 |         except OverflowError: | 
 |             pass | 
 |         else: | 
 |             # test passes if either the absolute error or the relative | 
 |             # error is sufficiently small.  The defaults amount to an | 
 |             # error of between 9 ulps and 19 ulps on an IEEE-754 compliant | 
 |             # machine. | 
 |             if absolute_error <= max(abs_err, rel_err * abs(a)): | 
 |                 return | 
 |         self.fail(msg or | 
 |                   '{!r} and {!r} are not sufficiently close'.format(a, b)) | 
 |  | 
 |     def test_constants(self): | 
 |         e_expected = 2.71828182845904523536 | 
 |         pi_expected = 3.14159265358979323846 | 
 |         self.assertAlmostEqual(cmath.pi, pi_expected, places=9, | 
 |             msg="cmath.pi is {}; should be {}".format(cmath.pi, pi_expected)) | 
 |         self.assertAlmostEqual(cmath.e, e_expected, places=9, | 
 |             msg="cmath.e is {}; should be {}".format(cmath.e, e_expected)) | 
 |  | 
 |     def test_infinity_and_nan_constants(self): | 
 |         self.assertEqual(cmath.inf.real, math.inf) | 
 |         self.assertEqual(cmath.inf.imag, 0.0) | 
 |         self.assertEqual(cmath.infj.real, 0.0) | 
 |         self.assertEqual(cmath.infj.imag, math.inf) | 
 |  | 
 |         self.assertTrue(math.isnan(cmath.nan.real)) | 
 |         self.assertEqual(cmath.nan.imag, 0.0) | 
 |         self.assertEqual(cmath.nanj.real, 0.0) | 
 |         self.assertTrue(math.isnan(cmath.nanj.imag)) | 
 |  | 
 |         # Check consistency with reprs. | 
 |         self.assertEqual(repr(cmath.inf), "inf") | 
 |         self.assertEqual(repr(cmath.infj), "infj") | 
 |         self.assertEqual(repr(cmath.nan), "nan") | 
 |         self.assertEqual(repr(cmath.nanj), "nanj") | 
 |  | 
 |     def test_user_object(self): | 
 |         # Test automatic calling of __complex__ and __float__ by cmath | 
 |         # functions | 
 |  | 
 |         # some random values to use as test values; we avoid values | 
 |         # for which any of the functions in cmath is undefined | 
 |         # (i.e. 0., 1., -1., 1j, -1j) or would cause overflow | 
 |         cx_arg = 4.419414439 + 1.497100113j | 
 |         flt_arg = -6.131677725 | 
 |  | 
 |         # a variety of non-complex numbers, used to check that | 
 |         # non-complex return values from __complex__ give an error | 
 |         non_complexes = ["not complex", 1, 5, 2., None, | 
 |                          object(), NotImplemented] | 
 |  | 
 |         # Now we introduce a variety of classes whose instances might | 
 |         # end up being passed to the cmath functions | 
 |  | 
 |         # usual case: new-style class implementing __complex__ | 
 |         class MyComplex(object): | 
 |             def __init__(self, value): | 
 |                 self.value = value | 
 |             def __complex__(self): | 
 |                 return self.value | 
 |  | 
 |         # old-style class implementing __complex__ | 
 |         class MyComplexOS: | 
 |             def __init__(self, value): | 
 |                 self.value = value | 
 |             def __complex__(self): | 
 |                 return self.value | 
 |  | 
 |         # classes for which __complex__ raises an exception | 
 |         class SomeException(Exception): | 
 |             pass | 
 |         class MyComplexException(object): | 
 |             def __complex__(self): | 
 |                 raise SomeException | 
 |         class MyComplexExceptionOS: | 
 |             def __complex__(self): | 
 |                 raise SomeException | 
 |  | 
 |         # some classes not providing __float__ or __complex__ | 
 |         class NeitherComplexNorFloat(object): | 
 |             pass | 
 |         class NeitherComplexNorFloatOS: | 
 |             pass | 
 |         class MyInt(object): | 
 |             def __int__(self): return 2 | 
