| |
| /* Dictionary object implementation using a hash table */ |
| |
| /* The distribution includes a separate file, Objects/dictnotes.txt, |
| describing explorations into dictionary design and optimization. |
| It covers typical dictionary use patterns, the parameters for |
| tuning dictionaries, and several ideas for possible optimizations. |
| */ |
| |
| |
| /* |
| There are four kinds of slots in the table: |
| |
| 1. Unused. me_key == me_value == NULL |
| Does not hold an active (key, value) pair now and never did. Unused can |
| transition to Active upon key insertion. This is the only case in which |
| me_key is NULL, and is each slot's initial state. |
| |
| 2. Active. me_key != NULL and me_key != dummy and me_value != NULL |
| Holds an active (key, value) pair. Active can transition to Dummy or |
| Pending upon key deletion (for combined and split tables respectively). |
| This is the only case in which me_value != NULL. |
| |
| 3. Dummy. me_key == dummy and me_value == NULL |
| Previously held an active (key, value) pair, but that was deleted and an |
| active pair has not yet overwritten the slot. Dummy can transition to |
| Active upon key insertion. Dummy slots cannot be made Unused again |
| (cannot have me_key set to NULL), else the probe sequence in case of |
| collision would have no way to know they were once active. |
| |
| 4. Pending. Not yet inserted or deleted from a split-table. |
| key != NULL, key != dummy and value == NULL |
| |
| The DictObject can be in one of two forms. |
| Either: |
| A combined table: |
| ma_values == NULL, dk_refcnt == 1. |
| Values are stored in the me_value field of the PyDictKeysObject. |
| Slot kind 4 is not allowed i.e. |
| key != NULL, key != dummy and value == NULL is illegal. |
| Or: |
| A split table: |
| ma_values != NULL, dk_refcnt >= 1 |
| Values are stored in the ma_values array. |
| Only string (unicode) keys are allowed, no <dummy> keys are present. |
| |
| Note: .popitem() abuses the me_hash field of an Unused or Dummy slot to |
| hold a search finger. The me_hash field of Unused or Dummy slots has no |
| meaning otherwise. As a consequence of this popitem always converts the dict |
| to the combined-table form. |
| */ |
| |
| /* PyDict_MINSIZE_SPLIT is the minimum size of a split dictionary. |
| * It must be a power of 2, and at least 4. |
| * Resizing of split dictionaries is very rare, so the saving memory is more |
| * important than the cost of resizing. |
| */ |
| #define PyDict_MINSIZE_SPLIT 4 |
| |
| /* PyDict_MINSIZE_COMBINED is the starting size for any new, non-split dict. |
| * 8 allows dicts with no more than 5 active entries; experiments suggested |
| * this suffices for the majority of dicts (consisting mostly of usually-small |
| * dicts created to pass keyword arguments). |
| * Making this 8, rather than 4 reduces the number of resizes for most |
| * dictionaries, without any significant extra memory use. |
| */ |
| #define PyDict_MINSIZE_COMBINED 8 |
| |
| #include "Python.h" |
| #include "dict-common.h" |
| #include "stringlib/eq.h" |
| |
| /*[clinic input] |
| class dict "PyDictObject *" "&PyDict_Type" |
| [clinic start generated code]*/ |
| /*[clinic end generated code: output=da39a3ee5e6b4b0d input=f157a5a0ce9589d6]*/ |
| |
| |
| /* |
| To ensure the lookup algorithm terminates, there must be at least one Unused |
| slot (NULL key) in the table. |
| To avoid slowing down lookups on a near-full table, we resize the table when |
| it's USABLE_FRACTION (currently two-thirds) full. |
| */ |
| |
| #define PERTURB_SHIFT 5 |
| |
| /* |
| Major subtleties ahead: Most hash schemes depend on having a "good" hash |
| function, in the sense of simulating randomness. Python doesn't: its most |
| important hash functions (for strings and ints) are very regular in common |
| cases: |
| |
| >>> map(hash, (0, 1, 2, 3)) |
| [0, 1, 2, 3] |
| >>> map(hash, ("namea", "nameb", "namec", "named")) |
| [-1658398457, -1658398460, -1658398459, -1658398462] |
| >>> |
| |
| This isn't necessarily bad! To the contrary, in a table of size 2**i, taking |
| the low-order i bits as the initial table index is extremely fast, and there |
| are no collisions at all for dicts indexed by a contiguous range of ints. |
| The same is approximately true when keys are "consecutive" strings. So this |
| gives better-than-random behavior in common cases, and that's very desirable. |
| |
| OTOH, when collisions occur, the tendency to fill contiguous slices of the |
| hash table makes a good collision resolution strategy crucial. Taking only |
| the last i bits of the hash code is also vulnerable: for example, consider |
| the list [i << 16 for i in range(20000)] as a set of keys. Since ints are |
| their own hash codes, and this fits in a dict of size 2**15, the last 15 bits |
| of every hash code are all 0: they *all* map to the same table index. |
| |
| But catering to unusual cases should not slow the usual ones, so we just take |
| the last i bits anyway. It's up to collision resolution to do the rest. If |
| we *usually* find the key we're looking for on the first try (and, it turns |
| out, we usually do -- the table load factor is kept under 2/3, so the odds |
| are solidly in our favor), then it makes best sense to keep the initial index |
| computation dirt cheap. |
| |
| The first half of collision resolution is to visit table indices via this |
| recurrence: |
| |
| j = ((5*j) + 1) mod 2**i |
| |
| For any initial j in range(2**i), repeating that 2**i times generates each |
| int in range(2**i) exactly once (see any text on random-number generation for |
| proof). By itself, this doesn't help much: like linear probing (setting |
| j += 1, or j -= 1, on each loop trip), it scans the table entries in a fixed |
| order. This would be bad, except that's not the only thing we do, and it's |
| actually *good* in the common cases where hash keys are consecutive. In an |
| example that's really too small to make this entirely clear, for a table of |
| size 2**3 the order of indices is: |
| |
| 0 -> 1 -> 6 -> 7 -> 4 -> 5 -> 2 -> 3 -> 0 [and here it's repeating] |
| |
