| /* List object implementation */ |
| |
| #include "Python.h" |
| |
| #ifdef STDC_HEADERS |
| #include <stddef.h> |
| #else |
| #include <sys/types.h> /* For size_t */ |
| #endif |
| |
| /* Ensure ob_item has room for at least newsize elements, and set |
| * ob_size to newsize. If newsize > ob_size on entry, the content |
| * of the new slots at exit is undefined heap trash; it's the caller's |
| * responsiblity to overwrite them with sane values. |
| * The number of allocated elements may grow, shrink, or stay the same. |
| * Failure is impossible if newsize <= self.allocated on entry, although |
| * that partly relies on an assumption that the system realloc() never |
| * fails when passed a number of bytes <= the number of bytes last |
| * allocated (the C standard doesn't guarantee this, but it's hard to |
| * imagine a realloc implementation where it wouldn't be true). |
| * Note that self->ob_item may change, and even if newsize is less |
| * than ob_size on entry. |
| */ |
| static int |
| list_resize(PyListObject *self, Py_ssize_t newsize) |
| { |
| PyObject **items; |
| size_t new_allocated; |
| Py_ssize_t allocated = self->allocated; |
| |
| /* Bypass realloc() when a previous overallocation is large enough |
| to accommodate the newsize. If the newsize falls lower than half |
| the allocated size, then proceed with the realloc() to shrink the list. |
| */ |
| if (allocated >= newsize && newsize >= (allocated >> 1)) { |
| assert(self->ob_item != NULL || newsize == 0); |
| Py_SIZE(self) = newsize; |
| return 0; |
| } |
| |
| /* This over-allocates proportional to the list size, making room |
| * for additional growth. The over-allocation is mild, but is |
| * enough to give linear-time amortized behavior over a long |
| * sequence of appends() in the presence of a poorly-performing |
| * system realloc(). |
| * The growth pattern is: 0, 4, 8, 16, 25, 35, 46, 58, 72, 88, ... |
| */ |
| new_allocated = (newsize >> 3) + (newsize < 9 ? 3 : 6); |
| |
| /* check for integer overflow */ |
| if (new_allocated > PY_SIZE_MAX - newsize) { |
| PyErr_NoMemory(); |
| return -1; |
| } else { |
| new_allocated += newsize; |
| } |
| |
| if (newsize == 0) |
| new_allocated = 0; |
| items = self->ob_item; |
| if (new_allocated <= ((~(size_t)0) / sizeof(PyObject *))) |
| PyMem_RESIZE(items, PyObject *, new_allocated); |
| else |
| items = NULL; |
| if (items == NULL) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| self->ob_item = items; |
| Py_SIZE(self) = newsize; |
| self->allocated = new_allocated; |
| return 0; |
| } |
| |
| /* Debug statistic to compare allocations with reuse through the free list */ |
| #undef SHOW_ALLOC_COUNT |
| #ifdef SHOW_ALLOC_COUNT |
| static size_t count_alloc = 0; |
| static size_t count_reuse = 0; |
| |
| static void |
| show_alloc(void) |
| { |
| fprintf(stderr, "List allocations: %" PY_FORMAT_SIZE_T "d\n", |
| count_alloc); |
| fprintf(stderr, "List reuse through freelist: %" PY_FORMAT_SIZE_T |
| "d\n", count_reuse); |
| fprintf(stderr, "%.2f%% reuse rate\n\n", |
| (100.0*count_reuse/(count_alloc+count_reuse))); |
| } |
| #endif |
| |
| /* Empty list reuse scheme to save calls to malloc and free */ |
| #ifndef PyList_MAXFREELIST |
| #define PyList_MAXFREELIST 80 |
| #endif |
| static PyListObject *free_list[PyList_MAXFREELIST]; |
| static int numfree = 0; |
| |
| void |
| PyList_Fini(void) |
| { |
| PyListObject *op; |
| |
| while (numfree) { |
| op = free_list[--numfree]; |
| assert(PyList_CheckExact(op)); |
| PyObject_GC_Del(op); |
| } |
| } |
| |
| PyObject * |
| PyList_New(Py_ssize_t size) |
| { |
| PyListObject *op; |
| size_t nbytes; |
| #ifdef SHOW_ALLOC_COUNT |
| static int initialized = 0; |
| if (!initialized) { |
| Py_AtExit(show_alloc); |
| initialized = 1; |
| } |
| #endif |
| |
| if (size < 0) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| /* Check for overflow without an actual overflow, |
| * which can cause compiler to optimise out */ |
| if ((size_t)size > PY_SIZE_MAX / sizeof(PyObject *)) |
| return PyErr_NoMemory(); |
| nbytes = size * sizeof(PyObject *); |
| if (numfree) { |
| numfree--; |
| op = free_list[numfree]; |
| _Py_NewReference((PyObject *)op); |
| #ifdef SHOW_ALLOC_COUNT |
| count_reuse++; |
| #endif |
| } else { |
| op = PyObject_GC_New(PyListObject, &PyList_Type); |
| if (op == NULL) |
| return NULL; |
| #ifdef SHOW_ALLOC_COUNT |
| count_alloc++; |
| #endif |
| } |
| if (size <= 0) |
| op->ob_item = NULL; |
| else { |
| op->ob_item = (PyObject **) PyMem_MALLOC(nbytes); |
| if (op->ob_item == NULL) { |
| Py_DECREF(op); |
| return PyErr_NoMemory(); |
| } |
| memset(op->ob_item, 0, nbytes); |
| } |
| Py_SIZE(op) = size; |
| op->allocated = size; |
| _PyObject_GC_TRACK(op); |
| return (PyObject *) op; |
| } |
| |
| Py_ssize_t |
| PyList_Size(PyObject *op) |
| { |
| if (!PyList_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| else |
| return Py_SIZE(op); |
| } |
| |
| static PyObject *indexerr = NULL; |
| |
| PyObject * |
| PyList_GetItem(PyObject *op, Py_ssize_t i) |
| { |
| if (!PyList_Check(op)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| if (i < 0 || i >= Py_SIZE(op)) { |
| if (indexerr == NULL) { |
| indexerr = PyUnicode_FromString( |
| "list index out of range"); |
| if (indexerr == NULL) |
| return NULL; |
| } |
| PyErr_SetObject(PyExc_IndexError, indexerr); |
| return NULL; |
| } |
| return ((PyListObject *)op) -> ob_item[i]; |
| } |
| |
| int |
| PyList_SetItem(register PyObject *op, register Py_ssize_t i, |
| register PyObject *newitem) |
| { |
| register PyObject *olditem; |
| register PyObject **p; |
| if (!PyList_Check(op)) { |
| Py_XDECREF(newitem); |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (i < 0 || i >= Py_SIZE(op)) { |
| Py_XDECREF(newitem); |
| PyErr_SetString(PyExc_IndexError, |
| "list assignment index out of range"); |
| return -1; |
| } |
| p = ((PyListObject *)op) -> ob_item + i; |
| olditem = *p; |
| *p = newitem; |
| Py_XDECREF(olditem); |
| return 0; |
| } |
| |
| static int |
| ins1(PyListObject *self, Py_ssize_t where, PyObject *v) |
| { |
| Py_ssize_t i, n = Py_SIZE(self); |
| PyObject **items; |
| if (v == NULL) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (n == PY_SSIZE_T_MAX) { |
| PyErr_SetString(PyExc_OverflowError, |
| "cannot add more objects to list"); |
| return -1; |
| } |
| |
| if (list_resize(self, n+1) == -1) |
| return -1; |
| |
| if (where < 0) { |
| where += n; |
| if (where < 0) |
| where = 0; |
| } |
| if (where > n) |
| where = n; |
| items = self->ob_item; |
| for (i = n; --i >= where; ) |
| items[i+1] = items[i]; |
| Py_INCREF(v); |
| items[where] = v; |
| return 0; |
| } |
| |
| int |
| PyList_Insert(PyObject *op, Py_ssize_t where, PyObject *newitem) |
| { |
| if (!PyList_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| return ins1((PyListObject *)op, where, newitem); |
| } |
| |
| static int |
| app1(PyListObject *self, PyObject *v) |
| { |
| Py_ssize_t n = PyList_GET_SIZE(self); |
| |
| assert (v != NULL); |
| if (n == PY_SSIZE_T_MAX) { |
| PyErr_SetString(PyExc_OverflowError, |
| "cannot add more objects to list"); |
| return -1; |
| } |
| |
| if (list_resize(self, n+1) == -1) |
| return -1; |
| |
| Py_INCREF(v); |
| PyList_SET_ITEM(self, n, v); |
| return 0; |
| } |
| |
| int |
| PyList_Append(PyObject *op, PyObject *newitem) |
| { |
| if (PyList_Check(op) && (newitem != NULL)) |
| return app1((PyListObject *)op, newitem); |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| |
| /* Methods */ |
| |
| static void |
| list_dealloc(PyListObject *op) |
| { |
| Py_ssize_t i; |
| PyObject_GC_UnTrack(op); |
| Py_TRASHCAN_SAFE_BEGIN(op) |
| if (op->ob_item != NULL) { |
| /* Do it backwards, for Christian Tismer. |
| There's a simple test case where somehow this reduces |
| thrashing when a *very* large list is created and |
| immediately deleted. */ |
| i = Py_SIZE(op); |
| while (--i >= 0) { |
| Py_XDECREF(op->ob_item[i]); |
| } |
| PyMem_FREE(op->ob_item); |
| } |
| if (numfree < PyList_MAXFREELIST && PyList_CheckExact(op)) |
| free_list[numfree++] = op; |
| else |
| Py_TYPE(op)->tp_free((PyObject *)op); |
| Py_TRASHCAN_SAFE_END(op) |
| } |
| |
| static PyObject * |
| list_repr(PyListObject *v) |
| { |
| Py_ssize_t i; |
| PyObject *s, *temp; |
| PyObject *pieces = NULL, *result = NULL; |
| |
| i = Py_ReprEnter((PyObject*)v); |
| if (i != 0) { |
| return i > 0 ? PyUnicode_FromString("[...]") : NULL; |
| } |
| |
| if (Py_SIZE(v) == 0) { |
| result = PyUnicode_FromString("[]"); |
| goto Done; |
| } |
| |
| pieces = PyList_New(0); |
| if (pieces == NULL) |
| goto Done; |
| |
| /* Do repr() on each element. Note that this may mutate the list, |
| so must refetch the list size on each iteration. */ |
| for (i = 0; i < Py_SIZE(v); ++i) { |
| int status; |
| if (Py_EnterRecursiveCall(" while getting the repr of a list")) |
| goto Done; |
| s = PyObject_Repr(v->ob_item[i]); |
| Py_LeaveRecursiveCall(); |
| if (s == NULL) |
| goto Done; |
| status = PyList_Append(pieces, s); |
| Py_DECREF(s); /* append created a new ref */ |
| if (status < 0) |
| goto Done; |
| } |
| |
| /* Add "[]" decorations to the first and last items. */ |
| assert(PyList_GET_SIZE(pieces) > 0); |
| s = PyUnicode_FromString("["); |
| if (s == NULL) |
| goto Done; |
| temp = PyList_GET_ITEM(pieces, 0); |
| PyUnicode_AppendAndDel(&s, temp); |
| PyList_SET_ITEM(pieces, 0, s); |
| if (s == NULL) |
| goto Done; |
| |