 |             def __index__(self): return 2 | 
 |         class MyIntOS: | 
 |             def __int__(self): return 2 | 
 |             def __index__(self): return 2 | 
 |  | 
 |         # other possible combinations of __float__ and __complex__ | 
 |         # that should work | 
 |         class FloatAndComplex(object): | 
 |             def __float__(self): | 
 |                 return flt_arg | 
 |             def __complex__(self): | 
 |                 return cx_arg | 
 |         class FloatAndComplexOS: | 
 |             def __float__(self): | 
 |                 return flt_arg | 
 |             def __complex__(self): | 
 |                 return cx_arg | 
 |         class JustFloat(object): | 
 |             def __float__(self): | 
 |                 return flt_arg | 
 |         class JustFloatOS: | 
 |             def __float__(self): | 
 |                 return flt_arg | 
 |  | 
 |         for f in self.test_functions: | 
 |             # usual usage | 
 |             self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg)) | 
 |             self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) | 
 |             # other combinations of __float__ and __complex__ | 
 |             self.assertEqual(f(FloatAndComplex()), f(cx_arg)) | 
 |             self.assertEqual(f(FloatAndComplexOS()), f(cx_arg)) | 
 |             self.assertEqual(f(JustFloat()), f(flt_arg)) | 
 |             self.assertEqual(f(JustFloatOS()), f(flt_arg)) | 
 |             # TypeError should be raised for classes not providing | 
 |             # either __complex__ or __float__, even if they provide | 
 |             # __int__ or __index__.  An old-style class | 
 |             # currently raises AttributeError instead of a TypeError; | 
 |             # this could be considered a bug. | 
 |             self.assertRaises(TypeError, f, NeitherComplexNorFloat()) | 
 |             self.assertRaises(TypeError, f, MyInt()) | 
 |             self.assertRaises(Exception, f, NeitherComplexNorFloatOS()) | 
 |             self.assertRaises(Exception, f, MyIntOS()) | 
 |             # non-complex return value from __complex__ -> TypeError | 
 |             for bad_complex in non_complexes: | 
 |                 self.assertRaises(TypeError, f, MyComplex(bad_complex)) | 
 |                 self.assertRaises(TypeError, f, MyComplexOS(bad_complex)) | 
 |             # exceptions in __complex__ should be propagated correctly | 
 |             self.assertRaises(SomeException, f, MyComplexException()) | 
 |             self.assertRaises(SomeException, f, MyComplexExceptionOS()) | 
 |  | 
 |     def test_input_type(self): | 
 |         # ints should be acceptable inputs to all cmath | 
 |         # functions, by virtue of providing a __float__ method | 
 |         for f in self.test_functions: | 
 |             for arg in [2, 2.]: | 
 |                 self.assertEqual(f(arg), f(arg.__float__())) | 
 |  | 
 |         # but strings should give a TypeError | 
 |         for f in self.test_functions: | 
 |             for arg in ["a", "long_string", "0", "1j", ""]: | 
 |                 self.assertRaises(TypeError, f, arg) | 
 |  | 
 |     def test_cmath_matches_math(self): | 
 |         # check that corresponding cmath and math functions are equal | 
 |         # for floats in the appropriate range | 
 |  | 
 |         # test_values in (0, 1) | 
 |         test_values = [0.01, 0.1, 0.2, 0.5, 0.9, 0.99] | 
 |  | 
 |         # test_values for functions defined on [-1., 1.] | 
 |         unit_interval = test_values + [-x for x in test_values] + \ | 
 |             [0., 1., -1.] | 
 |  | 
 |         # test_values for log, log10, sqrt | 
 |         positive = test_values + [1.] + [1./x for x in test_values] | 
 |         nonnegative = [0.] + positive | 
 |  | 
 |         # test_values for functions defined on the whole real line | 