| If two things come in at index 5, the first place we look after is index 2, |
| not 6, so if another comes in at index 6 the collision at 5 didn't hurt it. |
| Linear probing is deadly in this case because there the fixed probe order |
| is the *same* as the order consecutive keys are likely to arrive. But it's |
| extremely unlikely hash codes will follow a 5*j+1 recurrence by accident, |
| and certain that consecutive hash codes do not. |
| |
| The other half of the strategy is to get the other bits of the hash code |
| into play. This is done by initializing a (unsigned) vrbl "perturb" to the |
| full hash code, and changing the recurrence to: |
| |
| j = (5*j) + 1 + perturb; |
| perturb >>= PERTURB_SHIFT; |
| use j % 2**i as the next table index; |
| |
| Now the probe sequence depends (eventually) on every bit in the hash code, |
| and the pseudo-scrambling property of recurring on 5*j+1 is more valuable, |
| because it quickly magnifies small differences in the bits that didn't affect |
| the initial index. Note that because perturb is unsigned, if the recurrence |
| is executed often enough perturb eventually becomes and remains 0. At that |
| point (very rarely reached) the recurrence is on (just) 5*j+1 again, and |
| that's certain to find an empty slot eventually (since it generates every int |
| in range(2**i), and we make sure there's always at least one empty slot). |
| |
| Selecting a good value for PERTURB_SHIFT is a balancing act. You want it |
| small so that the high bits of the hash code continue to affect the probe |
| sequence across iterations; but you want it large so that in really bad cases |
| the high-order hash bits have an effect on early iterations. 5 was "the |
| best" in minimizing total collisions across experiments Tim Peters ran (on |
| both normal and pathological cases), but 4 and 6 weren't significantly worse. |
| |
| Historical: Reimer Behrends contributed the idea of using a polynomial-based |
| approach, using repeated multiplication by x in GF(2**n) where an irreducible |
| polynomial for each table size was chosen such that x was a primitive root. |
| Christian Tismer later extended that to use division by x instead, as an |
| efficient way to get the high bits of the hash code into play. This scheme |
| also gave excellent collision statistics, but was more expensive: two |
| if-tests were required inside the loop; computing "the next" index took about |
| the same number of operations but without as much potential parallelism |
| (e.g., computing 5*j can go on at the same time as computing 1+perturb in the |
| above, and then shifting perturb can be done while the table index is being |
| masked); and the PyDictObject struct required a member to hold the table's |
| polynomial. In Tim's experiments the current scheme ran faster, produced |
| equally good collision statistics, needed less code & used less memory. |
| |
| */ |
| |
| /* Object used as dummy key to fill deleted entries |
| * This could be any unique object, |
| * use a custom type in order to minimise coupling. |
| */ |
| static PyObject _dummy_struct; |
| |
| #define dummy (&_dummy_struct) |
| |
| #ifdef Py_REF_DEBUG |
| PyObject * |
| _PyDict_Dummy(void) |
| { |
| return dummy; |
| } |
| #endif |
| |
| /* forward declarations */ |
| static PyDictKeyEntry *lookdict(PyDictObject *mp, PyObject *key, |
| Py_hash_t hash, PyObject ***value_addr); |
| static PyDictKeyEntry *lookdict_unicode(PyDictObject *mp, PyObject *key, |
| Py_hash_t hash, PyObject ***value_addr); |
| static PyDictKeyEntry * |
| lookdict_unicode_nodummy(PyDictObject *mp, PyObject *key, |
| Py_hash_t hash, PyObject ***value_addr); |
| static PyDictKeyEntry *lookdict_split(PyDictObject *mp, PyObject *key, |
| Py_hash_t hash, PyObject ***value_addr); |
| |
| static int dictresize(PyDictObject *mp, Py_ssize_t minused); |
| |
| /* Dictionary reuse scheme to save calls to malloc, free, and memset */ |
| #ifndef PyDict_MAXFREELIST |
| #define PyDict_MAXFREELIST 80 |
| #endif |
| static PyDictObject *free_list[PyDict_MAXFREELIST]; |
| static int numfree = 0; |
| |
| #include "clinic/dictobject.c.h" |
| |
| int |
| PyDict_ClearFreeList(void) |
| { |
| PyDictObject *op; |
| int ret = numfree; |
| while (numfree) { |
| op = free_list[--numfree]; |
| assert(PyDict_CheckExact(op)); |
| PyObject_GC_Del(op); |
| } |
| return ret; |
| } |
| |
| /* Print summary info about the state of the optimized allocator */ |
| void |
| _PyDict_DebugMallocStats(FILE *out) |
| { |
| _PyDebugAllocatorStats(out, |
| "free PyDictObject", numfree, sizeof(PyDictObject)); |
| } |
| |
| |
| void |
| PyDict_Fini(void) |
| { |
| PyDict_ClearFreeList(); |
| } |
| |
| #define DK_DEBUG_INCREF _Py_INC_REFTOTAL _Py_REF_DEBUG_COMMA |
| #define DK_DEBUG_DECREF _Py_DEC_REFTOTAL _Py_REF_DEBUG_COMMA |
| |
| #define DK_INCREF(dk) (DK_DEBUG_INCREF ++(dk)->dk_refcnt) |
| #define DK_DECREF(dk) if (DK_DEBUG_DECREF (--(dk)->dk_refcnt) == 0) free_keys_object(dk) |
| #define DK_SIZE(dk) ((dk)->dk_size) |
| #define DK_MASK(dk) (((dk)->dk_size)-1) |
| #define IS_POWER_OF_2(x) (((x) & (x-1)) == 0) |
| |
| /* USABLE_FRACTION is the maximum dictionary load. |
| * Currently set to (2n+1)/3. Increasing this ratio makes dictionaries more |
| * dense resulting in more collisions. Decreasing it improves sparseness |
| * at the expense of spreading entries over more cache lines and at the |
| * cost of total memory consumed. |
| * |
| * USABLE_FRACTION must obey the following: |
| * (0 < USABLE_FRACTION(n) < n) for all n >= 2 |
| * |
| * USABLE_FRACTION should be very quick to calculate. |
| * Fractions around 5/8 to 2/3 seem to work well in practice. |
| */ |
| |
| /* Use (2n+1)/3 rather than 2n+3 because: it makes no difference for |
| * combined tables (the two fractions round to the same number n < ), |
| * but 2*4/3 is 2 whereas (2*4+1)/3 is 3 which potentially saves quite |
| * a lot of space for small, split tables */ |
| #define USABLE_FRACTION(n) ((((n) << 1)+1)/3) |
| |
| /* Alternative fraction that is otherwise close enough to (2n+1)/3 to make |
| * little difference. 8 * 2/3 == 8 * 5/8 == 5. 16 * 2/3 == 16 * 5/8 == 10. |
