| # module 'poly' -- Polynomials |
| |
| # A polynomial is represented by a list of coefficients, e.g., |
| # [1, 10, 5] represents 1*x**0 + 10*x**1 + 5*x**2 (or 1 + 10x + 5x**2). |
| # There is no way to suppress internal zeros; trailing zeros are |
| # taken out by normalize(). |
| |
| def normalize(p): # Strip unnecessary zero coefficients |
| n = len(p) |
| while n: |
| if p[n-1]: return p[:n] |
| n = n-1 |
| return [] |
| |
| def plus(a, b): |
| if len(a) < len(b): a, b = b, a # make sure a is the longest |
| res = a[:] # make a copy |
| for i in range(len(b)): |
| res[i] = res[i] + b[i] |
| return normalize(res) |
| |
| def minus(a, b): |
| neg_b = map(lambda x: -x, b[:]) |
| return plus(a, neg_b) |
| |
| def one(power, coeff): # Representation of coeff * x**power |
| res = [] |
| for i in range(power): res.append(0) |
| return res + [coeff] |
| |
| def times(a, b): |
| res = [] |
| for i in range(len(a)): |
| for j in range(len(b)): |
| res = plus(res, one(i+j, a[i]*b[j])) |
| return res |
| |
| def power(a, n): # Raise polynomial a to the positive integral power n |
| if n == 0: return [1] |
| if n == 1: return a |
| if n/2*2 == n: |
| b = power(a, n/2) |
| return times(b, b) |
| return times(power(a, n-1), a) |
| |
| def der(a): # First derivative |
| res = a[1:] |
| for i in range(len(res)): |
| res[i] = res[i] * (i+1) |
| return res |
| |
| # Computing a primitive function would require rational arithmetic... |