| s = PyUnicode_FromString("]"); |
| if (s == NULL) |
| goto Done; |
| temp = PyList_GET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1); |
| PyUnicode_AppendAndDel(&temp, s); |
| PyList_SET_ITEM(pieces, PyList_GET_SIZE(pieces) - 1, temp); |
| if (temp == NULL) |
| goto Done; |
| |
| /* Paste them all together with ", " between. */ |
| s = PyUnicode_FromString(", "); |
| if (s == NULL) |
| goto Done; |
| result = PyUnicode_Join(s, pieces); |
| Py_DECREF(s); |
| |
| Done: |
| Py_XDECREF(pieces); |
| Py_ReprLeave((PyObject *)v); |
| return result; |
| } |
| |
| static Py_ssize_t |
| list_length(PyListObject *a) |
| { |
| return Py_SIZE(a); |
| } |
| |
| static int |
| list_contains(PyListObject *a, PyObject *el) |
| { |
| Py_ssize_t i; |
| int cmp; |
| |
| for (i = 0, cmp = 0 ; cmp == 0 && i < Py_SIZE(a); ++i) |
| cmp = PyObject_RichCompareBool(el, PyList_GET_ITEM(a, i), |
| Py_EQ); |
| return cmp; |
| } |
| |
| static PyObject * |
| list_item(PyListObject *a, Py_ssize_t i) |
| { |
| if (i < 0 || i >= Py_SIZE(a)) { |
| if (indexerr == NULL) { |
| indexerr = PyUnicode_FromString( |
| "list index out of range"); |
| if (indexerr == NULL) |
| return NULL; |
| } |
| PyErr_SetObject(PyExc_IndexError, indexerr); |
| return NULL; |
| } |
| Py_INCREF(a->ob_item[i]); |
| return a->ob_item[i]; |
| } |
| |
| static PyObject * |
| list_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh) |
| { |
| PyListObject *np; |
| PyObject **src, **dest; |
| Py_ssize_t i, len; |
| if (ilow < 0) |
| ilow = 0; |
| else if (ilow > Py_SIZE(a)) |
| ilow = Py_SIZE(a); |
| if (ihigh < ilow) |
| ihigh = ilow; |
| else if (ihigh > Py_SIZE(a)) |
| ihigh = Py_SIZE(a); |
| len = ihigh - ilow; |
| np = (PyListObject *) PyList_New(len); |
| if (np == NULL) |
| return NULL; |
| |
| src = a->ob_item + ilow; |
| dest = np->ob_item; |
| for (i = 0; i < len; i++) { |
| PyObject *v = src[i]; |
| Py_INCREF(v); |
| dest[i] = v; |
| } |
| return (PyObject *)np; |
| } |
| |
| PyObject * |
| PyList_GetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh) |
| { |
| if (!PyList_Check(a)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return list_slice((PyListObject *)a, ilow, ihigh); |
| } |
| |
| static PyObject * |
| list_concat(PyListObject *a, PyObject *bb) |
| { |
| Py_ssize_t size; |
| Py_ssize_t i; |
| PyObject **src, **dest; |
| PyListObject *np; |
| if (!PyList_Check(bb)) { |
| PyErr_Format(PyExc_TypeError, |
| "can only concatenate list (not \"%.200s\") to list", |
| bb->ob_type->tp_name); |
| return NULL; |
| } |
| #define b ((PyListObject *)bb) |
| size = Py_SIZE(a) + Py_SIZE(b); |
| if (size < 0) |
| return PyErr_NoMemory(); |
| np = (PyListObject *) PyList_New(size); |
| if (np == NULL) { |
| return NULL; |
| } |
| src = a->ob_item; |
| dest = np->ob_item; |
| for (i = 0; i < Py_SIZE(a); i++) { |
| PyObject *v = src[i]; |
| Py_INCREF(v); |
| dest[i] = v; |
| } |
| src = b->ob_item; |
| dest = np->ob_item + Py_SIZE(a); |
| for (i = 0; i < Py_SIZE(b); i++) { |
| PyObject *v = src[i]; |
| Py_INCREF(v); |
| dest[i] = v; |
| } |
| return (PyObject *)np; |
| #undef b |
| } |
| |
| static PyObject * |
| list_repeat(PyListObject *a, Py_ssize_t n) |
| { |
| Py_ssize_t i, j; |
| Py_ssize_t size; |
| PyListObject *np; |
| PyObject **p, **items; |
| PyObject *elem; |
| if (n < 0) |
| n = 0; |
| size = Py_SIZE(a) * n; |
| if (n && size/n != Py_SIZE(a)) |
| return PyErr_NoMemory(); |
| if (size == 0) |
| return PyList_New(0); |
| np = (PyListObject *) PyList_New(size); |
| if (np == NULL) |
| return NULL; |
| |
| items = np->ob_item; |
| if (Py_SIZE(a) == 1) { |
| elem = a->ob_item[0]; |
| for (i = 0; i < n; i++) { |
| items[i] = elem; |
| Py_INCREF(elem); |
| } |
| return (PyObject *) np; |
| } |
| p = np->ob_item; |
| items = a->ob_item; |
| for (i = 0; i < n; i++) { |
| for (j = 0; j < Py_SIZE(a); j++) { |
| *p = items[j]; |
| Py_INCREF(*p); |
| p++; |
| } |
| } |
| return (PyObject *) np; |
| } |
| |
| static int |
| list_clear(PyListObject *a) |
| { |
| Py_ssize_t i; |
| PyObject **item = a->ob_item; |
| if (item != NULL) { |
| /* Because XDECREF can recursively invoke operations on |
| this list, we make it empty first. */ |
| i = Py_SIZE(a); |
| Py_SIZE(a) = 0; |
| a->ob_item = NULL; |
| a->allocated = 0; |
| while (--i >= 0) { |
| Py_XDECREF(item[i]); |
| } |
| PyMem_FREE(item); |
| } |
| /* Never fails; the return value can be ignored. |
| Note that there is no guarantee that the list is actually empty |
| at this point, because XDECREF may have populated it again! */ |
| return 0; |
| } |
| |
| /* a[ilow:ihigh] = v if v != NULL. |
| * del a[ilow:ihigh] if v == NULL. |
| * |
| * Special speed gimmick: when v is NULL and ihigh - ilow <= 8, it's |
| * guaranteed the call cannot fail. |
| */ |
| static int |
| list_ass_slice(PyListObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v) |
| { |
| /* Because [X]DECREF can recursively invoke list operations on |
| this list, we must postpone all [X]DECREF activity until |
| after the list is back in its canonical shape. Therefore |
| we must allocate an additional array, 'recycle', into which |
| we temporarily copy the items that are deleted from the |
| list. :-( */ |
| PyObject *recycle_on_stack[8]; |
| PyObject **recycle = recycle_on_stack; /* will allocate more if needed */ |
| PyObject **item; |
| PyObject **vitem = NULL; |
| PyObject *v_as_SF = NULL; /* PySequence_Fast(v) */ |
| Py_ssize_t n; /* # of elements in replacement list */ |
| Py_ssize_t norig; /* # of elements in list getting replaced */ |
| Py_ssize_t d; /* Change in size */ |
| Py_ssize_t k; |
| size_t s; |
| int result = -1; /* guilty until proved innocent */ |
| #define b ((PyListObject *)v) |
| if (v == NULL) |
| n = 0; |
| else { |
| if (a == b) { |
| /* Special case "a[i:j] = a" -- copy b first */ |
| v = list_slice(b, 0, Py_SIZE(b)); |
| if (v == NULL) |
| return result; |
| result = list_ass_slice(a, ilow, ihigh, v); |
| Py_DECREF(v); |
| return result; |
| } |
| v_as_SF = PySequence_Fast(v, "can only assign an iterable"); |
| if(v_as_SF == NULL) |
| goto Error; |
| n = PySequence_Fast_GET_SIZE(v_as_SF); |
| vitem = PySequence_Fast_ITEMS(v_as_SF); |
| } |
| if (ilow < 0) |
| ilow = 0; |
| else if (ilow > Py_SIZE(a)) |
| ilow = Py_SIZE(a); |
| |
| if (ihigh < ilow) |
| ihigh = ilow; |
| else if (ihigh > Py_SIZE(a)) |
| ihigh = Py_SIZE(a); |
| |
| norig = ihigh - ilow; |
| assert(norig >= 0); |
| d = n - norig; |
| if (Py_SIZE(a) + d == 0) { |
| Py_XDECREF(v_as_SF); |
| return list_clear(a); |
| } |
| item = a->ob_item; |
| /* recycle the items that we are about to remove */ |
| s = norig * sizeof(PyObject *); |
| if (s > sizeof(recycle_on_stack)) { |
| recycle = (PyObject **)PyMem_MALLOC(s); |
| if (recycle == NULL) { |
| PyErr_NoMemory(); |
| goto Error; |
| } |
| } |
| memcpy(recycle, &item[ilow], s); |
| |
| if (d < 0) { /* Delete -d items */ |
| memmove(&item[ihigh+d], &item[ihigh], |
| (Py_SIZE(a) - ihigh)*sizeof(PyObject *)); |
| list_resize(a, Py_SIZE(a) + d); |
| item = a->ob_item; |
| } |
| else if (d > 0) { /* Insert d items */ |
| k = Py_SIZE(a); |
| if (list_resize(a, k+d) < 0) |
| goto Error; |
| item = a->ob_item; |
| memmove(&item[ihigh+d], &item[ihigh], |
| (k - ihigh)*sizeof(PyObject *)); |
| } |
| for (k = 0; k < n; k++, ilow++) { |
| PyObject *w = vitem[k]; |
| Py_XINCREF(w); |
| item[ilow] = w; |
| } |
| for (k = norig - 1; k >= 0; --k) |
| Py_XDECREF(recycle[k]); |
| result = 0; |
| Error: |
| if (recycle != recycle_on_stack) |
| PyMem_FREE(recycle); |
| Py_XDECREF(v_as_SF); |
| return result; |
| #undef b |
| } |
| |
| int |
| PyList_SetSlice(PyObject *a, Py_ssize_t ilow, Py_ssize_t ihigh, PyObject *v) |
| { |
| if (!PyList_Check(a)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| return list_ass_slice((PyListObject *)a, ilow, ihigh, v); |
| } |
| |
| static PyObject * |
| list_inplace_repeat(PyListObject *self, Py_ssize_t n) |
| { |
| PyObject **items; |
| Py_ssize_t size, i, j, p; |
| |
| |
| size = PyList_GET_SIZE(self); |
| if (size == 0 || n == 1) { |
| Py_INCREF(self); |
| return (PyObject *)self; |
| } |
| |
| if (n < 1) { |
| (void)list_clear(self); |
| Py_INCREF(self); |
| return (PyObject *)self; |
| } |
| |
| if (size > PY_SSIZE_T_MAX / n) { |
| return PyErr_NoMemory(); |
| } |
| |
| if (list_resize(self, size*n) == -1) |
| return NULL; |
| |
| p = size; |
| items = self->ob_item; |
| for (i = 1; i < n; i++) { /* Start counting at 1, not 0 */ |
| for (j = 0; j < size; j++) { |
| PyObject *o = items[j]; |
| Py_INCREF(o); |
| items[p++] = o; |
| } |
| } |
| Py_INCREF(self); |
| return (PyObject *)self; |
| } |
| |
| static int |
| list_ass_item(PyListObject *a, Py_ssize_t i, PyObject *v) |
| { |
| PyObject *old_value; |
| if (i < 0 || i >= Py_SIZE(a)) { |
| PyErr_SetString(PyExc_IndexError, |
| "list assignment index out of range"); |
| return -1; |
| } |
| if (v == NULL) |
| return list_ass_slice(a, i, i+1, v); |
| Py_INCREF(v); |
| old_value = a->ob_item[i]; |
| a->ob_item[i] = v; |
| Py_DECREF(old_value); |
| return 0; |
| } |
| |
| static PyObject * |
| listinsert(PyListObject *self, PyObject *args) |
| { |
| Py_ssize_t i; |
| PyObject *v; |
| if (!PyArg_ParseTuple(args, "nO:insert", &i, &v)) |
| return NULL; |
| if (ins1(self, i, v) == 0) |
| Py_RETURN_NONE; |
| return NULL; |
| } |
| |
| static PyObject * |
| listappend(PyListObject *self, PyObject *v) |
| { |
| if (app1(self, v) == 0) |