| * 32 * 2/3 = 21, 32 * 5/8 = 20. |
| * Its advantage is that it is faster to compute on machines with slow division. |
| * #define USABLE_FRACTION(n) (((n) >> 1) + ((n) >> 2) - ((n) >> 3)) |
| */ |
| |
| /* GROWTH_RATE. Growth rate upon hitting maximum load. |
| * Currently set to used*2 + capacity/2. |
| * This means that dicts double in size when growing without deletions, |
| * but have more head room when the number of deletions is on a par with the |
| * number of insertions. |
| * Raising this to used*4 doubles memory consumption depending on the size of |
| * the dictionary, but results in half the number of resizes, less effort to |
| * resize. |
| * GROWTH_RATE was set to used*4 up to version 3.2. |
| * GROWTH_RATE was set to used*2 in version 3.3.0 |
| */ |
| #define GROWTH_RATE(d) (((d)->ma_used*2)+((d)->ma_keys->dk_size>>1)) |
| |
| #define ENSURE_ALLOWS_DELETIONS(d) \ |
| if ((d)->ma_keys->dk_lookup == lookdict_unicode_nodummy) { \ |
| (d)->ma_keys->dk_lookup = lookdict_unicode; \ |
| } |
| |
| /* This immutable, empty PyDictKeysObject is used for PyDict_Clear() |
| * (which cannot fail and thus can do no allocation). |
| */ |
| static PyDictKeysObject empty_keys_struct = { |
| 2, /* dk_refcnt 1 for this struct, 1 for dummy_struct */ |
| 1, /* dk_size */ |
| lookdict_split, /* dk_lookup */ |
| 0, /* dk_usable (immutable) */ |
| { |
| { 0, 0, 0 } /* dk_entries (empty) */ |
| } |
| }; |
| |
| static PyObject *empty_values[1] = { NULL }; |
| |
| #define Py_EMPTY_KEYS &empty_keys_struct |
| |
| static PyDictKeysObject *new_keys_object(Py_ssize_t size) |
| { |
| PyDictKeysObject *dk; |
| Py_ssize_t i; |
| PyDictKeyEntry *ep0; |
| |
| assert(size >= PyDict_MINSIZE_SPLIT); |
| assert(IS_POWER_OF_2(size)); |
| dk = PyMem_MALLOC(sizeof(PyDictKeysObject) + |
| sizeof(PyDictKeyEntry) * (size-1)); |
| if (dk == NULL) { |
| PyErr_NoMemory(); |
| return NULL; |
| } |
| DK_DEBUG_INCREF dk->dk_refcnt = 1; |
| dk->dk_size = size; |
| dk->dk_usable = USABLE_FRACTION(size); |
| ep0 = &dk->dk_entries[0]; |
| /* Hash value of slot 0 is used by popitem, so it must be initialized */ |
| ep0->me_hash = 0; |
| for (i = 0; i < size; i++) { |
| ep0[i].me_key = NULL; |
| ep0[i].me_value = NULL; |
| } |
| dk->dk_lookup = lookdict_unicode_nodummy; |
| return dk; |
| } |
| |
| static void |
| free_keys_object(PyDictKeysObject *keys) |
| { |
| PyDictKeyEntry *entries = &keys->dk_entries[0]; |
| Py_ssize_t i, n; |
| for (i = 0, n = DK_SIZE(keys); i < n; i++) { |
| Py_XDECREF(entries[i].me_key); |
| Py_XDECREF(entries[i].me_value); |
| } |
| PyMem_FREE(keys); |
| } |
| |
| #define new_values(size) PyMem_NEW(PyObject *, size) |
| |
| #define free_values(values) PyMem_FREE(values) |
| |
| /* Consumes a reference to the keys object */ |
| static PyObject * |
| new_dict(PyDictKeysObject *keys, PyObject **values) |
| { |
| PyDictObject *mp; |
| assert(keys != NULL); |
| if (numfree) { |
| mp = free_list[--numfree]; |
| assert (mp != NULL); |
| assert (Py_TYPE(mp) == &PyDict_Type); |
| _Py_NewReference((PyObject *)mp); |
| } |
| else { |
| mp = PyObject_GC_New(PyDictObject, &PyDict_Type); |
| if (mp == NULL) { |
| DK_DECREF(keys); |
| free_values(values); |
| return NULL; |
| } |
| } |
| mp->ma_keys = keys; |
| mp->ma_values = values; |
| mp->ma_used = 0; |
| return (PyObject *)mp; |
| } |
| |
| /* Consumes a reference to the keys object */ |
| static PyObject * |
| new_dict_with_shared_keys(PyDictKeysObject *keys) |
| { |
| PyObject **values; |
| Py_ssize_t i, size; |
| |
| size = DK_SIZE(keys); |
| values = new_values(size); |
| if (values == NULL) { |
| DK_DECREF(keys); |
| return PyErr_NoMemory(); |
| } |
| for (i = 0; i < size; i++) { |
| values[i] = NULL; |
| } |
| return new_dict(keys, values); |
| } |
| |
| PyObject * |
| PyDict_New(void) |
| { |
| PyDictKeysObject *keys = new_keys_object(PyDict_MINSIZE_COMBINED); |
| if (keys == NULL) |
| return NULL; |
| return new_dict(keys, NULL); |
| } |
| |
| /* |
| The basic lookup function used by all operations. |
| This is based on Algorithm D from Knuth Vol. 3, Sec. 6.4. |
| Open addressing is preferred over chaining since the link overhead for |
| chaining would be substantial (100% with typical malloc overhead). |
| |
| The initial probe index is computed as hash mod the table size. Subsequent |
| probe indices are computed as explained earlier. |
| |
| All arithmetic on hash should ignore overflow. |
| |
| The details in this version are due to Tim Peters, building on many past |
| contributions by Reimer Behrends, Jyrki Alakuijala, Vladimir Marangozov and |
| Christian Tismer. |
| |
| lookdict() is general-purpose, and may return NULL if (and only if) a |
| comparison raises an exception (this was new in Python 2.5). |
| lookdict_unicode() below is specialized to string keys, comparison of which can |
| never raise an exception; that function can never return NULL. |
| lookdict_unicode_nodummy is further specialized for string keys that cannot be |
| the <dummy> value. |
| For both, when the key isn't found a PyDictEntry* is returned |
| where the key would have been found, *value_addr points to the matching value |
| slot. |
| */ |
| static PyDictKeyEntry * |
| lookdict(PyDictObject *mp, PyObject *key, |
| Py_hash_t hash, PyObject ***value_addr) |
| { |
| size_t i; |
| size_t perturb; |
| PyDictKeyEntry *freeslot; |
| size_t mask; |
| PyDictKeyEntry *ep0; |
| PyDictKeyEntry *ep; |
| int cmp; |
| PyObject *startkey; |
| |
| top: |
| mask = DK_MASK(mp->ma_keys); |
| ep0 = &mp->ma_keys->dk_entries[0]; |
| i = (size_t)hash & mask; |
| ep = &ep0[i]; |
| if (ep->me_key == NULL || ep->me_key == key) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| if (ep->me_key == dummy) |
| freeslot = ep; |
| else { |
| if (ep->me_hash == hash) { |
| startkey = ep->me_key; |
| Py_INCREF(startkey); |
| cmp = PyObject_RichCompareBool(startkey, key, Py_EQ); |
| Py_DECREF(startkey); |
| if (cmp < 0) |
| return NULL; |
| if (ep0 == mp->ma_keys->dk_entries && ep->me_key == startkey) { |
| if (cmp > 0) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| } |
| else { |
| /* The dict was mutated, restart */ |