 |         real_line = [0.] + positive + [-x for x in positive] | 
 |  | 
 |         test_functions = { | 
 |             'acos' : unit_interval, | 
 |             'asin' : unit_interval, | 
 |             'atan' : real_line, | 
 |             'cos' : real_line, | 
 |             'cosh' : real_line, | 
 |             'exp' : real_line, | 
 |             'log' : positive, | 
 |             'log10' : positive, | 
 |             'sin' : real_line, | 
 |             'sinh' : real_line, | 
 |             'sqrt' : nonnegative, | 
 |             'tan' : real_line, | 
 |             'tanh' : real_line} | 
 |  | 
 |         for fn, values in test_functions.items(): | 
 |             float_fn = getattr(math, fn) | 
 |             complex_fn = getattr(cmath, fn) | 
 |             for v in values: | 
 |                 z = complex_fn(v) | 
 |                 self.rAssertAlmostEqual(float_fn(v), z.real) | 
 |                 self.assertEqual(0., z.imag) | 
 |  | 
 |         # test two-argument version of log with various bases | 
 |         for base in [0.5, 2., 10.]: | 
 |             for v in positive: | 
 |                 z = cmath.log(v, base) | 
 |                 self.rAssertAlmostEqual(math.log(v, base), z.real) | 
 |                 self.assertEqual(0., z.imag) | 
 |  | 
 |     @requires_IEEE_754 | 
 |     def test_specific_values(self): | 
 |         # Some tests need to be skipped on ancient OS X versions. | 
 |         # See issue #27953. | 
 |         SKIP_ON_TIGER = {'tan0064'} | 
 |  | 
 |         osx_version = None | 
 |         if sys.platform == 'darwin': | 
 |             version_txt = platform.mac_ver()[0] | 
 |             try: | 
 |                 osx_version = tuple(map(int, version_txt.split('.'))) | 
 |             except ValueError: | 
 |                 pass | 
 |  | 
 |         def rect_complex(z): | 
 |             """Wrapped version of rect that accepts a complex number instead of | 
 |             two float arguments.""" | 
 |             return cmath.rect(z.real, z.imag) | 
 |  | 
 |         def polar_complex(z): | 
 |             """Wrapped version of polar that returns a complex number instead of | 
 |             two floats.""" | 
 |             return complex(*polar(z)) | 
 |  | 
 |         for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): | 
 |             arg = complex(ar, ai) | 
 |             expected = complex(er, ei) | 
 |  | 
 |             # Skip certain tests on OS X 10.4. | 
 |             if osx_version is not None and osx_version < (10, 5): | 
 |                 if id in SKIP_ON_TIGER: | 
 |                     continue | 
 |  | 
 |             if fn == 'rect': | 
 |                 function = rect_complex | 
 |             elif fn == 'polar': | 
 |                 function = polar_complex | 
 |             else: | 
 |                 function = getattr(cmath, fn) | 
 |             if 'divide-by-zero' in flags or 'invalid' in flags: | 
 |                 try: | 
 |                     actual = function(arg) | 
 |                 except ValueError: | 
 |                     continue | 
 |                 else: | 
 |                     self.fail('ValueError not raised in test ' | 
 |                           '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai)) | 
 |  | 
 |             if 'overflow' in flags: | 
 |                 try: | 
 |                     actual = function(arg) | 
 |                 except OverflowError: | 
 |                     continue | 
 |                 else: | 
 |                     self.fail('OverflowError not raised in test ' | 
 |                           '{}: {}(complex({!r}, {!r}))'.format(id, fn, ar, ai)) | 
 |  | 
 |             actual = function(arg) | 
 |  | 
 |             if 'ignore-real-sign' in flags: | 
 |                 actual = complex(abs(actual.real), actual.imag) | 