| Py_RETURN_NONE; |
| return NULL; |
| } |
| |
| static PyObject * |
| listextend(PyListObject *self, PyObject *b) |
| { |
| PyObject *it; /* iter(v) */ |
| Py_ssize_t m; /* size of self */ |
| Py_ssize_t n; /* guess for size of b */ |
| Py_ssize_t mn; /* m + n */ |
| Py_ssize_t i; |
| PyObject *(*iternext)(PyObject *); |
| |
| /* Special cases: |
| 1) lists and tuples which can use PySequence_Fast ops |
| 2) extending self to self requires making a copy first |
| */ |
| if (PyList_CheckExact(b) || PyTuple_CheckExact(b) || (PyObject *)self == b) { |
| PyObject **src, **dest; |
| b = PySequence_Fast(b, "argument must be iterable"); |
| if (!b) |
| return NULL; |
| n = PySequence_Fast_GET_SIZE(b); |
| if (n == 0) { |
| /* short circuit when b is empty */ |
| Py_DECREF(b); |
| Py_RETURN_NONE; |
| } |
| m = Py_SIZE(self); |
| if (list_resize(self, m + n) == -1) { |
| Py_DECREF(b); |
| return NULL; |
| } |
| /* note that we may still have self == b here for the |
| * situation a.extend(a), but the following code works |
| * in that case too. Just make sure to resize self |
| * before calling PySequence_Fast_ITEMS. |
| */ |
| /* populate the end of self with b's items */ |
| src = PySequence_Fast_ITEMS(b); |
| dest = self->ob_item + m; |
| for (i = 0; i < n; i++) { |
| PyObject *o = src[i]; |
| Py_INCREF(o); |
| dest[i] = o; |
| } |
| Py_DECREF(b); |
| Py_RETURN_NONE; |
| } |
| |
| it = PyObject_GetIter(b); |
| if (it == NULL) |
| return NULL; |
| iternext = *it->ob_type->tp_iternext; |
| |
| /* Guess a result list size. */ |
| n = _PyObject_LengthHint(b, 8); |
| if (n == -1) { |
| Py_DECREF(it); |
| return NULL; |
| } |
| m = Py_SIZE(self); |
| mn = m + n; |
| if (mn >= m) { |
| /* Make room. */ |
| if (list_resize(self, mn) == -1) |
| goto error; |
| /* Make the list sane again. */ |
| Py_SIZE(self) = m; |
| } |
| /* Else m + n overflowed; on the chance that n lied, and there really |
| * is enough room, ignore it. If n was telling the truth, we'll |
| * eventually run out of memory during the loop. |
| */ |
| |
| /* Run iterator to exhaustion. */ |
| for (;;) { |
| PyObject *item = iternext(it); |
| if (item == NULL) { |
| if (PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_StopIteration)) |
| PyErr_Clear(); |
| else |
| goto error; |
| } |
| break; |
| } |
| if (Py_SIZE(self) < self->allocated) { |
| /* steals ref */ |
| PyList_SET_ITEM(self, Py_SIZE(self), item); |
| ++Py_SIZE(self); |
| } |
| else { |
| int status = app1(self, item); |
| Py_DECREF(item); /* append creates a new ref */ |
| if (status < 0) |
| goto error; |
| } |
| } |
| |
| /* Cut back result list if initial guess was too large. */ |
| if (Py_SIZE(self) < self->allocated) |
| list_resize(self, Py_SIZE(self)); /* shrinking can't fail */ |
| |
| Py_DECREF(it); |
| Py_RETURN_NONE; |
| |
| error: |
| Py_DECREF(it); |
| return NULL; |
| } |
| |
| PyObject * |
| _PyList_Extend(PyListObject *self, PyObject *b) |
| { |
| return listextend(self, b); |
| } |
| |
| static PyObject * |
| list_inplace_concat(PyListObject *self, PyObject *other) |
| { |
| PyObject *result; |
| |
| result = listextend(self, other); |
| if (result == NULL) |
| return result; |
| Py_DECREF(result); |
| Py_INCREF(self); |
| return (PyObject *)self; |
| } |
| |
| static PyObject * |
| listpop(PyListObject *self, PyObject *args) |
| { |
| Py_ssize_t i = -1; |
| PyObject *v; |
| int status; |
| |
| if (!PyArg_ParseTuple(args, "|n:pop", &i)) |
| return NULL; |
| |
| if (Py_SIZE(self) == 0) { |
| /* Special-case most common failure cause */ |
| PyErr_SetString(PyExc_IndexError, "pop from empty list"); |
| return NULL; |
| } |
| if (i < 0) |
| i += Py_SIZE(self); |
| if (i < 0 || i >= Py_SIZE(self)) { |
| PyErr_SetString(PyExc_IndexError, "pop index out of range"); |
| return NULL; |
| } |
| v = self->ob_item[i]; |
| if (i == Py_SIZE(self) - 1) { |
| status = list_resize(self, Py_SIZE(self) - 1); |
| assert(status >= 0); |
| return v; /* and v now owns the reference the list had */ |
| } |
| Py_INCREF(v); |
| status = list_ass_slice(self, i, i+1, (PyObject *)NULL); |
| assert(status >= 0); |
| /* Use status, so that in a release build compilers don't |
| * complain about the unused name. |
| */ |
| (void) status; |
| |
| return v; |
| } |
| |
| /* Reverse a slice of a list in place, from lo up to (exclusive) hi. */ |
| static void |
| reverse_slice(PyObject **lo, PyObject **hi) |
| { |
| assert(lo && hi); |
| |
| --hi; |
| while (lo < hi) { |
| PyObject *t = *lo; |
| *lo = *hi; |
| *hi = t; |
| ++lo; |
| --hi; |
| } |
| } |
| |
| /* Lots of code for an adaptive, stable, natural mergesort. There are many |
| * pieces to this algorithm; read listsort.txt for overviews and details. |
| */ |
| |
| /* A sortslice contains a pointer to an array of keys and a pointer to |
| * an array of corresponding values. In other words, keys[i] |
| * corresponds with values[i]. If values == NULL, then the keys are |
| * also the values. |
| * |
| * Several convenience routines are provided here, so that keys and |
| * values are always moved in sync. |
| */ |
| |
| typedef struct { |
| PyObject **keys; |
| PyObject **values; |
| } sortslice; |
| |
| Py_LOCAL_INLINE(void) |
| sortslice_copy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j) |
| { |
| s1->keys[i] = s2->keys[j]; |
| if (s1->values != NULL) |
| s1->values[i] = s2->values[j]; |
| } |
| |
| Py_LOCAL_INLINE(void) |
| sortslice_copy_incr(sortslice *dst, sortslice *src) |
| { |
| *dst->keys++ = *src->keys++; |
| if (dst->values != NULL) |
| *dst->values++ = *src->values++; |
| } |
| |
| Py_LOCAL_INLINE(void) |
| sortslice_copy_decr(sortslice *dst, sortslice *src) |
| { |
| *dst->keys-- = *src->keys--; |
| if (dst->values != NULL) |
| *dst->values-- = *src->values--; |
| } |
| |
| |
| Py_LOCAL_INLINE(void) |
| sortslice_memcpy(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j, |
| Py_ssize_t n) |
| { |
| memcpy(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n); |
| if (s1->values != NULL) |
| memcpy(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n); |
| } |
| |
| Py_LOCAL_INLINE(void) |
| sortslice_memmove(sortslice *s1, Py_ssize_t i, sortslice *s2, Py_ssize_t j, |
| Py_ssize_t n) |
| { |
| memmove(&s1->keys[i], &s2->keys[j], sizeof(PyObject *) * n); |
| if (s1->values != NULL) |
| memmove(&s1->values[i], &s2->values[j], sizeof(PyObject *) * n); |
| } |
| |
| Py_LOCAL_INLINE(void) |
| sortslice_advance(sortslice *slice, Py_ssize_t n) |
| { |
| slice->keys += n; |
| if (slice->values != NULL) |
| slice->values += n; |
| } |
| |
| /* Comparison function: PyObject_RichCompareBool with Py_LT. |
| * Returns -1 on error, 1 if x < y, 0 if x >= y. |
| */ |
| |
| #define ISLT(X, Y) (PyObject_RichCompareBool(X, Y, Py_LT)) |
| |
| /* Compare X to Y via "<". Goto "fail" if the comparison raises an |
| error. Else "k" is set to true iff X<Y, and an "if (k)" block is |
| started. It makes more sense in context <wink>. X and Y are PyObject*s. |
| */ |
| #define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail; \ |
| if (k) |
| |
| /* binarysort is the best method for sorting small arrays: it does |
| few compares, but can do data movement quadratic in the number of |
| elements. |
| [lo, hi) is a contiguous slice of a list, and is sorted via |
| binary insertion. This sort is stable. |
| On entry, must have lo <= start <= hi, and that [lo, start) is already |
| sorted (pass start == lo if you don't know!). |
| If islt() complains return -1, else 0. |
| Even in case of error, the output slice will be some permutation of |
| the input (nothing is lost or duplicated). |
| */ |
| static int |
| binarysort(sortslice lo, PyObject **hi, PyObject **start) |
| { |
| register Py_ssize_t k; |
| register PyObject **l, **p, **r; |
| register PyObject *pivot; |
| |
| assert(lo.keys <= start && start <= hi); |
| /* assert [lo, start) is sorted */ |
| if (lo.keys == start) |
| ++start; |
| for (; start < hi; ++start) { |
| /* set l to where *start belongs */ |
| l = lo.keys; |
| r = start; |
| pivot = *r; |
| /* Invariants: |
| * pivot >= all in [lo, l). |
| * pivot < all in [r, start). |
| * The second is vacuously true at the start. |
| */ |
| assert(l < r); |
| do { |
| p = l + ((r - l) >> 1); |
| IFLT(pivot, *p) |
| r = p; |
| else |
| l = p+1; |
| } while (l < r); |
| assert(l == r); |
| /* The invariants still hold, so pivot >= all in [lo, l) and |
| pivot < all in [l, start), so pivot belongs at l. Note |
| that if there are elements equal to pivot, l points to the |
| first slot after them -- that's why this sort is stable. |
| Slide over to make room. |
| Caution: using memmove is much slower under MSVC 5; |
| we're not usually moving many slots. */ |
| for (p = start; p > l; --p) |
| *p = *(p-1); |
| *l = pivot; |
| if (lo.values != NULL) { |
| Py_ssize_t offset = lo.values - lo.keys; |
| p = start + offset; |
| pivot = *p; |
| l += offset; |
| for (p = start + offset; p > l; --p) |
| *p = *(p-1); |
| *l = pivot; |
| } |
| } |
| return 0; |
| |
| fail: |
| return -1; |
| } |
| |
| /* |
| Return the length of the run beginning at lo, in the slice [lo, hi). lo < hi |
| is required on entry. "A run" is the longest ascending sequence, with |
| |
| lo[0] <= lo[1] <= lo[2] <= ... |
| |
| or the longest descending sequence, with |
| |
| lo[0] > lo[1] > lo[2] > ... |
| |
| Boolean *descending is set to 0 in the former case, or to 1 in the latter. |