| goto top; |
| } |
| } |
| freeslot = NULL; |
| } |
| |
| /* In the loop, me_key == dummy is by far (factor of 100s) the |
| least likely outcome, so test for that last. */ |
| for (perturb = hash; ; perturb >>= PERTURB_SHIFT) { |
| i = (i << 2) + i + perturb + 1; |
| ep = &ep0[i & mask]; |
| if (ep->me_key == NULL) { |
| if (freeslot == NULL) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } else { |
| *value_addr = &freeslot->me_value; |
| return freeslot; |
| } |
| } |
| if (ep->me_key == key) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| if (ep->me_hash == hash && ep->me_key != dummy) { |
| startkey = ep->me_key; |
| Py_INCREF(startkey); |
| cmp = PyObject_RichCompareBool(startkey, key, Py_EQ); |
| Py_DECREF(startkey); |
| if (cmp < 0) { |
| *value_addr = NULL; |
| return NULL; |
| } |
| if (ep0 == mp->ma_keys->dk_entries && ep->me_key == startkey) { |
| if (cmp > 0) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| } |
| else { |
| /* The dict was mutated, restart */ |
| goto top; |
| } |
| } |
| else if (ep->me_key == dummy && freeslot == NULL) |
| freeslot = ep; |
| } |
| assert(0); /* NOT REACHED */ |
| return 0; |
| } |
| |
| /* Specialized version for string-only keys */ |
| static PyDictKeyEntry * |
| lookdict_unicode(PyDictObject *mp, PyObject *key, |
| Py_hash_t hash, PyObject ***value_addr) |
| { |
| size_t i; |
| size_t perturb; |
| PyDictKeyEntry *freeslot; |
| size_t mask = DK_MASK(mp->ma_keys); |
| PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0]; |
| PyDictKeyEntry *ep; |
| |
| /* Make sure this function doesn't have to handle non-unicode keys, |
| including subclasses of str; e.g., one reason to subclass |
| unicodes is to override __eq__, and for speed we don't cater to |
| that here. */ |
| if (!PyUnicode_CheckExact(key)) { |
| mp->ma_keys->dk_lookup = lookdict; |
| return lookdict(mp, key, hash, value_addr); |
| } |
| i = (size_t)hash & mask; |
| ep = &ep0[i]; |
| if (ep->me_key == NULL || ep->me_key == key) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| if (ep->me_key == dummy) |
| freeslot = ep; |
| else { |
| if (ep->me_hash == hash && unicode_eq(ep->me_key, key)) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| freeslot = NULL; |
| } |
| |
| /* In the loop, me_key == dummy is by far (factor of 100s) the |
| least likely outcome, so test for that last. */ |
| for (perturb = hash; ; perturb >>= PERTURB_SHIFT) { |
| i = (i << 2) + i + perturb + 1; |
| ep = &ep0[i & mask]; |
| if (ep->me_key == NULL) { |
| if (freeslot == NULL) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } else { |
| *value_addr = &freeslot->me_value; |
| return freeslot; |
| } |
| } |
| if (ep->me_key == key |
| || (ep->me_hash == hash |
| && ep->me_key != dummy |
| && unicode_eq(ep->me_key, key))) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| if (ep->me_key == dummy && freeslot == NULL) |
| freeslot = ep; |
| } |
| assert(0); /* NOT REACHED */ |
| return 0; |
| } |
| |
| /* Faster version of lookdict_unicode when it is known that no <dummy> keys |
| * will be present. */ |
| static PyDictKeyEntry * |
| lookdict_unicode_nodummy(PyDictObject *mp, PyObject *key, |
| Py_hash_t hash, PyObject ***value_addr) |
| { |
| size_t i; |
| size_t perturb; |
| size_t mask = DK_MASK(mp->ma_keys); |
| PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0]; |
| PyDictKeyEntry *ep; |
| |
| /* Make sure this function doesn't have to handle non-unicode keys, |
| including subclasses of str; e.g., one reason to subclass |
| unicodes is to override __eq__, and for speed we don't cater to |
| that here. */ |
| if (!PyUnicode_CheckExact(key)) { |
| mp->ma_keys->dk_lookup = lookdict; |
| return lookdict(mp, key, hash, value_addr); |
| } |
| i = (size_t)hash & mask; |
| ep = &ep0[i]; |
| assert(ep->me_key == NULL || PyUnicode_CheckExact(ep->me_key)); |
| if (ep->me_key == NULL || ep->me_key == key || |
| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| for (perturb = hash; ; perturb >>= PERTURB_SHIFT) { |
| i = (i << 2) + i + perturb + 1; |
| ep = &ep0[i & mask]; |
| assert(ep->me_key == NULL || PyUnicode_CheckExact(ep->me_key)); |
| if (ep->me_key == NULL || ep->me_key == key || |
| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) { |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| } |
| assert(0); /* NOT REACHED */ |
| return 0; |
| } |
| |
| /* Version of lookdict for split tables. |
| * All split tables and only split tables use this lookup function. |
| * Split tables only contain unicode keys and no dummy keys, |
| * so algorithm is the same as lookdict_unicode_nodummy. |
| */ |
| static PyDictKeyEntry * |
| lookdict_split(PyDictObject *mp, PyObject *key, |
| Py_hash_t hash, PyObject ***value_addr) |
| { |
| size_t i; |
| size_t perturb; |
| size_t mask = DK_MASK(mp->ma_keys); |
| PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0]; |
| PyDictKeyEntry *ep; |
| |
| if (!PyUnicode_CheckExact(key)) { |
| ep = lookdict(mp, key, hash, value_addr); |
| /* lookdict expects a combined-table, so fix value_addr */ |
| i = ep - ep0; |
| *value_addr = &mp->ma_values[i]; |
| return ep; |
| } |
| i = (size_t)hash & mask; |
| ep = &ep0[i]; |
| assert(ep->me_key == NULL || PyUnicode_CheckExact(ep->me_key)); |
| if (ep->me_key == NULL || ep->me_key == key || |
| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) { |
| *value_addr = &mp->ma_values[i]; |
| return ep; |
| } |
| for (perturb = hash; ; perturb >>= PERTURB_SHIFT) { |
| i = (i << 2) + i + perturb + 1; |
| ep = &ep0[i & mask]; |
| assert(ep->me_key == NULL || PyUnicode_CheckExact(ep->me_key)); |
| if (ep->me_key == NULL || ep->me_key == key || |
| (ep->me_hash == hash && unicode_eq(ep->me_key, key))) { |
| *value_addr = &mp->ma_values[i & mask]; |
| return ep; |
| } |
| } |
| assert(0); /* NOT REACHED */ |
| return 0; |
| } |
| |
| int |
| _PyDict_HasOnlyStringKeys(PyObject *dict) |
| { |
| Py_ssize_t pos = 0; |
| PyObject *key, *value; |
| assert(PyDict_Check(dict)); |
| /* Shortcut */ |
| if (((PyDictObject *)dict)->ma_keys->dk_lookup != lookdict) |
| return 1; |
| while (PyDict_Next(dict, &pos, &key, &value)) |