 |                 expected = complex(abs(expected.real), expected.imag) | 
 |             if 'ignore-imag-sign' in flags: | 
 |                 actual = complex(actual.real, abs(actual.imag)) | 
 |                 expected = complex(expected.real, abs(expected.imag)) | 
 |  | 
 |             # for the real part of the log function, we allow an | 
 |             # absolute error of up to 2e-15. | 
 |             if fn in ('log', 'log10'): | 
 |                 real_abs_err = 2e-15 | 
 |             else: | 
 |                 real_abs_err = 5e-323 | 
 |  | 
 |             error_message = ( | 
 |                 '{}: {}(complex({!r}, {!r}))\n' | 
 |                 'Expected: complex({!r}, {!r})\n' | 
 |                 'Received: complex({!r}, {!r})\n' | 
 |                 'Received value insufficiently close to expected value.' | 
 |                 ).format(id, fn, ar, ai, | 
 |                      expected.real, expected.imag, | 
 |                      actual.real, actual.imag) | 
 |             self.rAssertAlmostEqual(expected.real, actual.real, | 
 |                                         abs_err=real_abs_err, | 
 |                                         msg=error_message) | 
 |             self.rAssertAlmostEqual(expected.imag, actual.imag, | 
 |                                         msg=error_message) | 
 |  | 
 |     def check_polar(self, func): | 
 |         def check(arg, expected): | 
 |             got = func(arg) | 
 |             for e, g in zip(expected, got): | 
 |                 self.rAssertAlmostEqual(e, g) | 
 |         check(0, (0., 0.)) | 
 |         check(1, (1., 0.)) | 
 |         check(-1, (1., pi)) | 
 |         check(1j, (1., pi / 2)) | 
 |         check(-3j, (3., -pi / 2)) | 
 |         inf = float('inf') | 
 |         check(complex(inf, 0), (inf, 0.)) | 
 |         check(complex(-inf, 0), (inf, pi)) | 
 |         check(complex(3, inf), (inf, pi / 2)) | 
 |         check(complex(5, -inf), (inf, -pi / 2)) | 
 |         check(complex(inf, inf), (inf, pi / 4)) | 
 |         check(complex(inf, -inf), (inf, -pi / 4)) | 
 |         check(complex(-inf, inf), (inf, 3 * pi / 4)) | 
 |         check(complex(-inf, -inf), (inf, -3 * pi / 4)) | 
 |         nan = float('nan') | 
 |         check(complex(nan, 0), (nan, nan)) | 
 |         check(complex(0, nan), (nan, nan)) | 
 |         check(complex(nan, nan), (nan, nan)) | 
 |         check(complex(inf, nan), (inf, nan)) | 
 |         check(complex(-inf, nan), (inf, nan)) | 
 |         check(complex(nan, inf), (inf, nan)) | 
 |         check(complex(nan, -inf), (inf, nan)) | 
 |  | 
 |     def test_polar(self): | 
 |         self.check_polar(polar) | 
 |  | 
 |     @cpython_only | 
 |     def test_polar_errno(self): | 
 |         # Issue #24489: check a previously set C errno doesn't disturb polar() | 
 |         from _testcapi import set_errno | 
 |         def polar_with_errno_set(z): | 
 |             set_errno(11) | 
 |             try: | 
 |                 return polar(z) | 
 |             finally: | 
 |                 set_errno(0) | 
 |         self.check_polar(polar_with_errno_set) | 
 |  | 
 |     def test_phase(self): | 
 |         self.assertAlmostEqual(phase(0), 0.) | 
 |         self.assertAlmostEqual(phase(1.), 0.) | 
 |         self.assertAlmostEqual(phase(-1.), pi) | 
 |         self.assertAlmostEqual(phase(-1.+1E-300j), pi) | 
 |         self.assertAlmostEqual(phase(-1.-1E-300j), -pi) | 
 |         self.assertAlmostEqual(phase(1j), pi/2) | 
 |         self.assertAlmostEqual(phase(-1j), -pi/2) | 
 |  | 
 |         # zeros | 
 |         self.assertEqual(phase(complex(0.0, 0.0)), 0.0) | 
 |         self.assertEqual(phase(complex(0.0, -0.0)), -0.0) | 
 |         self.assertEqual(phase(complex(-0.0, 0.0)), pi) | 
 |         self.assertEqual(phase(complex(-0.0, -0.0)), -pi) | 
 |  | 
 |         # infinities | 