| For its intended use in a stable mergesort, the strictness of the defn of |
| "descending" is needed so that the caller can safely reverse a descending |
| sequence without violating stability (strict > ensures there are no equal |
| elements to get out of order). |
| |
| Returns -1 in case of error. |
| */ |
| static Py_ssize_t |
| count_run(PyObject **lo, PyObject **hi, int *descending) |
| { |
| Py_ssize_t k; |
| Py_ssize_t n; |
| |
| assert(lo < hi); |
| *descending = 0; |
| ++lo; |
| if (lo == hi) |
| return 1; |
| |
| n = 2; |
| IFLT(*lo, *(lo-1)) { |
| *descending = 1; |
| for (lo = lo+1; lo < hi; ++lo, ++n) { |
| IFLT(*lo, *(lo-1)) |
| ; |
| else |
| break; |
| } |
| } |
| else { |
| for (lo = lo+1; lo < hi; ++lo, ++n) { |
| IFLT(*lo, *(lo-1)) |
| break; |
| } |
| } |
| |
| return n; |
| fail: |
| return -1; |
| } |
| |
| /* |
| Locate the proper position of key in a sorted vector; if the vector contains |
| an element equal to key, return the position immediately to the left of |
| the leftmost equal element. [gallop_right() does the same except returns |
| the position to the right of the rightmost equal element (if any).] |
| |
| "a" is a sorted vector with n elements, starting at a[0]. n must be > 0. |
| |
| "hint" is an index at which to begin the search, 0 <= hint < n. The closer |
| hint is to the final result, the faster this runs. |
| |
| The return value is the int k in 0..n such that |
| |
| a[k-1] < key <= a[k] |
| |
| pretending that *(a-1) is minus infinity and a[n] is plus infinity. IOW, |
| key belongs at index k; or, IOW, the first k elements of a should precede |
| key, and the last n-k should follow key. |
| |
| Returns -1 on error. See listsort.txt for info on the method. |
| */ |
| static Py_ssize_t |
| gallop_left(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint) |
| { |
| Py_ssize_t ofs; |
| Py_ssize_t lastofs; |
| Py_ssize_t k; |
| |
| assert(key && a && n > 0 && hint >= 0 && hint < n); |
| |
| a += hint; |
| lastofs = 0; |
| ofs = 1; |
| IFLT(*a, key) { |
| /* a[hint] < key -- gallop right, until |
| * a[hint + lastofs] < key <= a[hint + ofs] |
| */ |
| const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */ |
| while (ofs < maxofs) { |
| IFLT(a[ofs], key) { |
| lastofs = ofs; |
| ofs = (ofs << 1) + 1; |
| if (ofs <= 0) /* int overflow */ |
| ofs = maxofs; |
| } |
| else /* key <= a[hint + ofs] */ |
| break; |
| } |
| if (ofs > maxofs) |
| ofs = maxofs; |
| /* Translate back to offsets relative to &a[0]. */ |
| lastofs += hint; |
| ofs += hint; |
| } |
| else { |
| /* key <= a[hint] -- gallop left, until |
| * a[hint - ofs] < key <= a[hint - lastofs] |
| */ |
| const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */ |
| while (ofs < maxofs) { |
| IFLT(*(a-ofs), key) |
| break; |
| /* key <= a[hint - ofs] */ |
| lastofs = ofs; |
| ofs = (ofs << 1) + 1; |
| if (ofs <= 0) /* int overflow */ |
| ofs = maxofs; |
| } |
| if (ofs > maxofs) |
| ofs = maxofs; |
| /* Translate back to positive offsets relative to &a[0]. */ |
| k = lastofs; |
| lastofs = hint - ofs; |
| ofs = hint - k; |
| } |
| a -= hint; |
| |
| assert(-1 <= lastofs && lastofs < ofs && ofs <= n); |
| /* Now a[lastofs] < key <= a[ofs], so key belongs somewhere to the |
| * right of lastofs but no farther right than ofs. Do a binary |
| * search, with invariant a[lastofs-1] < key <= a[ofs]. |
| */ |
| ++lastofs; |
| while (lastofs < ofs) { |
| Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1); |
| |
| IFLT(a[m], key) |
| lastofs = m+1; /* a[m] < key */ |
| else |
| ofs = m; /* key <= a[m] */ |
| } |
| assert(lastofs == ofs); /* so a[ofs-1] < key <= a[ofs] */ |
| return ofs; |
| |
| fail: |
| return -1; |
| } |
| |
| /* |
| Exactly like gallop_left(), except that if key already exists in a[0:n], |
| finds the position immediately to the right of the rightmost equal value. |
| |
| The return value is the int k in 0..n such that |
| |
| a[k-1] <= key < a[k] |
| |
| or -1 if error. |
| |
| The code duplication is massive, but this is enough different given that |
| we're sticking to "<" comparisons that it's much harder to follow if |
| written as one routine with yet another "left or right?" flag. |
| */ |
| static Py_ssize_t |
| gallop_right(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint) |
| { |
| Py_ssize_t ofs; |
| Py_ssize_t lastofs; |
| Py_ssize_t k; |
| |
| assert(key && a && n > 0 && hint >= 0 && hint < n); |
| |
| a += hint; |
| lastofs = 0; |
| ofs = 1; |
| IFLT(key, *a) { |
| /* key < a[hint] -- gallop left, until |
| * a[hint - ofs] <= key < a[hint - lastofs] |
| */ |
| const Py_ssize_t maxofs = hint + 1; /* &a[0] is lowest */ |
| while (ofs < maxofs) { |
| IFLT(key, *(a-ofs)) { |
| lastofs = ofs; |
| ofs = (ofs << 1) + 1; |
| if (ofs <= 0) /* int overflow */ |
| ofs = maxofs; |
| } |
| else /* a[hint - ofs] <= key */ |
| break; |
| } |
| if (ofs > maxofs) |
| ofs = maxofs; |
| /* Translate back to positive offsets relative to &a[0]. */ |
| k = lastofs; |
| lastofs = hint - ofs; |
| ofs = hint - k; |
| } |
| else { |
| /* a[hint] <= key -- gallop right, until |
| * a[hint + lastofs] <= key < a[hint + ofs] |
| */ |
| const Py_ssize_t maxofs = n - hint; /* &a[n-1] is highest */ |
| while (ofs < maxofs) { |
| IFLT(key, a[ofs]) |
| break; |
| /* a[hint + ofs] <= key */ |
| lastofs = ofs; |
| ofs = (ofs << 1) + 1; |
| if (ofs <= 0) /* int overflow */ |
| ofs = maxofs; |
| } |
| if (ofs > maxofs) |
| ofs = maxofs; |
| /* Translate back to offsets relative to &a[0]. */ |
| lastofs += hint; |
| ofs += hint; |
| } |
| a -= hint; |
| |
| assert(-1 <= lastofs && lastofs < ofs && ofs <= n); |
| /* Now a[lastofs] <= key < a[ofs], so key belongs somewhere to the |
| * right of lastofs but no farther right than ofs. Do a binary |
| * search, with invariant a[lastofs-1] <= key < a[ofs]. |
| */ |
| ++lastofs; |
| while (lastofs < ofs) { |
| Py_ssize_t m = lastofs + ((ofs - lastofs) >> 1); |
| |
| IFLT(key, a[m]) |
| ofs = m; /* key < a[m] */ |
| else |
| lastofs = m+1; /* a[m] <= key */ |
| } |
| assert(lastofs == ofs); /* so a[ofs-1] <= key < a[ofs] */ |
| return ofs; |
| |
| fail: |
| return -1; |
| } |
| |
| /* The maximum number of entries in a MergeState's pending-runs stack. |
| * This is enough to sort arrays of size up to about |
| * 32 * phi ** MAX_MERGE_PENDING |
| * where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array |
| * with 2**64 elements. |
| */ |
| #define MAX_MERGE_PENDING 85 |
| |
| /* When we get into galloping mode, we stay there until both runs win less |
| * often than MIN_GALLOP consecutive times. See listsort.txt for more info. |
| */ |
| #define MIN_GALLOP 7 |
| |
| /* Avoid malloc for small temp arrays. */ |
| #define MERGESTATE_TEMP_SIZE 256 |
| |
| /* One MergeState exists on the stack per invocation of mergesort. It's just |
| * a convenient way to pass state around among the helper functions. |
| */ |
| struct s_slice { |
| sortslice base; |
| Py_ssize_t len; |
| }; |
| |
| typedef struct s_MergeState { |
| /* This controls when we get *into* galloping mode. It's initialized |
| * to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for |
| * random data, and lower for highly structured data. |
| */ |
| Py_ssize_t min_gallop; |
| |
| /* 'a' is temp storage to help with merges. It contains room for |
| * alloced entries. |
| */ |
| sortslice a; /* may point to temparray below */ |
| Py_ssize_t alloced; |
| |
| /* A stack of n pending runs yet to be merged. Run #i starts at |
| * address base[i] and extends for len[i] elements. It's always |
| * true (so long as the indices are in bounds) that |
| * |
| * pending[i].base + pending[i].len == pending[i+1].base |
| * |
| * so we could cut the storage for this, but it's a minor amount, |
| * and keeping all the info explicit simplifies the code. |
| */ |
| int n; |
| struct s_slice pending[MAX_MERGE_PENDING]; |
| |
| /* 'a' points to this when possible, rather than muck with malloc. */ |
| PyObject *temparray[MERGESTATE_TEMP_SIZE]; |
| } MergeState; |
| |
| /* Conceptually a MergeState's constructor. */ |
| static void |
| merge_init(MergeState *ms, int list_size, int has_keyfunc) |
| { |
| assert(ms != NULL); |
| if (has_keyfunc) { |
| /* The temporary space for merging will need at most half the list |
| * size rounded up. Use the minimum possible space so we can use the |
| * rest of temparray for other things. In particular, if there is |
| * enough extra space, listsort() will use it to store the keys. |
| */ |
| ms->alloced = (list_size + 1) / 2; |
| |
| /* ms->alloced describes how many keys will be stored at |
| ms->temparray, but we also need to store the values. Hence, |
| ms->alloced is capped at half of MERGESTATE_TEMP_SIZE. */ |
| if (MERGESTATE_TEMP_SIZE / 2 < ms->alloced) |
| ms->alloced = MERGESTATE_TEMP_SIZE / 2; |
| ms->a.values = &ms->temparray[ms->alloced]; |
| } |
| else { |
| ms->alloced = MERGESTATE_TEMP_SIZE; |
| ms->a.values = NULL; |
| } |
| ms->a.keys = ms->temparray; |
| ms->n = 0; |
| ms->min_gallop = MIN_GALLOP; |
| } |
| |
| /* Free all the temp memory owned by the MergeState. This must be called |
| * when you're done with a MergeState, and may be called before then if |
| * you want to free the temp memory early. |
| */ |
| static void |
| merge_freemem(MergeState *ms) |
| { |
| assert(ms != NULL); |
| if (ms->a.keys != ms->temparray) |
| PyMem_Free(ms->a.keys); |
| } |
| |
| /* Ensure enough temp memory for 'need' array slots is available. |
