| #include "Python.h" |
| |
| #ifdef X87_DOUBLE_ROUNDING |
| /* On x86 platforms using an x87 FPU, this function is called from the |
| Py_FORCE_DOUBLE macro (defined in pymath.h) to force a floating-point |
| number out of an 80-bit x87 FPU register and into a 64-bit memory location, |
| thus rounding from extended precision to double precision. */ |
| double _Py_force_double(double x) |
| { |
| volatile double y; |
| y = x; |
| return y; |
| } |
| #endif |
| |
| #ifdef HAVE_GCC_ASM_FOR_X87 |
| |
| /* inline assembly for getting and setting the 387 FPU control word on |
| gcc/x86 */ |
| |
| unsigned short _Py_get_387controlword(void) { |
| unsigned short cw; |
| __asm__ __volatile__ ("fnstcw %0" : "=m" (cw)); |
| return cw; |
| } |
| |
| void _Py_set_387controlword(unsigned short cw) { |
| __asm__ __volatile__ ("fldcw %0" : : "m" (cw)); |
| } |
| |
| #endif |
| |
| |
| #ifndef HAVE_HYPOT |
| double hypot(double x, double y) |
| { |
| double yx; |
| |
| x = fabs(x); |
| y = fabs(y); |
| if (x < y) { |
| double temp = x; |
| x = y; |
| y = temp; |
| } |
| if (x == 0.) |
| return 0.; |
| else { |
| yx = y/x; |
| return x*sqrt(1.+yx*yx); |
| } |
| } |
| #endif /* HAVE_HYPOT */ |
| |
| #ifndef HAVE_COPYSIGN |
| double |
| copysign(double x, double y) |
| { |
| /* use atan2 to distinguish -0. from 0. */ |
| if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) { |
| return fabs(x); |
| } else { |
| return -fabs(x); |
| } |
| } |
| #endif /* HAVE_COPYSIGN */ |
| |
| #ifndef HAVE_ROUND |
| double |
| round(double x) |
| { |
| double absx, y; |
| absx = fabs(x); |
| y = floor(absx); |
| if (absx - y >= 0.5) |
| y += 1.0; |
| return copysign(y, x); |
| } |
| #endif /* HAVE_ROUND */ |
| |
| #ifndef HAVE_LOG1P |
| #include <float.h> |
| |
| double |
| log1p(double x) |
| { |
| /* For x small, we use the following approach. Let y be the nearest |
| float to 1+x, then |
| |
| 1+x = y * (1 - (y-1-x)/y) |
| |
| so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, |
| the second term is well approximated by (y-1-x)/y. If abs(x) >= |
| DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest |
| then y-1-x will be exactly representable, and is computed exactly |
| by (y-1)-x. |
| |
| If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be |
| round-to-nearest then this method is slightly dangerous: 1+x could |
| be rounded up to 1+DBL_EPSILON instead of down to 1, and in that |
| case y-1-x will not be exactly representable any more and the |
| result can be off by many ulps. But this is easily fixed: for a |
| floating-point number |x| < DBL_EPSILON/2., the closest |
| floating-point number to log(1+x) is exactly x. |
| */ |
| |
| double y; |
| if (fabs(x) < DBL_EPSILON/2.) { |
| return x; |
| } else if (-0.5 <= x && x <= 1.) { |
| /* WARNING: it's possible than an overeager compiler |
| will incorrectly optimize the following two lines |
| to the equivalent of "return log(1.+x)". If this |
| happens, then results from log1p will be inaccurate |
| for small x. */ |
| y = 1.+x; |
| return log(y)-((y-1.)-x)/y; |
| } else { |
| /* NaNs and infinities should end up here */ |
| return log(1.+x); |
| } |
| } |
| #endif /* HAVE_LOG1P */ |
| |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| |
| static const double ln2 = 6.93147180559945286227E-01; |
| static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */ |
| static const double two_pow_p28 = 268435456.0; /* 2**28 */ |
| static const double zero = 0.0; |
| |
| /* asinh(x) |
| * Method : |
| * Based on |
| * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] |
| * we have |
| * asinh(x) := x if 1+x*x=1, |
| * := sign(x)*(log(x)+ln2)) for large |x|, else |
| * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else |
| * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) |
| */ |
| |
| #ifndef HAVE_ASINH |
| double |
| asinh(double x) |
| { |
| double w; |
| double absx = fabs(x); |
| |
| if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) { |
| return x+x; |
| } |
| if (absx < two_pow_m28) { /* |x| < 2**-28 */ |
| return x; /* return x inexact except 0 */ |
| } |
| if (absx > two_pow_p28) { /* |x| > 2**28 */ |
| w = log(absx)+ln2; |
| } |
| else if (absx > 2.0) { /* 2 < |x| < 2**28 */ |
| w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx)); |
| } |
| else { /* 2**-28 <= |x| < 2= */ |
| double t = x*x; |
| w = log1p(absx + t / (1.0 + sqrt(1.0 + t))); |
| } |
| return copysign(w, x); |
| |
| } |
| #endif /* HAVE_ASINH */ |
| |
| /* acosh(x) |
| * Method : |
| * Based on |
| * acosh(x) = log [ x + sqrt(x*x-1) ] |
| * we have |
| * acosh(x) := log(x)+ln2, if x is large; else |
| * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else |
| * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. |
| * |
| * Special cases: |
| * acosh(x) is NaN with signal if x<1. |
| * acosh(NaN) is NaN without signal. |
| */ |
| |
| #ifndef HAVE_ACOSH |
| double |
| acosh(double x) |
| { |
| if (Py_IS_NAN(x)) { |
| return x+x; |
| } |
| if (x < 1.) { /* x < 1; return a signaling NaN */ |
| errno = EDOM; |
| #ifdef Py_NAN |
| return Py_NAN; |
| #else |
| return (x-x)/(x-x); |
| #endif |
| } |
| else if (x >= two_pow_p28) { /* x > 2**28 */ |
| if (Py_IS_INFINITY(x)) { |
| return x+x; |
| } else { |
| return log(x)+ln2; /* acosh(huge)=log(2x) */ |
| } |
| } |
| else if (x == 1.) { |
| return 0.0; /* acosh(1) = 0 */ |
| } |
| else if (x > 2.) { /* 2 < x < 2**28 */ |
| double t = x*x; |
| return log(2.0*x - 1.0 / (x + sqrt(t - 1.0))); |
| } |
| else { /* 1 < x <= 2 */ |
| double t = x - 1.0; |
| return log1p(t + sqrt(2.0*t + t*t)); |
| } |
| } |
| #endif /* HAVE_ACOSH */ |
| |
| /* atanh(x) |
| * Method : |
| * 1.Reduced x to positive by atanh(-x) = -atanh(x) |
| * 2.For x>=0.5 |
| * 1 2x x |
| * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) |
| * 2 1 - x 1 - x |
| * |
| * For x<0.5 |
| * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) |
| * |
| * Special cases: |
| * atanh(x) is NaN if |x| >= 1 with signal; |
| * atanh(NaN) is that NaN with no signal; |
| * |
| */ |
| |
| #ifndef HAVE_ATANH |
| double |
| atanh(double x) |
| { |
| double absx; |
| double t; |
| |
| if (Py_IS_NAN(x)) { |
| return x+x; |
| } |
| absx = fabs(x); |
| if (absx >= 1.) { /* |x| >= 1 */ |
| errno = EDOM; |
| #ifdef Py_NAN |
| return Py_NAN; |
| #else |
| return x/zero; |
| #endif |
| } |
| if (absx < two_pow_m28) { /* |x| < 2**-28 */ |
| return x; |
| } |
| if (absx < 0.5) { /* |x| < 0.5 */ |
| t = absx+absx; |
| t = 0.5 * log1p(t + t*absx / (1.0 - absx)); |
| } |
| else { /* 0.5 <= |x| <= 1.0 */ |
| t = 0.5 * log1p((absx + absx) / (1.0 - absx)); |
| } |
| return copysign(t, x); |
| } |
| #endif /* HAVE_ATANH */ |