 |         self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi) | 
 |         self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi) | 
 |         self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi) | 
 |         self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2) | 
 |         self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2) | 
 |         self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2) | 
 |         self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2) | 
 |         self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4) | 
 |         self.assertEqual(phase(complex(INF, -2.3)), -0.0) | 
 |         self.assertEqual(phase(complex(INF, -0.0)), -0.0) | 
 |         self.assertEqual(phase(complex(INF, 0.0)), 0.0) | 
 |         self.assertEqual(phase(complex(INF, 2.3)), 0.0) | 
 |         self.assertAlmostEqual(phase(complex(INF, INF)), pi/4) | 
 |         self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2) | 
 |         self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2) | 
 |         self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2) | 
 |         self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2) | 
 |         self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi) | 
 |         self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi) | 
 |         self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi) | 
 |  | 
 |         # real or imaginary part NaN | 
 |         for z in complex_nans: | 
 |             self.assertTrue(math.isnan(phase(z))) | 
 |  | 
 |     def test_abs(self): | 
 |         # zeros | 
 |         for z in complex_zeros: | 
 |             self.assertEqual(abs(z), 0.0) | 
 |  | 
 |         # infinities | 
 |         for z in complex_infinities: | 
 |             self.assertEqual(abs(z), INF) | 
 |  | 
 |         # real or imaginary part NaN | 
 |         self.assertEqual(abs(complex(NAN, -INF)), INF) | 
 |         self.assertTrue(math.isnan(abs(complex(NAN, -2.3)))) | 
 |         self.assertTrue(math.isnan(abs(complex(NAN, -0.0)))) | 
 |         self.assertTrue(math.isnan(abs(complex(NAN, 0.0)))) | 
 |         self.assertTrue(math.isnan(abs(complex(NAN, 2.3)))) | 
 |         self.assertEqual(abs(complex(NAN, INF)), INF) | 
 |         self.assertEqual(abs(complex(-INF, NAN)), INF) | 
 |         self.assertTrue(math.isnan(abs(complex(-2.3, NAN)))) | 
 |         self.assertTrue(math.isnan(abs(complex(-0.0, NAN)))) | 
 |         self.assertTrue(math.isnan(abs(complex(0.0, NAN)))) | 
 |         self.assertTrue(math.isnan(abs(complex(2.3, NAN)))) | 
 |         self.assertEqual(abs(complex(INF, NAN)), INF) | 
 |         self.assertTrue(math.isnan(abs(complex(NAN, NAN)))) | 
 |  | 
 |  | 
 |     @requires_IEEE_754 | 
 |     def test_abs_overflows(self): | 
 |         # result overflows | 
 |         self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308)) | 
 |  | 
 |     def assertCEqual(self, a, b): | 
 |         eps = 1E-7 | 
 |         if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps: | 
 |             self.fail((a ,b)) | 
 |  | 
 |     def test_rect(self): | 
 |         self.assertCEqual(rect(0, 0), (0, 0)) | 
 |         self.assertCEqual(rect(1, 0), (1., 0)) | 
 |         self.assertCEqual(rect(1, -pi), (-1., 0)) | 
 |         self.assertCEqual(rect(1, pi/2), (0, 1.)) | 
 |         self.assertCEqual(rect(1, -pi/2), (0, -1.)) | 
 |  | 
 |     def test_isfinite(self): | 
 |         real_vals = [float('-inf'), -2.3, -0.0, | 
 |                      0.0, 2.3, float('inf'), float('nan')] | 
 |         for x in real_vals: | 
 |             for y in real_vals: | 
 |                 z = complex(x, y) | 
 |                 self.assertEqual(cmath.isfinite(z), | 
 |                                   math.isfinite(x) and math.isfinite(y)) | 
 |  | 
 |     def test_isnan(self): | 
 |         self.assertFalse(cmath.isnan(1)) | 