| * Returns 0 on success and -1 if the memory can't be gotten. |
| */ |
| static int |
| merge_getmem(MergeState *ms, Py_ssize_t need) |
| { |
| int multiplier; |
| |
| assert(ms != NULL); |
| if (need <= ms->alloced) |
| return 0; |
| |
| multiplier = ms->a.values != NULL ? 2 : 1; |
| |
| /* Don't realloc! That can cost cycles to copy the old data, but |
| * we don't care what's in the block. |
| */ |
| merge_freemem(ms); |
| if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject*) / multiplier) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| ms->a.keys = (PyObject**)PyMem_Malloc(multiplier * need |
| * sizeof(PyObject *)); |
| if (ms->a.keys != NULL) { |
| ms->alloced = need; |
| if (ms->a.values != NULL) |
| ms->a.values = &ms->a.keys[need]; |
| return 0; |
| } |
| PyErr_NoMemory(); |
| return -1; |
| } |
| #define MERGE_GETMEM(MS, NEED) ((NEED) <= (MS)->alloced ? 0 : \ |
| merge_getmem(MS, NEED)) |
| |
| /* Merge the na elements starting at ssa with the nb elements starting at |
| * ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0. |
| * Must also have that ssa.keys[na-1] belongs at the end of the merge, and |
| * should have na <= nb. See listsort.txt for more info. Return 0 if |
| * successful, -1 if error. |
| */ |
| static Py_ssize_t |
| merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na, |
| sortslice ssb, Py_ssize_t nb) |
| { |
| Py_ssize_t k; |
| sortslice dest; |
| int result = -1; /* guilty until proved innocent */ |
| Py_ssize_t min_gallop; |
| |
| assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0); |
| assert(ssa.keys + na == ssb.keys); |
| if (MERGE_GETMEM(ms, na) < 0) |
| return -1; |
| sortslice_memcpy(&ms->a, 0, &ssa, 0, na); |
| dest = ssa; |
| ssa = ms->a; |
| |
| sortslice_copy_incr(&dest, &ssb); |
| --nb; |
| if (nb == 0) |
| goto Succeed; |
| if (na == 1) |
| goto CopyB; |
| |
| min_gallop = ms->min_gallop; |
| for (;;) { |
| Py_ssize_t acount = 0; /* # of times A won in a row */ |
| Py_ssize_t bcount = 0; /* # of times B won in a row */ |
| |
| /* Do the straightforward thing until (if ever) one run |
| * appears to win consistently. |
| */ |
| for (;;) { |
| assert(na > 1 && nb > 0); |
| k = ISLT(ssb.keys[0], ssa.keys[0]); |
| if (k) { |
| if (k < 0) |
| goto Fail; |
| sortslice_copy_incr(&dest, &ssb); |
| ++bcount; |
| acount = 0; |
| --nb; |
| if (nb == 0) |
| goto Succeed; |
| if (bcount >= min_gallop) |
| break; |
| } |
| else { |
| sortslice_copy_incr(&dest, &ssa); |
| ++acount; |
| bcount = 0; |
| --na; |
| if (na == 1) |
| goto CopyB; |
| if (acount >= min_gallop) |
| break; |
| } |
| } |
| |
| /* One run is winning so consistently that galloping may |
| * be a huge win. So try that, and continue galloping until |
| * (if ever) neither run appears to be winning consistently |
| * anymore. |
| */ |
| ++min_gallop; |
| do { |
| assert(na > 1 && nb > 0); |
| min_gallop -= min_gallop > 1; |
| ms->min_gallop = min_gallop; |
| k = gallop_right(ssb.keys[0], ssa.keys, na, 0); |
| acount = k; |
| if (k) { |
| if (k < 0) |
| goto Fail; |
| sortslice_memcpy(&dest, 0, &ssa, 0, k); |
| sortslice_advance(&dest, k); |
| sortslice_advance(&ssa, k); |
| na -= k; |
| if (na == 1) |
| goto CopyB; |
| /* na==0 is impossible now if the comparison |
| * function is consistent, but we can't assume |
| * that it is. |
| */ |
| if (na == 0) |
| goto Succeed; |
| } |
| sortslice_copy_incr(&dest, &ssb); |
| --nb; |
| if (nb == 0) |
| goto Succeed; |
| |
| k = gallop_left(ssa.keys[0], ssb.keys, nb, 0); |
| bcount = k; |
| if (k) { |
| if (k < 0) |
| goto Fail; |
| sortslice_memmove(&dest, 0, &ssb, 0, k); |
| sortslice_advance(&dest, k); |
| sortslice_advance(&ssb, k); |
| nb -= k; |
| if (nb == 0) |
| goto Succeed; |
| } |
| sortslice_copy_incr(&dest, &ssa); |
| --na; |
| if (na == 1) |
| goto CopyB; |
| } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP); |
| ++min_gallop; /* penalize it for leaving galloping mode */ |
| ms->min_gallop = min_gallop; |
| } |
| Succeed: |
| result = 0; |
| Fail: |
| if (na) |
| sortslice_memcpy(&dest, 0, &ssa, 0, na); |
| return result; |
| CopyB: |
| assert(na == 1 && nb > 0); |
| /* The last element of ssa belongs at the end of the merge. */ |
| sortslice_memmove(&dest, 0, &ssb, 0, nb); |
| sortslice_copy(&dest, nb, &ssa, 0); |
| return 0; |
| } |
| |
| /* Merge the na elements starting at pa with the nb elements starting at |
| * ssb.keys = ssa.keys + na in a stable way, in-place. na and nb must be > 0. |
| * Must also have that ssa.keys[na-1] belongs at the end of the merge, and |
| * should have na >= nb. See listsort.txt for more info. Return 0 if |
| * successful, -1 if error. |
| */ |
| static Py_ssize_t |
| merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na, |
| sortslice ssb, Py_ssize_t nb) |
| { |
| Py_ssize_t k; |
| sortslice dest, basea, baseb; |
| int result = -1; /* guilty until proved innocent */ |
| Py_ssize_t min_gallop; |
| |
| assert(ms && ssa.keys && ssb.keys && na > 0 && nb > 0); |
| assert(ssa.keys + na == ssb.keys); |
| if (MERGE_GETMEM(ms, nb) < 0) |
| return -1; |
| dest = ssb; |
| sortslice_advance(&dest, nb-1); |
| sortslice_memcpy(&ms->a, 0, &ssb, 0, nb); |
| basea = ssa; |
| baseb = ms->a; |
| ssb.keys = ms->a.keys + nb - 1; |
| if (ssb.values != NULL) |
| ssb.values = ms->a.values + nb - 1; |
| sortslice_advance(&ssa, na - 1); |
| |
| sortslice_copy_decr(&dest, &ssa); |
| --na; |
| if (na == 0) |
| goto Succeed; |
| if (nb == 1) |
| goto CopyA; |
| |
| min_gallop = ms->min_gallop; |
| for (;;) { |
| Py_ssize_t acount = 0; /* # of times A won in a row */ |
| Py_ssize_t bcount = 0; /* # of times B won in a row */ |
| |
| /* Do the straightforward thing until (if ever) one run |
| * appears to win consistently. |
| */ |
| for (;;) { |
| assert(na > 0 && nb > 1); |
| k = ISLT(ssb.keys[0], ssa.keys[0]); |
| if (k) { |
| if (k < 0) |
| goto Fail; |
| sortslice_copy_decr(&dest, &ssa); |
| ++acount; |
| bcount = 0; |
| --na; |
| if (na == 0) |
| goto Succeed; |
| if (acount >= min_gallop) |
| break; |
| } |
| else { |
| sortslice_copy_decr(&dest, &ssb); |
| ++bcount; |
| acount = 0; |
| --nb; |
| if (nb == 1) |
| goto CopyA; |
| if (bcount >= min_gallop) |
| break; |
| } |
| } |
| |
| /* One run is winning so consistently that galloping may |
| * be a huge win. So try that, and continue galloping until |
| * (if ever) neither run appears to be winning consistently |
| * anymore. |
| */ |
| ++min_gallop; |
| do { |
| assert(na > 0 && nb > 1); |
| min_gallop -= min_gallop > 1; |
| ms->min_gallop = min_gallop; |
| k = gallop_right(ssb.keys[0], basea.keys, na, na-1); |
| if (k < 0) |
| goto Fail; |
| k = na - k; |
| acount = k; |
| if (k) { |
| sortslice_advance(&dest, -k); |
| sortslice_advance(&ssa, -k); |
| sortslice_memmove(&dest, 1, &ssa, 1, k); |
| na -= k; |
| if (na == 0) |
| goto Succeed; |
| } |
| sortslice_copy_decr(&dest, &ssb); |
| --nb; |
| if (nb == 1) |
| goto CopyA; |
| |
| k = gallop_left(ssa.keys[0], baseb.keys, nb, nb-1); |
| if (k < 0) |
| goto Fail; |
| k = nb - k; |
| bcount = k; |
| if (k) { |
| sortslice_advance(&dest, -k); |
| sortslice_advance(&ssb, -k); |
| sortslice_memcpy(&dest, 1, &ssb, 1, k); |
| nb -= k; |
| if (nb == 1) |
| goto CopyA; |
| /* nb==0 is impossible now if the comparison |
| * function is consistent, but we can't assume |
| * that it is. |
| */ |
| if (nb == 0) |
| goto Succeed; |
| } |
| sortslice_copy_decr(&dest, &ssa); |
| --na; |
| if (na == 0) |
| goto Succeed; |
| } while (acount >= MIN_GALLOP || bcount >= MIN_GALLOP); |
| ++min_gallop; /* penalize it for leaving galloping mode */ |
| ms->min_gallop = min_gallop; |
| } |
| Succeed: |
| result = 0; |
| Fail: |
| if (nb) |
| sortslice_memcpy(&dest, -(nb-1), &baseb, 0, nb); |
| return result; |
| CopyA: |
| assert(nb == 1 && na > 0); |
| /* The first element of ssb belongs at the front of the merge. */ |
| sortslice_memmove(&dest, 1-na, &ssa, 1-na, na); |
| sortslice_advance(&dest, -na); |
| sortslice_advance(&ssa, -na); |
| sortslice_copy(&dest, 0, &ssb, 0); |
| return 0; |
| } |
| |
| /* Merge the two runs at stack indices i and i+1. |
| * Returns 0 on success, -1 on error. |
| */ |
| static Py_ssize_t |
| merge_at(MergeState *ms, Py_ssize_t i) |
| { |
| sortslice ssa, ssb; |
| Py_ssize_t na, nb; |
| Py_ssize_t k; |
| |
| assert(ms != NULL); |
| assert(ms->n >= 2); |
| assert(i >= 0); |
| assert(i == ms->n - 2 || i == ms->n - 3); |
| |
| ssa = ms->pending[i].base; |
| na = ms->pending[i].len; |
| ssb = ms->pending[i+1].base; |
| nb = ms->pending[i+1].len; |
| assert(na > 0 && nb > 0); |
| assert(ssa.keys + na == ssb.keys); |
| |
| /* Record the length of the combined runs; if i is the 3rd-last |
| * run now, also slide over the last run (which isn't involved |
| * in this merge). The current run i+1 goes away in any case. |
| */ |
| ms->pending[i].len = na + nb; |
| if (i == ms->n - 3) |
| ms->pending[i+1] = ms->pending[i+2]; |
| --ms->n; |
| |
| /* Where does b start in a? Elements in a before that can be |
| * ignored (already in place). |
| */ |
| k = gallop_right(*ssb.keys, ssa.keys, na, 0); |
| if (k < 0) |
| return -1; |
| sortslice_advance(&ssa, k); |
| na -= k; |
| if (na == 0) |
| return 0; |
| |
| /* Where does a end in b? Elements in b after that can be |
| * ignored (already in place). |
| */ |
| nb = gallop_left(ssa.keys[na-1], ssb.keys, nb, nb-1); |
| if (nb <= 0) |
| return nb; |