| if (!PyUnicode_Check(key)) |
| return 0; |
| return 1; |
| } |
| |
| #define MAINTAIN_TRACKING(mp, key, value) \ |
| do { \ |
| if (!_PyObject_GC_IS_TRACKED(mp)) { \ |
| if (_PyObject_GC_MAY_BE_TRACKED(key) || \ |
| _PyObject_GC_MAY_BE_TRACKED(value)) { \ |
| _PyObject_GC_TRACK(mp); \ |
| } \ |
| } \ |
| } while(0) |
| |
| void |
| _PyDict_MaybeUntrack(PyObject *op) |
| { |
| PyDictObject *mp; |
| PyObject *value; |
| Py_ssize_t i, size; |
| |
| if (!PyDict_CheckExact(op) || !_PyObject_GC_IS_TRACKED(op)) |
| return; |
| |
| mp = (PyDictObject *) op; |
| size = DK_SIZE(mp->ma_keys); |
| if (_PyDict_HasSplitTable(mp)) { |
| for (i = 0; i < size; i++) { |
| if ((value = mp->ma_values[i]) == NULL) |
| continue; |
| if (_PyObject_GC_MAY_BE_TRACKED(value)) { |
| assert(!_PyObject_GC_MAY_BE_TRACKED( |
| mp->ma_keys->dk_entries[i].me_key)); |
| return; |
| } |
| } |
| } |
| else { |
| PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0]; |
| for (i = 0; i < size; i++) { |
| if ((value = ep0[i].me_value) == NULL) |
| continue; |
| if (_PyObject_GC_MAY_BE_TRACKED(value) || |
| _PyObject_GC_MAY_BE_TRACKED(ep0[i].me_key)) |
| return; |
| } |
| } |
| _PyObject_GC_UNTRACK(op); |
| } |
| |
| /* Internal function to find slot for an item from its hash |
| * when it is known that the key is not present in the dict. |
| */ |
| static PyDictKeyEntry * |
| find_empty_slot(PyDictObject *mp, PyObject *key, Py_hash_t hash, |
| PyObject ***value_addr) |
| { |
| size_t i; |
| size_t perturb; |
| size_t mask = DK_MASK(mp->ma_keys); |
| PyDictKeyEntry *ep0 = &mp->ma_keys->dk_entries[0]; |
| PyDictKeyEntry *ep; |
| |
| assert(key != NULL); |
| if (!PyUnicode_CheckExact(key)) |
| mp->ma_keys->dk_lookup = lookdict; |
| i = hash & mask; |
| ep = &ep0[i]; |
| for (perturb = hash; ep->me_key != NULL; perturb >>= PERTURB_SHIFT) { |
| i = (i << 2) + i + perturb + 1; |
| ep = &ep0[i & mask]; |
| } |
| assert(ep->me_value == NULL); |
| if (mp->ma_values) |
| *value_addr = &mp->ma_values[i & mask]; |
| else |
| *value_addr = &ep->me_value; |
| return ep; |
| } |
| |
| static int |
| insertion_resize(PyDictObject *mp) |
| { |
| return dictresize(mp, GROWTH_RATE(mp)); |
| } |
| |
| /* |
| Internal routine to insert a new item into the table. |
| Used both by the internal resize routine and by the public insert routine. |
| Returns -1 if an error occurred, or 0 on success. |
| */ |
| static int |
| insertdict(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject *value) |
| { |
| PyObject *old_value; |
| PyObject **value_addr; |
| PyDictKeyEntry *ep; |
| assert(key != dummy); |
| |
| if (mp->ma_values != NULL && !PyUnicode_CheckExact(key)) { |
| if (insertion_resize(mp) < 0) |
| return -1; |
| } |
| |
| ep = mp->ma_keys->dk_lookup(mp, key, hash, &value_addr); |
| if (ep == NULL) { |
| return -1; |
| } |
| assert(PyUnicode_CheckExact(key) || mp->ma_keys->dk_lookup == lookdict); |
| Py_INCREF(value); |
| MAINTAIN_TRACKING(mp, key, value); |
| old_value = *value_addr; |
| if (old_value != NULL) { |
| assert(ep->me_key != NULL && ep->me_key != dummy); |
| *value_addr = value; |
| Py_DECREF(old_value); /* which **CAN** re-enter (see issue #22653) */ |
| } |
| else { |
| if (ep->me_key == NULL) { |
| Py_INCREF(key); |
| if (mp->ma_keys->dk_usable <= 0) { |
| /* Need to resize. */ |
| if (insertion_resize(mp) < 0) { |
| Py_DECREF(key); |
| Py_DECREF(value); |
| return -1; |
| } |
| ep = find_empty_slot(mp, key, hash, &value_addr); |
| } |
| mp->ma_keys->dk_usable--; |
| assert(mp->ma_keys->dk_usable >= 0); |
| ep->me_key = key; |
| ep->me_hash = hash; |
| } |
| else { |
| if (ep->me_key == dummy) { |
| Py_INCREF(key); |
| ep->me_key = key; |
| ep->me_hash = hash; |
| Py_DECREF(dummy); |
| } else { |
| assert(_PyDict_HasSplitTable(mp)); |
| } |
| } |
| mp->ma_used++; |
| *value_addr = value; |
| assert(ep->me_key != NULL && ep->me_key != dummy); |
| } |
| return 0; |
| } |
| |
| /* |
| Internal routine used by dictresize() to insert an item which is |
| known to be absent from the dict. This routine also assumes that |
| the dict contains no deleted entries. Besides the performance benefit, |
| using insertdict() in dictresize() is dangerous (SF bug #1456209). |
| Note that no refcounts are changed by this routine; if needed, the caller |
| is responsible for incref'ing `key` and `value`. |
| Neither mp->ma_used nor k->dk_usable are modified by this routine; the caller |
| must set them correctly |
| */ |
| static void |
| insertdict_clean(PyDictObject *mp, PyObject *key, Py_hash_t hash, |
| PyObject *value) |
| { |
| size_t i; |
| size_t perturb; |
| PyDictKeysObject *k = mp->ma_keys; |
| size_t mask = (size_t)DK_SIZE(k)-1; |
| PyDictKeyEntry *ep0 = &k->dk_entries[0]; |
| PyDictKeyEntry *ep; |
| |
| assert(k->dk_lookup != NULL); |
| assert(value != NULL); |
| assert(key != NULL); |
| assert(key != dummy); |
| assert(PyUnicode_CheckExact(key) || k->dk_lookup == lookdict); |
| i = hash & mask; |
| ep = &ep0[i]; |
| for (perturb = hash; ep->me_key != NULL; perturb >>= PERTURB_SHIFT) { |
| i = (i << 2) + i + perturb + 1; |
| ep = &ep0[i & mask]; |
| } |
| assert(ep->me_value == NULL); |
| ep->me_key = key; |
| ep->me_hash = hash; |
| ep->me_value = value; |
| } |
| |
| /* |
| Restructure the table by allocating a new table and reinserting all |
| items again. When entries have been deleted, the new table may |
| actually be smaller than the old one. |
| If a table is split (its keys and hashes are shared, its values are not), |
| then the values are temporarily copied into the table, it is resized as |
| a combined table, then the me_value slots in the old table are NULLed out. |
| After resizing a table is always combined, |
| but can be resplit by make_keys_shared(). |
| */ |
| static int |
| dictresize(PyDictObject *mp, Py_ssize_t minused) |
| { |
| Py_ssize_t newsize; |
| PyDictKeysObject *oldkeys; |
| PyObject **oldvalues; |
| Py_ssize_t i, oldsize; |
| |
| /* Find the smallest table size > minused. */ |
| for (newsize = PyDict_MINSIZE_COMBINED; |
| newsize <= minused && newsize > 0; |
| newsize <<= 1) |
| ; |
| if (newsize <= 0) { |
| PyErr_NoMemory(); |
| return -1; |