 |         self.assertFalse(cmath.isnan(1j)) | 
 |         self.assertFalse(cmath.isnan(INF)) | 
 |         self.assertTrue(cmath.isnan(NAN)) | 
 |         self.assertTrue(cmath.isnan(complex(NAN, 0))) | 
 |         self.assertTrue(cmath.isnan(complex(0, NAN))) | 
 |         self.assertTrue(cmath.isnan(complex(NAN, NAN))) | 
 |         self.assertTrue(cmath.isnan(complex(NAN, INF))) | 
 |         self.assertTrue(cmath.isnan(complex(INF, NAN))) | 
 |  | 
 |     def test_isinf(self): | 
 |         self.assertFalse(cmath.isinf(1)) | 
 |         self.assertFalse(cmath.isinf(1j)) | 
 |         self.assertFalse(cmath.isinf(NAN)) | 
 |         self.assertTrue(cmath.isinf(INF)) | 
 |         self.assertTrue(cmath.isinf(complex(INF, 0))) | 
 |         self.assertTrue(cmath.isinf(complex(0, INF))) | 
 |         self.assertTrue(cmath.isinf(complex(INF, INF))) | 
 |         self.assertTrue(cmath.isinf(complex(NAN, INF))) | 
 |         self.assertTrue(cmath.isinf(complex(INF, NAN))) | 
 |  | 
 |     @requires_IEEE_754 | 
 |     @unittest.skipIf(sysconfig.get_config_var('TANH_PRESERVES_ZERO_SIGN') == 0, | 
 |                      "system tanh() function doesn't copy the sign") | 
 |     def testTanhSign(self): | 
 |         for z in complex_zeros: | 
 |             self.assertComplexIdentical(cmath.tanh(z), z) | 
 |  | 
 |     # The algorithm used for atan and atanh makes use of the system | 
 |     # log1p function; If that system function doesn't respect the sign | 
 |     # of zero, then atan and atanh will also have difficulties with | 
 |     # the sign of complex zeros. | 
 |     @requires_IEEE_754 | 
 |     def testAtanSign(self): | 
 |         for z in complex_zeros: | 
 |             self.assertComplexIdentical(cmath.atan(z), z) | 
 |  | 
 |     @requires_IEEE_754 | 
 |     def testAtanhSign(self): | 
 |         for z in complex_zeros: | 
 |             self.assertComplexIdentical(cmath.atanh(z), z) | 
 |  | 
 |  | 
 | class IsCloseTests(test_math.IsCloseTests): | 
 |     isclose = cmath.isclose | 
 |  | 
 |     def test_reject_complex_tolerances(self): | 
 |         with self.assertRaises(TypeError): | 
 |             self.isclose(1j, 1j, rel_tol=1j) | 
 |  | 
 |         with self.assertRaises(TypeError): | 
 |             self.isclose(1j, 1j, abs_tol=1j) | 
 |  | 
 |         with self.assertRaises(TypeError): | 
 |             self.isclose(1j, 1j, rel_tol=1j, abs_tol=1j) | 
 |  | 
 |     def test_complex_values(self): | 
 |         # test complex values that are close to within 12 decimal places | 
 |         complex_examples = [(1.0+1.0j, 1.000000000001+1.0j), | 
 |                             (1.0+1.0j, 1.0+1.000000000001j), | 
 |                             (-1.0+1.0j, -1.000000000001+1.0j), | 
 |                             (1.0-1.0j, 1.0-0.999999999999j), | 
 |                             ] | 
 |  | 
 |         self.assertAllClose(complex_examples, rel_tol=1e-12) | 
 |         self.assertAllNotClose(complex_examples, rel_tol=1e-13) | 
 |  | 
 |     def test_complex_near_zero(self): | 
 |         # test values near zero that are near to within three decimal places | 
 |         near_zero_examples = [(0.001j, 0), | 
 |                               (0.001, 0), | 
 |                               (0.001+0.001j, 0), | 
 |                               (-0.001+0.001j, 0), | 
 |                               (0.001-0.001j, 0), | 
 |                               (-0.001-0.001j, 0), | 
 |                               ] | 
 |  | 
 |         self.assertAllClose(near_zero_examples, abs_tol=1.5e-03) | 
 |         self.assertAllNotClose(near_zero_examples, abs_tol=0.5e-03) | 
 |  | 
 |         self.assertIsClose(0.001-0.001j, 0.001+0.001j, abs_tol=2e-03) | 
 |         self.assertIsNotClose(0.001-0.001j, 0.001+0.001j, abs_tol=1e-03) | 
 |  | 
 |  | 
 | if __name__ == "__main__": | 
 |     unittest.main() |