| |
| /* Merge what remains of the runs, using a temp array with |
| * min(na, nb) elements. |
| */ |
| if (na <= nb) |
| return merge_lo(ms, ssa, na, ssb, nb); |
| else |
| return merge_hi(ms, ssa, na, ssb, nb); |
| } |
| |
| /* Examine the stack of runs waiting to be merged, merging adjacent runs |
| * until the stack invariants are re-established: |
| * |
| * 1. len[-3] > len[-2] + len[-1] |
| * 2. len[-2] > len[-1] |
| * |
| * See listsort.txt for more info. |
| * |
| * Returns 0 on success, -1 on error. |
| */ |
| static int |
| merge_collapse(MergeState *ms) |
| { |
| struct s_slice *p = ms->pending; |
| |
| assert(ms); |
| while (ms->n > 1) { |
| Py_ssize_t n = ms->n - 2; |
| if (n > 0 && p[n-1].len <= p[n].len + p[n+1].len) { |
| if (p[n-1].len < p[n+1].len) |
| --n; |
| if (merge_at(ms, n) < 0) |
| return -1; |
| } |
| else if (p[n].len <= p[n+1].len) { |
| if (merge_at(ms, n) < 0) |
| return -1; |
| } |
| else |
| break; |
| } |
| return 0; |
| } |
| |
| /* Regardless of invariants, merge all runs on the stack until only one |
| * remains. This is used at the end of the mergesort. |
| * |
| * Returns 0 on success, -1 on error. |
| */ |
| static int |
| merge_force_collapse(MergeState *ms) |
| { |
| struct s_slice *p = ms->pending; |
| |
| assert(ms); |
| while (ms->n > 1) { |
| Py_ssize_t n = ms->n - 2; |
| if (n > 0 && p[n-1].len < p[n+1].len) |
| --n; |
| if (merge_at(ms, n) < 0) |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* Compute a good value for the minimum run length; natural runs shorter |
| * than this are boosted artificially via binary insertion. |
| * |
| * If n < 64, return n (it's too small to bother with fancy stuff). |
| * Else if n is an exact power of 2, return 32. |
| * Else return an int k, 32 <= k <= 64, such that n/k is close to, but |
| * strictly less than, an exact power of 2. |
| * |
| * See listsort.txt for more info. |
| */ |
| static Py_ssize_t |
| merge_compute_minrun(Py_ssize_t n) |
| { |
| Py_ssize_t r = 0; /* becomes 1 if any 1 bits are shifted off */ |
| |
| assert(n >= 0); |
| while (n >= 64) { |
| r |= n & 1; |
| n >>= 1; |
| } |
| return n + r; |
| } |
| |
| static void |
| reverse_sortslice(sortslice *s, Py_ssize_t n) |
| { |
| reverse_slice(s->keys, &s->keys[n]); |
| if (s->values != NULL) |
| reverse_slice(s->values, &s->values[n]); |
| } |
| |
| /* An adaptive, stable, natural mergesort. See listsort.txt. |
| * Returns Py_None on success, NULL on error. Even in case of error, the |
| * list will be some permutation of its input state (nothing is lost or |
| * duplicated). |
| */ |
| static PyObject * |
| listsort(PyListObject *self, PyObject *args, PyObject *kwds) |
| { |
| MergeState ms; |
| Py_ssize_t nremaining; |
| Py_ssize_t minrun; |
| sortslice lo; |
| Py_ssize_t saved_ob_size, saved_allocated; |
| PyObject **saved_ob_item; |
| PyObject **final_ob_item; |
| PyObject *result = NULL; /* guilty until proved innocent */ |
| int reverse = 0; |
| PyObject *keyfunc = NULL; |
| Py_ssize_t i; |
| static char *kwlist[] = {"key", "reverse", 0}; |
| PyObject **keys; |
| |
| assert(self != NULL); |
| assert (PyList_Check(self)); |
| if (args != NULL) { |
| if (!PyArg_ParseTupleAndKeywords(args, kwds, "|Oi:sort", |
| kwlist, &keyfunc, &reverse)) |
| return NULL; |
| if (Py_SIZE(args) > 0) { |
| PyErr_SetString(PyExc_TypeError, |
| "must use keyword argument for key function"); |
| return NULL; |
| } |
| } |
| if (keyfunc == Py_None) |
| keyfunc = NULL; |
| |
| /* The list is temporarily made empty, so that mutations performed |
| * by comparison functions can't affect the slice of memory we're |
| * sorting (allowing mutations during sorting is a core-dump |
| * factory, since ob_item may change). |
| */ |
| saved_ob_size = Py_SIZE(self); |
| saved_ob_item = self->ob_item; |
| saved_allocated = self->allocated; |
| Py_SIZE(self) = 0; |
| self->ob_item = NULL; |
| self->allocated = -1; /* any operation will reset it to >= 0 */ |
| |
| if (keyfunc == NULL) { |
| keys = NULL; |
| lo.keys = saved_ob_item; |
| lo.values = NULL; |
| } |
| else { |
| if (saved_ob_size < MERGESTATE_TEMP_SIZE/2) |
| /* Leverage stack space we allocated but won't otherwise use */ |
| keys = &ms.temparray[saved_ob_size+1]; |
| else { |
| keys = PyMem_MALLOC(sizeof(PyObject *) * saved_ob_size); |
| if (keys == NULL) |
| return NULL; |
| } |
| |
| for (i = 0; i < saved_ob_size ; i++) { |
| keys[i] = PyObject_CallFunctionObjArgs(keyfunc, saved_ob_item[i], |
| NULL); |
| if (keys[i] == NULL) { |
| for (i=i-1 ; i>=0 ; i--) |
| Py_DECREF(keys[i]); |
| goto keyfunc_fail; |
| } |
| } |
| |
| lo.keys = keys; |
| lo.values = saved_ob_item; |
| } |
| |
| merge_init(&ms, saved_ob_size, keys != NULL); |
| |
| nremaining = saved_ob_size; |
| if (nremaining < 2) |
| goto succeed; |
| |
| /* Reverse sort stability achieved by initially reversing the list, |
| applying a stable forward sort, then reversing the final result. */ |
| if (reverse) { |
| if (keys != NULL) |
| reverse_slice(&keys[0], &keys[saved_ob_size]); |
| reverse_slice(&saved_ob_item[0], &saved_ob_item[saved_ob_size]); |
| } |
| |
| /* March over the array once, left to right, finding natural runs, |
| * and extending short natural runs to minrun elements. |
| */ |
| minrun = merge_compute_minrun(nremaining); |
| do { |
| int descending; |
| Py_ssize_t n; |
| |
| /* Identify next run. */ |
| n = count_run(lo.keys, lo.keys + nremaining, &descending); |
| if (n < 0) |
| goto fail; |
| if (descending) |
| reverse_sortslice(&lo, n); |
| /* If short, extend to min(minrun, nremaining). */ |
| if (n < minrun) { |
| const Py_ssize_t force = nremaining <= minrun ? |
| nremaining : minrun; |
| if (binarysort(lo, lo.keys + force, lo.keys + n) < 0) |
| goto fail; |
| n = force; |
| } |
| /* Push run onto pending-runs stack, and maybe merge. */ |
| assert(ms.n < MAX_MERGE_PENDING); |
| ms.pending[ms.n].base = lo; |
| ms.pending[ms.n].len = n; |
| ++ms.n; |
| if (merge_collapse(&ms) < 0) |
| goto fail; |
| /* Advance to find next run. */ |
| sortslice_advance(&lo, n); |
| nremaining -= n; |
| } while (nremaining); |
| |
| if (merge_force_collapse(&ms) < 0) |
| goto fail; |
| assert(ms.n == 1); |
| assert(keys == NULL |
| ? ms.pending[0].base.keys == saved_ob_item |
| : ms.pending[0].base.keys == &keys[0]); |
| assert(ms.pending[0].len == saved_ob_size); |
| lo = ms.pending[0].base; |
| |
| succeed: |
| result = Py_None; |
| fail: |
| if (keys != NULL) { |
| for (i = 0; i < saved_ob_size; i++) |
| Py_DECREF(keys[i]); |
| if (keys != &ms.temparray[saved_ob_size+1]) |
| PyMem_FREE(keys); |
| } |
| |
| if (self->allocated != -1 && result != NULL) { |
| /* The user mucked with the list during the sort, |
| * and we don't already have another error to report. |
| */ |
| PyErr_SetString(PyExc_ValueError, "list modified during sort"); |
| result = NULL; |
| } |
| |
| if (reverse && saved_ob_size > 1) |
| reverse_slice(saved_ob_item, saved_ob_item + saved_ob_size); |
| |
| merge_freemem(&ms); |
| |
| keyfunc_fail: |
| final_ob_item = self->ob_item; |
| i = Py_SIZE(self); |
| Py_SIZE(self) = saved_ob_size; |
| self->ob_item = saved_ob_item; |
| self->allocated = saved_allocated; |
| if (final_ob_item != NULL) { |
| /* we cannot use list_clear() for this because it does not |
| guarantee that the list is really empty when it returns */ |
| while (--i >= 0) { |
| Py_XDECREF(final_ob_item[i]); |
| } |
| PyMem_FREE(final_ob_item); |
| } |
| Py_XINCREF(result); |
| return result; |
| } |
| #undef IFLT |
| #undef ISLT |
| |
| int |
| PyList_Sort(PyObject *v) |
| { |
| if (v == NULL || !PyList_Check(v)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| v = listsort((PyListObject *)v, (PyObject *)NULL, (PyObject *)NULL); |
| if (v == NULL) |
| return -1; |
| Py_DECREF(v); |
| return 0; |
| } |
| |
| static PyObject * |
| listreverse(PyListObject *self) |
| { |
| if (Py_SIZE(self) > 1) |
| reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self)); |
| Py_RETURN_NONE; |
| } |
| |
| int |
| PyList_Reverse(PyObject *v) |
| { |
| PyListObject *self = (PyListObject *)v; |
| |
| if (v == NULL || !PyList_Check(v)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| if (Py_SIZE(self) > 1) |
| reverse_slice(self->ob_item, self->ob_item + Py_SIZE(self)); |
| return 0; |
| } |
| |
| PyObject * |
| PyList_AsTuple(PyObject *v) |
| { |
| PyObject *w; |
| PyObject **p, **q; |
| Py_ssize_t n; |
| if (v == NULL || !PyList_Check(v)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| n = Py_SIZE(v); |
| w = PyTuple_New(n); |
| if (w == NULL) |
| return NULL; |
| p = ((PyTupleObject *)w)->ob_item; |
| q = ((PyListObject *)v)->ob_item; |
| while (--n >= 0) { |
| Py_INCREF(*q); |
| *p = *q; |
| p++; |
| q++; |
| } |
| return w; |
| } |
| |
| static PyObject * |
| listindex(PyListObject *self, PyObject *args) |
| { |
| Py_ssize_t i, start=0, stop=Py_SIZE(self); |
| PyObject *v, *format_tuple, *err_string; |
| static PyObject *err_format = NULL; |
| |
| if (!PyArg_ParseTuple(args, "O|O&O&:index", &v, |
| _PyEval_SliceIndex, &start, |
| _PyEval_SliceIndex, &stop)) |
| return NULL; |
| if (start < 0) { |
| start += Py_SIZE(self); |
| if (start < 0) |
| start = 0; |
| } |
| if (stop < 0) { |
| stop += Py_SIZE(self); |
| if (stop < 0) |
| stop = 0; |
| } |
| for (i = start; i < stop && i < Py_SIZE(self); i++) { |
| int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); |
| if (cmp > 0) |