| } |
| oldkeys = mp->ma_keys; |
| oldvalues = mp->ma_values; |
| /* Allocate a new table. */ |
| mp->ma_keys = new_keys_object(newsize); |
| if (mp->ma_keys == NULL) { |
| mp->ma_keys = oldkeys; |
| return -1; |
| } |
| if (oldkeys->dk_lookup == lookdict) |
| mp->ma_keys->dk_lookup = lookdict; |
| oldsize = DK_SIZE(oldkeys); |
| mp->ma_values = NULL; |
| /* If empty then nothing to copy so just return */ |
| if (oldsize == 1) { |
| assert(oldkeys == Py_EMPTY_KEYS); |
| DK_DECREF(oldkeys); |
| return 0; |
| } |
| /* Main loop below assumes we can transfer refcount to new keys |
| * and that value is stored in me_value. |
| * Increment ref-counts and copy values here to compensate |
| * This (resizing a split table) should be relatively rare */ |
| if (oldvalues != NULL) { |
| for (i = 0; i < oldsize; i++) { |
| if (oldvalues[i] != NULL) { |
| Py_INCREF(oldkeys->dk_entries[i].me_key); |
| oldkeys->dk_entries[i].me_value = oldvalues[i]; |
| } |
| } |
| } |
| /* Main loop */ |
| for (i = 0; i < oldsize; i++) { |
| PyDictKeyEntry *ep = &oldkeys->dk_entries[i]; |
| if (ep->me_value != NULL) { |
| assert(ep->me_key != dummy); |
| insertdict_clean(mp, ep->me_key, ep->me_hash, ep->me_value); |
| } |
| } |
| mp->ma_keys->dk_usable -= mp->ma_used; |
| if (oldvalues != NULL) { |
| /* NULL out me_value slot in oldkeys, in case it was shared */ |
| for (i = 0; i < oldsize; i++) |
| oldkeys->dk_entries[i].me_value = NULL; |
| assert(oldvalues != empty_values); |
| free_values(oldvalues); |
| DK_DECREF(oldkeys); |
| } |
| else { |
| assert(oldkeys->dk_lookup != lookdict_split); |
| if (oldkeys->dk_lookup != lookdict_unicode_nodummy) { |
| PyDictKeyEntry *ep0 = &oldkeys->dk_entries[0]; |
| for (i = 0; i < oldsize; i++) { |
| if (ep0[i].me_key == dummy) |
| Py_DECREF(dummy); |
| } |
| } |
| assert(oldkeys->dk_refcnt == 1); |
| DK_DEBUG_DECREF PyMem_FREE(oldkeys); |
| } |
| return 0; |
| } |
| |
| /* Returns NULL if unable to split table. |
| * A NULL return does not necessarily indicate an error */ |
| static PyDictKeysObject * |
| make_keys_shared(PyObject *op) |
| { |
| Py_ssize_t i; |
| Py_ssize_t size; |
| PyDictObject *mp = (PyDictObject *)op; |
| |
| if (!PyDict_CheckExact(op)) |
| return NULL; |
| if (!_PyDict_HasSplitTable(mp)) { |
| PyDictKeyEntry *ep0; |
| PyObject **values; |
| assert(mp->ma_keys->dk_refcnt == 1); |
| if (mp->ma_keys->dk_lookup == lookdict) { |
| return NULL; |
| } |
| else if (mp->ma_keys->dk_lookup == lookdict_unicode) { |
| /* Remove dummy keys */ |
| if (dictresize(mp, DK_SIZE(mp->ma_keys))) |
| return NULL; |
| } |
| assert(mp->ma_keys->dk_lookup == lookdict_unicode_nodummy); |
| /* Copy values into a new array */ |
| ep0 = &mp->ma_keys->dk_entries[0]; |
| size = DK_SIZE(mp->ma_keys); |
| values = new_values(size); |
| if (values == NULL) { |
| PyErr_SetString(PyExc_MemoryError, |
| "Not enough memory to allocate new values array"); |
| return NULL; |
| } |
| for (i = 0; i < size; i++) { |
| values[i] = ep0[i].me_value; |
| ep0[i].me_value = NULL; |
| } |
| mp->ma_keys->dk_lookup = lookdict_split; |
| mp->ma_values = values; |
| } |
| DK_INCREF(mp->ma_keys); |
| return mp->ma_keys; |
| } |
| |
| PyObject * |
| _PyDict_NewPresized(Py_ssize_t minused) |
| { |
| Py_ssize_t newsize; |
| PyDictKeysObject *new_keys; |
| for (newsize = PyDict_MINSIZE_COMBINED; |
| newsize <= minused && newsize > 0; |
| newsize <<= 1) |
| ; |
| new_keys = new_keys_object(newsize); |
| if (new_keys == NULL) |
| return NULL; |
| return new_dict(new_keys, NULL); |
| } |
| |
| /* Note that, for historical reasons, PyDict_GetItem() suppresses all errors |
| * that may occur (originally dicts supported only string keys, and exceptions |
| * weren't possible). So, while the original intent was that a NULL return |
| * meant the key wasn't present, in reality it can mean that, or that an error |
| * (suppressed) occurred while computing the key's hash, or that some error |
| * (suppressed) occurred when comparing keys in the dict's internal probe |
| * sequence. A nasty example of the latter is when a Python-coded comparison |
| * function hits a stack-depth error, which can cause this to return NULL |
| * even if the key is present. |
| */ |
| PyObject * |
| PyDict_GetItem(PyObject *op, PyObject *key) |
| { |
| Py_hash_t hash; |
| PyDictObject *mp = (PyDictObject *)op; |
| PyDictKeyEntry *ep; |
| PyThreadState *tstate; |
| PyObject **value_addr; |
| |
| if (!PyDict_Check(op)) |
| return NULL; |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) { |
| PyErr_Clear(); |
| return NULL; |
| } |
| } |
| |
| /* We can arrive here with a NULL tstate during initialization: try |
| running "python -Wi" for an example related to string interning. |
| Let's just hope that no exception occurs then... This must be |
| _PyThreadState_Current and not PyThreadState_GET() because in debug |
| mode, the latter complains if tstate is NULL. */ |
| tstate = (PyThreadState*)_Py_atomic_load_relaxed( |
| &_PyThreadState_Current); |
| if (tstate != NULL && tstate->curexc_type != NULL) { |
| /* preserve the existing exception */ |
| PyObject *err_type, *err_value, *err_tb; |
| PyErr_Fetch(&err_type, &err_value, &err_tb); |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| /* ignore errors */ |
| PyErr_Restore(err_type, err_value, err_tb); |
| if (ep == NULL) |
| return NULL; |
| } |
| else { |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) { |
| PyErr_Clear(); |
| return NULL; |
| } |
| } |
| return *value_addr; |
| } |
| |
| PyObject * |
| _PyDict_GetItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash) |
| { |
| PyDictObject *mp = (PyDictObject *)op; |
| PyDictKeyEntry *ep; |
| PyThreadState *tstate; |
| PyObject **value_addr; |
| |
| if (!PyDict_Check(op)) |
| return NULL; |
| |
| /* We can arrive here with a NULL tstate during initialization: try |
| running "python -Wi" for an example related to string interning. |
| Let's just hope that no exception occurs then... This must be |
| _PyThreadState_Current and not PyThreadState_GET() because in debug |
| mode, the latter complains if tstate is NULL. */ |
| tstate = (PyThreadState*)_Py_atomic_load_relaxed( |