| return PyLong_FromSsize_t(i); |
| else if (cmp < 0) |
| return NULL; |
| } |
| if (err_format == NULL) { |
| err_format = PyUnicode_FromString("%r is not in list"); |
| if (err_format == NULL) |
| return NULL; |
| } |
| format_tuple = PyTuple_Pack(1, v); |
| if (format_tuple == NULL) |
| return NULL; |
| err_string = PyUnicode_Format(err_format, format_tuple); |
| Py_DECREF(format_tuple); |
| if (err_string == NULL) |
| return NULL; |
| PyErr_SetObject(PyExc_ValueError, err_string); |
| Py_DECREF(err_string); |
| return NULL; |
| } |
| |
| static PyObject * |
| listcount(PyListObject *self, PyObject *v) |
| { |
| Py_ssize_t count = 0; |
| Py_ssize_t i; |
| |
| for (i = 0; i < Py_SIZE(self); i++) { |
| int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); |
| if (cmp > 0) |
| count++; |
| else if (cmp < 0) |
| return NULL; |
| } |
| return PyLong_FromSsize_t(count); |
| } |
| |
| static PyObject * |
| listremove(PyListObject *self, PyObject *v) |
| { |
| Py_ssize_t i; |
| |
| for (i = 0; i < Py_SIZE(self); i++) { |
| int cmp = PyObject_RichCompareBool(self->ob_item[i], v, Py_EQ); |
| if (cmp > 0) { |
| if (list_ass_slice(self, i, i+1, |
| (PyObject *)NULL) == 0) |
| Py_RETURN_NONE; |
| return NULL; |
| } |
| else if (cmp < 0) |
| return NULL; |
| } |
| PyErr_SetString(PyExc_ValueError, "list.remove(x): x not in list"); |
| return NULL; |
| } |
| |
| static int |
| list_traverse(PyListObject *o, visitproc visit, void *arg) |
| { |
| Py_ssize_t i; |
| |
| for (i = Py_SIZE(o); --i >= 0; ) |
| Py_VISIT(o->ob_item[i]); |
| return 0; |
| } |
| |
| static PyObject * |
| list_richcompare(PyObject *v, PyObject *w, int op) |
| { |
| PyListObject *vl, *wl; |
| Py_ssize_t i; |
| |
| if (!PyList_Check(v) || !PyList_Check(w)) { |
| Py_INCREF(Py_NotImplemented); |
| return Py_NotImplemented; |
| } |
| |
| vl = (PyListObject *)v; |
| wl = (PyListObject *)w; |
| |
| if (Py_SIZE(vl) != Py_SIZE(wl) && (op == Py_EQ || op == Py_NE)) { |
| /* Shortcut: if the lengths differ, the lists differ */ |
| PyObject *res; |
| if (op == Py_EQ) |
| res = Py_False; |
| else |
| res = Py_True; |
| Py_INCREF(res); |
| return res; |
| } |
| |
| /* Search for the first index where items are different */ |
| for (i = 0; i < Py_SIZE(vl) && i < Py_SIZE(wl); i++) { |
| int k = PyObject_RichCompareBool(vl->ob_item[i], |
| wl->ob_item[i], Py_EQ); |
| if (k < 0) |
| return NULL; |
| if (!k) |
| break; |
| } |
| |
| if (i >= Py_SIZE(vl) || i >= Py_SIZE(wl)) { |
| /* No more items to compare -- compare sizes */ |
| Py_ssize_t vs = Py_SIZE(vl); |
| Py_ssize_t ws = Py_SIZE(wl); |
| int cmp; |
| PyObject *res; |
| switch (op) { |
| case Py_LT: cmp = vs < ws; break; |
| case Py_LE: cmp = vs <= ws; break; |
| case Py_EQ: cmp = vs == ws; break; |
| case Py_NE: cmp = vs != ws; break; |
| case Py_GT: cmp = vs > ws; break; |
| case Py_GE: cmp = vs >= ws; break; |
| default: return NULL; /* cannot happen */ |
| } |
| if (cmp) |
| res = Py_True; |
| else |
| res = Py_False; |
| Py_INCREF(res); |
| return res; |
| } |
| |
| /* We have an item that differs -- shortcuts for EQ/NE */ |
| if (op == Py_EQ) { |
| Py_INCREF(Py_False); |
| return Py_False; |
| } |
| if (op == Py_NE) { |
| Py_INCREF(Py_True); |
| return Py_True; |
| } |
| |
| /* Compare the final item again using the proper operator */ |
| return PyObject_RichCompare(vl->ob_item[i], wl->ob_item[i], op); |
| } |
| |
| static int |
| list_init(PyListObject *self, PyObject *args, PyObject *kw) |
| { |
| PyObject *arg = NULL; |
| static char *kwlist[] = {"sequence", 0}; |
| |
| if (!PyArg_ParseTupleAndKeywords(args, kw, "|O:list", kwlist, &arg)) |
| return -1; |
| |
| /* Verify list invariants established by PyType_GenericAlloc() */ |
| assert(0 <= Py_SIZE(self)); |
| assert(Py_SIZE(self) <= self->allocated || self->allocated == -1); |
| assert(self->ob_item != NULL || |
| self->allocated == 0 || self->allocated == -1); |
| |
| /* Empty previous contents */ |
| if (self->ob_item != NULL) { |
| (void)list_clear(self); |
| } |
| if (arg != NULL) { |
| PyObject *rv = listextend(self, arg); |
| if (rv == NULL) |
| return -1; |
| Py_DECREF(rv); |
| } |
| return 0; |
| } |
| |
| static PyObject * |
| list_sizeof(PyListObject *self) |
| { |
| Py_ssize_t res; |
| |
| res = sizeof(PyListObject) + self->allocated * sizeof(void*); |
| return PyLong_FromSsize_t(res); |
| } |
| |
| static PyObject *list_iter(PyObject *seq); |
| static PyObject *list_reversed(PyListObject* seq, PyObject* unused); |
| |
| PyDoc_STRVAR(getitem_doc, |
| "x.__getitem__(y) <==> x[y]"); |
| PyDoc_STRVAR(reversed_doc, |
| "L.__reversed__() -- return a reverse iterator over the list"); |
| PyDoc_STRVAR(sizeof_doc, |
| "L.__sizeof__() -- size of L in memory, in bytes"); |
| PyDoc_STRVAR(append_doc, |
| "L.append(object) -- append object to end"); |
| PyDoc_STRVAR(extend_doc, |
| "L.extend(iterable) -- extend list by appending elements from the iterable"); |
| PyDoc_STRVAR(insert_doc, |
| "L.insert(index, object) -- insert object before index"); |
| PyDoc_STRVAR(pop_doc, |
| "L.pop([index]) -> item -- remove and return item at index (default last).\n" |
| "Raises IndexError if list is empty or index is out of range."); |
| PyDoc_STRVAR(remove_doc, |
| "L.remove(value) -- remove first occurrence of value.\n" |
| "Raises ValueError if the value is not present."); |
| PyDoc_STRVAR(index_doc, |
| "L.index(value, [start, [stop]]) -> integer -- return first index of value.\n" |
| "Raises ValueError if the value is not present."); |
| PyDoc_STRVAR(count_doc, |
| "L.count(value) -> integer -- return number of occurrences of value"); |
| PyDoc_STRVAR(reverse_doc, |
| "L.reverse() -- reverse *IN PLACE*"); |
| PyDoc_STRVAR(sort_doc, |
| "L.sort(key=None, reverse=False) -- stable sort *IN PLACE*"); |
| |
| static PyObject *list_subscript(PyListObject*, PyObject*); |
| |
| static PyMethodDef list_methods[] = { |
| {"__getitem__", (PyCFunction)list_subscript, METH_O|METH_COEXIST, getitem_doc}, |
| {"__reversed__",(PyCFunction)list_reversed, METH_NOARGS, reversed_doc}, |
| {"__sizeof__", (PyCFunction)list_sizeof, METH_NOARGS, sizeof_doc}, |
| {"append", (PyCFunction)listappend, METH_O, append_doc}, |
| {"insert", (PyCFunction)listinsert, METH_VARARGS, insert_doc}, |
| {"extend", (PyCFunction)listextend, METH_O, extend_doc}, |
| {"pop", (PyCFunction)listpop, METH_VARARGS, pop_doc}, |
| {"remove", (PyCFunction)listremove, METH_O, remove_doc}, |
| {"index", (PyCFunction)listindex, METH_VARARGS, index_doc}, |
| {"count", (PyCFunction)listcount, METH_O, count_doc}, |
| {"reverse", (PyCFunction)listreverse, METH_NOARGS, reverse_doc}, |
| {"sort", (PyCFunction)listsort, METH_VARARGS | METH_KEYWORDS, sort_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PySequenceMethods list_as_sequence = { |
| (lenfunc)list_length, /* sq_length */ |
| (binaryfunc)list_concat, /* sq_concat */ |
| (ssizeargfunc)list_repeat, /* sq_repeat */ |
| (ssizeargfunc)list_item, /* sq_item */ |
| 0, /* sq_slice */ |
| (ssizeobjargproc)list_ass_item, /* sq_ass_item */ |
| 0, /* sq_ass_slice */ |
| (objobjproc)list_contains, /* sq_contains */ |
| (binaryfunc)list_inplace_concat, /* sq_inplace_concat */ |
| (ssizeargfunc)list_inplace_repeat, /* sq_inplace_repeat */ |
| }; |
| |
| PyDoc_STRVAR(list_doc, |
| "list() -> new empty list\n" |
| "list(iterable) -> new list initialized from iterable's items"); |
| |
| static PyObject * |
| list_subscript(PyListObject* self, PyObject* item) |
| { |
| if (PyIndex_Check(item)) { |
| Py_ssize_t i; |
| i = PyNumber_AsSsize_t(item, PyExc_IndexError); |
| if (i == -1 && PyErr_Occurred()) |
| return NULL; |
| if (i < 0) |
| i += PyList_GET_SIZE(self); |
| return list_item(self, i); |
| } |
| else if (PySlice_Check(item)) { |
| Py_ssize_t start, stop, step, slicelength, cur, i; |
| PyObject* result; |
| PyObject* it; |
| PyObject **src, **dest; |
| |
| if (PySlice_GetIndicesEx(item, Py_SIZE(self), |
| &start, &stop, &step, &slicelength) < 0) { |
| return NULL; |
| } |
| |
| if (slicelength <= 0) { |
| return PyList_New(0); |
| } |
| else if (step == 1) { |
| return list_slice(self, start, stop); |
| } |
| else { |
| result = PyList_New(slicelength); |
| if (!result) return NULL; |
| |
| src = self->ob_item; |
| dest = ((PyListObject *)result)->ob_item; |
| for (cur = start, i = 0; i < slicelength; |
| cur += step, i++) { |
| it = src[cur]; |
| Py_INCREF(it); |
| dest[i] = it; |
| } |
| |
| return result; |
| } |
| } |
| else { |
| PyErr_Format(PyExc_TypeError, |
| "list indices must be integers, not %.200s", |
| item->ob_type->tp_name); |
| return NULL; |
| } |
| } |
| |
| static int |
| list_ass_subscript(PyListObject* self, PyObject* item, PyObject* value) |
| { |
| if (PyIndex_Check(item)) { |
| Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError); |
| if (i == -1 && PyErr_Occurred()) |
| return -1; |
| if (i < 0) |
| i += PyList_GET_SIZE(self); |
| return list_ass_item(self, i, value); |
| } |
| else if (PySlice_Check(item)) { |
| Py_ssize_t start, stop, step, slicelength; |
| |
| if (PySlice_GetIndicesEx(item, Py_SIZE(self), |
| &start, &stop, &step, &slicelength) < 0) { |
| return -1; |
| } |
| |
| if (step == 1) |
| return list_ass_slice(self, start, stop, value); |
| |
| /* Make sure s[5:2] = [..] inserts at the right place: |
| before 5, not before 2. */ |
| if ((step < 0 && start < stop) || |
| (step > 0 && start > stop)) |
| stop = start; |
| |
| if (value == NULL) { |