| &_PyThreadState_Current); |
| if (tstate != NULL && tstate->curexc_type != NULL) { |
| /* preserve the existing exception */ |
| PyObject *err_type, *err_value, *err_tb; |
| PyErr_Fetch(&err_type, &err_value, &err_tb); |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| /* ignore errors */ |
| PyErr_Restore(err_type, err_value, err_tb); |
| if (ep == NULL) |
| return NULL; |
| } |
| else { |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) { |
| PyErr_Clear(); |
| return NULL; |
| } |
| } |
| return *value_addr; |
| } |
| |
| /* Variant of PyDict_GetItem() that doesn't suppress exceptions. |
| This returns NULL *with* an exception set if an exception occurred. |
| It returns NULL *without* an exception set if the key wasn't present. |
| */ |
| PyObject * |
| PyDict_GetItemWithError(PyObject *op, PyObject *key) |
| { |
| Py_hash_t hash; |
| PyDictObject*mp = (PyDictObject *)op; |
| PyDictKeyEntry *ep; |
| PyObject **value_addr; |
| |
| if (!PyDict_Check(op)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) { |
| return NULL; |
| } |
| } |
| |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) |
| return NULL; |
| return *value_addr; |
| } |
| |
| PyObject * |
| _PyDict_GetItemIdWithError(PyObject *dp, struct _Py_Identifier *key) |
| { |
| PyObject *kv; |
| kv = _PyUnicode_FromId(key); /* borrowed */ |
| if (kv == NULL) |
| return NULL; |
| return PyDict_GetItemWithError(dp, kv); |
| } |
| |
| /* Fast version of global value lookup. |
| * Lookup in globals, then builtins. |
| */ |
| PyObject * |
| _PyDict_LoadGlobal(PyDictObject *globals, PyDictObject *builtins, PyObject *key) |
| { |
| PyObject *x; |
| if (PyUnicode_CheckExact(key)) { |
| PyObject **value_addr; |
| Py_hash_t hash = ((PyASCIIObject *)key)->hash; |
| if (hash != -1) { |
| PyDictKeyEntry *e; |
| e = globals->ma_keys->dk_lookup(globals, key, hash, &value_addr); |
| if (e == NULL) { |
| return NULL; |
| } |
| x = *value_addr; |
| if (x != NULL) |
| return x; |
| e = builtins->ma_keys->dk_lookup(builtins, key, hash, &value_addr); |
| if (e == NULL) { |
| return NULL; |
| } |
| x = *value_addr; |
| return x; |
| } |
| } |
| x = PyDict_GetItemWithError((PyObject *)globals, key); |
| if (x != NULL) |
| return x; |
| if (PyErr_Occurred()) |
| return NULL; |
| return PyDict_GetItemWithError((PyObject *)builtins, key); |
| } |
| |
| /* CAUTION: PyDict_SetItem() must guarantee that it won't resize the |
| * dictionary if it's merely replacing the value for an existing key. |
| * This means that it's safe to loop over a dictionary with PyDict_Next() |
| * and occasionally replace a value -- but you can't insert new keys or |
| * remove them. |
| */ |
| int |
| PyDict_SetItem(PyObject *op, PyObject *key, PyObject *value) |
| { |
| PyDictObject *mp; |
| Py_hash_t hash; |
| if (!PyDict_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| assert(key); |
| assert(value); |
| mp = (PyDictObject *)op; |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) |
| { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return -1; |
| } |
| |
| /* insertdict() handles any resizing that might be necessary */ |
| return insertdict(mp, key, hash, value); |
| } |
| |
| int |
| _PyDict_SetItem_KnownHash(PyObject *op, PyObject *key, PyObject *value, |
| Py_hash_t hash) |
| { |
| PyDictObject *mp; |
| |
| if (!PyDict_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| assert(key); |
| assert(value); |
| mp = (PyDictObject *)op; |
| |
| /* insertdict() handles any resizing that might be necessary */ |
| return insertdict(mp, key, hash, value); |
| } |
| |
| int |
| PyDict_DelItem(PyObject *op, PyObject *key) |
| { |
| PyDictObject *mp; |
| Py_hash_t hash; |
| PyDictKeyEntry *ep; |
| PyObject *old_key, *old_value; |
| PyObject **value_addr; |
| |
| if (!PyDict_Check(op)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| assert(key); |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return -1; |
| } |
| mp = (PyDictObject *)op; |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) |
| return -1; |
| if (*value_addr == NULL) { |
| _PyErr_SetKeyError(key); |
| return -1; |
| } |
| old_value = *value_addr; |
| *value_addr = NULL; |
| mp->ma_used--; |
| if (!_PyDict_HasSplitTable(mp)) { |
| ENSURE_ALLOWS_DELETIONS(mp); |
| old_key = ep->me_key; |
| Py_INCREF(dummy); |
| ep->me_key = dummy; |
| Py_DECREF(old_key); |
| } |
| Py_DECREF(old_value); |
| return 0; |
| } |
| |
| void |
| PyDict_Clear(PyObject *op) |
| { |
| PyDictObject *mp; |
| PyDictKeysObject *oldkeys; |
| PyObject **oldvalues; |
| Py_ssize_t i, n; |
| |
| if (!PyDict_Check(op)) |
| return; |
| mp = ((PyDictObject *)op); |
| oldkeys = mp->ma_keys; |
| oldvalues = mp->ma_values; |
| if (oldvalues == empty_values) |
| return; |
| /* Empty the dict... */ |
| DK_INCREF(Py_EMPTY_KEYS); |
| mp->ma_keys = Py_EMPTY_KEYS; |
| mp->ma_values = empty_values; |
| mp->ma_used = 0; |
| /* ...then clear the keys and values */ |
| if (oldvalues != NULL) { |
| n = DK_SIZE(oldkeys); |
| for (i = 0; i < n; i++) |
| Py_CLEAR(oldvalues[i]); |
| free_values(oldvalues); |
| DK_DECREF(oldkeys); |
| } |
| else { |
| assert(oldkeys->dk_refcnt == 1); |
| DK_DECREF(oldkeys); |
| } |
| } |
| |
| /* Returns -1 if no more items (or op is not a dict), |
| * index of item otherwise. Stores value in pvalue |
| */ |
| Py_LOCAL_INLINE(Py_ssize_t) |
| dict_next(PyObject *op, Py_ssize_t i, PyObject **pvalue) |
| { |
| Py_ssize_t mask, offset; |
| PyDictObject *mp; |
| PyObject **value_ptr; |
| |
| |
| if (!PyDict_Check(op)) |
| return -1; |
| mp = (PyDictObject *)op; |
| if (i < 0) |
| return -1; |
| if (mp->ma_values) { |
| value_ptr = &mp->ma_values[i]; |
| offset = sizeof(PyObject *); |
| } |
| else { |
| value_ptr = &mp->ma_keys->dk_entries[i].me_value; |
| offset = sizeof(PyDictKeyEntry); |
| } |
| mask = DK_MASK(mp->ma_keys); |
| while (i <= mask && *value_ptr == NULL) { |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); |
| i++; |
| } |
| if (i > mask) |
| return -1; |
| if (pvalue) |
| *pvalue = *value_ptr; |
| return i; |
| } |
| |
| /* |
| * Iterate over a dict. Use like so: |
| * |
| * Py_ssize_t i; |