| /* delete slice */ |
| PyObject **garbage; |
| size_t cur; |
| Py_ssize_t i; |
| |
| if (slicelength <= 0) |
| return 0; |
| |
| if (step < 0) { |
| stop = start + 1; |
| start = stop + step*(slicelength - 1) - 1; |
| step = -step; |
| } |
| |
| assert((size_t)slicelength <= |
| PY_SIZE_MAX / sizeof(PyObject*)); |
| |
| garbage = (PyObject**) |
| PyMem_MALLOC(slicelength*sizeof(PyObject*)); |
| if (!garbage) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| |
| /* drawing pictures might help understand these for |
| loops. Basically, we memmove the parts of the |
| list that are *not* part of the slice: step-1 |
| items for each item that is part of the slice, |
| and then tail end of the list that was not |
| covered by the slice */ |
| for (cur = start, i = 0; |
| cur < (size_t)stop; |
| cur += step, i++) { |
| Py_ssize_t lim = step - 1; |
| |
| garbage[i] = PyList_GET_ITEM(self, cur); |
| |
| if (cur + step >= (size_t)Py_SIZE(self)) { |
| lim = Py_SIZE(self) - cur - 1; |
| } |
| |
| memmove(self->ob_item + cur - i, |
| self->ob_item + cur + 1, |
| lim * sizeof(PyObject *)); |
| } |
| cur = start + slicelength*step; |
| if (cur < (size_t)Py_SIZE(self)) { |
| memmove(self->ob_item + cur - slicelength, |
| self->ob_item + cur, |
| (Py_SIZE(self) - cur) * |
| sizeof(PyObject *)); |
| } |
| |
| Py_SIZE(self) -= slicelength; |
| list_resize(self, Py_SIZE(self)); |
| |
| for (i = 0; i < slicelength; i++) { |
| Py_DECREF(garbage[i]); |
| } |
| PyMem_FREE(garbage); |
| |
| return 0; |
| } |
| else { |
| /* assign slice */ |
| PyObject *ins, *seq; |
| PyObject **garbage, **seqitems, **selfitems; |
| Py_ssize_t cur, i; |
| |
| /* protect against a[::-1] = a */ |
| if (self == (PyListObject*)value) { |
| seq = list_slice((PyListObject*)value, 0, |
| PyList_GET_SIZE(value)); |
| } |
| else { |
| seq = PySequence_Fast(value, |
| "must assign iterable " |
| "to extended slice"); |
| } |
| if (!seq) |
| return -1; |
| |
| if (PySequence_Fast_GET_SIZE(seq) != slicelength) { |
| PyErr_Format(PyExc_ValueError, |
| "attempt to assign sequence of " |
| "size %zd to extended slice of " |
| "size %zd", |
| PySequence_Fast_GET_SIZE(seq), |
| slicelength); |
| Py_DECREF(seq); |
| return -1; |
| } |
| |
| if (!slicelength) { |
| Py_DECREF(seq); |
| return 0; |
| } |
| |
| garbage = (PyObject**) |
| PyMem_MALLOC(slicelength*sizeof(PyObject*)); |
| if (!garbage) { |
| Py_DECREF(seq); |
| PyErr_NoMemory(); |
| return -1; |
| } |
| |
| selfitems = self->ob_item; |
| seqitems = PySequence_Fast_ITEMS(seq); |
| for (cur = start, i = 0; i < slicelength; |
| cur += step, i++) { |
| garbage[i] = selfitems[cur]; |
| ins = seqitems[i]; |
| Py_INCREF(ins); |
| selfitems[cur] = ins; |
| } |
| |
| for (i = 0; i < slicelength; i++) { |
| Py_DECREF(garbage[i]); |
| } |
| |
| PyMem_FREE(garbage); |
| Py_DECREF(seq); |
| |
| return 0; |
| } |
| } |
| else { |
| PyErr_Format(PyExc_TypeError, |
| "list indices must be integers, not %.200s", |
| item->ob_type->tp_name); |
| return -1; |
| } |
| } |
| |
| static PyMappingMethods list_as_mapping = { |
| (lenfunc)list_length, |
| (binaryfunc)list_subscript, |
| (objobjargproc)list_ass_subscript |
| }; |
| |
| PyTypeObject PyList_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "list", |
| sizeof(PyListObject), |
| 0, |
| (destructor)list_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)list_repr, /* tp_repr */ |
| 0, /* tp_as_number */ |
| &list_as_sequence, /* tp_as_sequence */ |
| &list_as_mapping, /* tp_as_mapping */ |
| PyObject_HashNotImplemented, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | |
| Py_TPFLAGS_BASETYPE | Py_TPFLAGS_LIST_SUBCLASS, /* tp_flags */ |
| list_doc, /* tp_doc */ |
| (traverseproc)list_traverse, /* tp_traverse */ |
| (inquiry)list_clear, /* tp_clear */ |
| list_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| list_iter, /* tp_iter */ |
| 0, /* tp_iternext */ |
| list_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| (initproc)list_init, /* tp_init */ |
| PyType_GenericAlloc, /* tp_alloc */ |
| PyType_GenericNew, /* tp_new */ |
| PyObject_GC_Del, /* tp_free */ |
| }; |
| |
| |
| /*********************** List Iterator **************************/ |
| |
| typedef struct { |
| PyObject_HEAD |
| long it_index; |
| PyListObject *it_seq; /* Set to NULL when iterator is exhausted */ |
| } listiterobject; |
| |
| static PyObject *list_iter(PyObject *); |
| static void listiter_dealloc(listiterobject *); |
| static int listiter_traverse(listiterobject *, visitproc, void *); |
| static PyObject *listiter_next(listiterobject *); |
| static PyObject *listiter_len(listiterobject *); |
| |
| PyDoc_STRVAR(length_hint_doc, "Private method returning an estimate of len(list(it))."); |
| |
| static PyMethodDef listiter_methods[] = { |
| {"__length_hint__", (PyCFunction)listiter_len, METH_NOARGS, length_hint_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyTypeObject PyListIter_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "list_iterator", /* tp_name */ |
| sizeof(listiterobject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)listiter_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)listiter_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| PyObject_SelfIter, /* tp_iter */ |
| (iternextfunc)listiter_next, /* tp_iternext */ |
| listiter_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| }; |
| |
| |
| static PyObject * |
| list_iter(PyObject *seq) |
| { |
| listiterobject *it; |
| |
| if (!PyList_Check(seq)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| it = PyObject_GC_New(listiterobject, &PyListIter_Type); |
| if (it == NULL) |
| return NULL; |
| it->it_index = 0; |
| Py_INCREF(seq); |
| it->it_seq = (PyListObject *)seq; |
| _PyObject_GC_TRACK(it); |
| return (PyObject *)it; |
| } |
| |
| static void |
| listiter_dealloc(listiterobject *it) |
| { |
| _PyObject_GC_UNTRACK(it); |
| Py_XDECREF(it->it_seq); |
| PyObject_GC_Del(it); |
| } |
| |
| static int |
| listiter_traverse(listiterobject *it, visitproc visit, void *arg) |
| { |
| Py_VISIT(it->it_seq); |
| return 0; |
| } |
| |
| static PyObject * |
| listiter_next(listiterobject *it) |
| { |
| PyListObject *seq; |
| PyObject *item; |
| |
| assert(it != NULL); |
| seq = it->it_seq; |
| if (seq == NULL) |
| return NULL; |
| assert(PyList_Check(seq)); |
| |
| if (it->it_index < PyList_GET_SIZE(seq)) { |
| item = PyList_GET_ITEM(seq, it->it_index); |
| ++it->it_index; |
| Py_INCREF(item); |
| return item; |
| } |
| |
| Py_DECREF(seq); |
| it->it_seq = NULL; |
| return NULL; |
| } |
| |
| static PyObject * |
| listiter_len(listiterobject *it) |
| { |
| Py_ssize_t len; |
| if (it->it_seq) { |
| len = PyList_GET_SIZE(it->it_seq) - it->it_index; |
| if (len >= 0) |
| return PyLong_FromSsize_t(len); |
| } |
| return PyLong_FromLong(0); |
| } |
| /*********************** List Reverse Iterator **************************/ |
| |
| typedef struct { |
| PyObject_HEAD |
| Py_ssize_t it_index; |
| PyListObject *it_seq; /* Set to NULL when iterator is exhausted */ |
| } listreviterobject; |
| |
| static PyObject *list_reversed(PyListObject *, PyObject *); |
| static void listreviter_dealloc(listreviterobject *); |
| static int listreviter_traverse(listreviterobject *, visitproc, void *); |
| static PyObject *listreviter_next(listreviterobject *); |
| static PyObject *listreviter_len(listreviterobject *); |
| |
| static PyMethodDef listreviter_methods[] = { |
| {"__length_hint__", (PyCFunction)listreviter_len, METH_NOARGS, length_hint_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyTypeObject PyListRevIter_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "list_reverseiterator", /* tp_name */ |
| sizeof(listreviterobject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)listreviter_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)listreviter_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| PyObject_SelfIter, /* tp_iter */ |
| (iternextfunc)listreviter_next, /* tp_iternext */ |
| listreviter_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| static PyObject * |
| list_reversed(PyListObject *seq, PyObject *unused) |
| { |
| listreviterobject *it; |
| |
| it = PyObject_GC_New(listreviterobject, &PyListRevIter_Type); |
| if (it == NULL) |
| return NULL; |
| assert(PyList_Check(seq)); |
| it->it_index = PyList_GET_SIZE(seq) - 1; |
| Py_INCREF(seq); |
| it->it_seq = seq; |
| PyObject_GC_Track(it); |
| return (PyObject *)it; |
| } |
| |
| static void |
| listreviter_dealloc(listreviterobject *it) |
| { |
| PyObject_GC_UnTrack(it); |
| Py_XDECREF(it->it_seq); |
| PyObject_GC_Del(it); |
| } |
| |
| static int |
| listreviter_traverse(listreviterobject *it, visitproc visit, void *arg) |
| { |
| Py_VISIT(it->it_seq); |
| return 0; |
| } |
| |
| static PyObject * |
| listreviter_next(listreviterobject *it) |
| { |
| PyObject *item; |
| Py_ssize_t index = it->it_index; |
| PyListObject *seq = it->it_seq; |
| |
| if (index>=0 && index < PyList_GET_SIZE(seq)) { |
| item = PyList_GET_ITEM(seq, index); |
| it->it_index--; |
| Py_INCREF(item); |
| return item; |
| } |
| it->it_index = -1; |
| if (seq != NULL) { |
| it->it_seq = NULL; |
| Py_DECREF(seq); |
| } |
| return NULL; |
| } |
| |
| static PyObject * |
| listreviter_len(listreviterobject *it) |
| { |
| Py_ssize_t len = it->it_index + 1; |
| if (it->it_seq == NULL || PyList_GET_SIZE(it->it_seq) < len) |
| len = 0; |
| return PyLong_FromSsize_t(len); |
| } |