| * PyObject *key, *value; |
| * i = 0; # important! i should not otherwise be changed by you |
| * while (PyDict_Next(yourdict, &i, &key, &value)) { |
| * Refer to borrowed references in key and value. |
| * } |
| * |
| * CAUTION: In general, it isn't safe to use PyDict_Next in a loop that |
| * mutates the dict. One exception: it is safe if the loop merely changes |
| * the values associated with the keys (but doesn't insert new keys or |
| * delete keys), via PyDict_SetItem(). |
| */ |
| int |
| PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue) |
| { |
| PyDictObject *mp; |
| Py_ssize_t i = dict_next(op, *ppos, pvalue); |
| if (i < 0) |
| return 0; |
| mp = (PyDictObject *)op; |
| *ppos = i+1; |
| if (pkey) |
| *pkey = mp->ma_keys->dk_entries[i].me_key; |
| return 1; |
| } |
| |
| /* Internal version of PyDict_Next that returns a hash value in addition |
| * to the key and value. |
| */ |
| int |
| _PyDict_Next(PyObject *op, Py_ssize_t *ppos, PyObject **pkey, |
| PyObject **pvalue, Py_hash_t *phash) |
| { |
| PyDictObject *mp; |
| Py_ssize_t i = dict_next(op, *ppos, pvalue); |
| if (i < 0) |
| return 0; |
| mp = (PyDictObject *)op; |
| *ppos = i+1; |
| *phash = mp->ma_keys->dk_entries[i].me_hash; |
| if (pkey) |
| *pkey = mp->ma_keys->dk_entries[i].me_key; |
| return 1; |
| } |
| |
| /* Internal version of dict.pop(). */ |
| PyObject * |
| _PyDict_Pop(PyDictObject *mp, PyObject *key, PyObject *deflt) |
| { |
| Py_hash_t hash; |
| PyObject *old_value, *old_key; |
| PyDictKeyEntry *ep; |
| PyObject **value_addr; |
| |
| if (mp->ma_used == 0) { |
| if (deflt) { |
| Py_INCREF(deflt); |
| return deflt; |
| } |
| _PyErr_SetKeyError(key); |
| return NULL; |
| } |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) |
| return NULL; |
| old_value = *value_addr; |
| if (old_value == NULL) { |
| if (deflt) { |
| Py_INCREF(deflt); |
| return deflt; |
| } |
| _PyErr_SetKeyError(key); |
| return NULL; |
| } |
| *value_addr = NULL; |
| mp->ma_used--; |
| if (!_PyDict_HasSplitTable(mp)) { |
| ENSURE_ALLOWS_DELETIONS(mp); |
| old_key = ep->me_key; |
| Py_INCREF(dummy); |
| ep->me_key = dummy; |
| Py_DECREF(old_key); |
| } |
| return old_value; |
| } |
| |
| /* Internal version of dict.from_keys(). It is subclass-friendly. */ |
| PyObject * |
| _PyDict_FromKeys(PyObject *cls, PyObject *iterable, PyObject *value) |
| { |
| PyObject *it; /* iter(iterable) */ |
| PyObject *key; |
| PyObject *d; |
| int status; |
| |
| d = PyObject_CallObject(cls, NULL); |
| if (d == NULL) |
| return NULL; |
| |
| if (PyDict_CheckExact(d) && ((PyDictObject *)d)->ma_used == 0) { |
| if (PyDict_CheckExact(iterable)) { |
| PyDictObject *mp = (PyDictObject *)d; |
| PyObject *oldvalue; |
| Py_ssize_t pos = 0; |
| PyObject *key; |
| Py_hash_t hash; |
| |
| if (dictresize(mp, Py_SIZE(iterable))) { |
| Py_DECREF(d); |
| return NULL; |
| } |
| |
| while (_PyDict_Next(iterable, &pos, &key, &oldvalue, &hash)) { |
| if (insertdict(mp, key, hash, value)) { |
| Py_DECREF(d); |
| return NULL; |
| } |
| } |
| return d; |
| } |
| if (PyAnySet_CheckExact(iterable)) { |
| PyDictObject *mp = (PyDictObject *)d; |
| Py_ssize_t pos = 0; |
| PyObject *key; |
| Py_hash_t hash; |
| |
| if (dictresize(mp, PySet_GET_SIZE(iterable))) { |
| Py_DECREF(d); |
| return NULL; |
| } |
| |
| while (_PySet_NextEntry(iterable, &pos, &key, &hash)) { |
| if (insertdict(mp, key, hash, value)) { |
| Py_DECREF(d); |
| return NULL; |
| } |
| } |
| return d; |
| } |
| } |
| |
| it = PyObject_GetIter(iterable); |
| if (it == NULL){ |
| Py_DECREF(d); |
| return NULL; |
| } |
| |
| if (PyDict_CheckExact(d)) { |
| while ((key = PyIter_Next(it)) != NULL) { |
| status = PyDict_SetItem(d, key, value); |
| Py_DECREF(key); |
| if (status < 0) |
| goto Fail; |
| } |
| } else { |
| while ((key = PyIter_Next(it)) != NULL) { |
| status = PyObject_SetItem(d, key, value); |
| Py_DECREF(key); |
| if (status < 0) |
| goto Fail; |
| } |
| } |
| |
| if (PyErr_Occurred()) |
| goto Fail; |
| Py_DECREF(it); |
| return d; |
| |
| Fail: |
| Py_DECREF(it); |
| Py_DECREF(d); |
| return NULL; |
| } |
| |
| /* Methods */ |
| |
| static void |
| dict_dealloc(PyDictObject *mp) |
| { |
| PyObject **values = mp->ma_values; |
| PyDictKeysObject *keys = mp->ma_keys; |
| Py_ssize_t i, n; |
| PyObject_GC_UnTrack(mp); |
| Py_TRASHCAN_SAFE_BEGIN(mp) |
| if (values != NULL) { |
| if (values != empty_values) { |
| for (i = 0, n = DK_SIZE(mp->ma_keys); i < n; i++) { |
| Py_XDECREF(values[i]); |
| } |
| free_values(values); |
| } |
| DK_DECREF(keys); |
| } |
| else if (keys != NULL) { |
| assert(keys->dk_refcnt == 1); |
| DK_DECREF(keys); |
| } |
| if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type) |
| free_list[numfree++] = mp; |
| else |
| Py_TYPE(mp)->tp_free((PyObject *)mp); |
| Py_TRASHCAN_SAFE_END(mp) |
| } |
| |
| |
| static PyObject * |
| dict_repr(PyDictObject *mp) |
| { |
| Py_ssize_t i; |
| PyObject *key = NULL, *value = NULL; |
| _PyUnicodeWriter writer; |
| int first; |
| |
| i = Py_ReprEnter((PyObject *)mp); |
| if (i != 0) { |
| return i > 0 ? PyUnicode_FromString("{...}") : NULL; |
| } |
| |
| if (mp->ma_used == 0) { |
| Py_ReprLeave((PyObject *)mp); |
| return PyUnicode_FromString("{}"); |
| } |
| |
| _PyUnicodeWriter_Init(&writer); |
| writer.overallocate = 1; |
| /* "{" + "1: 2" + ", 3: 4" * (len - 1) + "}" */ |
| writer.min_length = 1 + 4 + (2 + 4) * (mp->ma_used - 1) + 1; |
| |
| if (_PyUnicodeWriter_WriteChar(&writer, '{') < 0) |
| goto error; |
| |
| /* Do repr() on each key+value pair, and insert ": " between them. |
| Note that repr may mutate the dict. */ |
| i = 0; |
| first = 1; |
| while (PyDict_Next((PyObject *)mp, &i, &key, &value)) { |
| PyObject *s; |
| int res; |
| |
| /* Prevent repr from deleting key or value during key format. */ |
| Py_INCREF(key); |
| Py_INCREF(value); |
| |
| if (!first) { |
| if (_PyUnicodeWriter_WriteASCIIString(&writer, ", ", 2) < 0) |
| goto error; |
| } |
| first = 0; |
| |
| s = PyObject_Repr(key); |
| if (s == NULL) |
| goto error; |
| res = _PyUnicodeWriter_WriteStr(&writer, s); |
| Py_DECREF(s); |
| if (res < 0) |
| goto error; |
| |
| if (_PyUnicodeWriter_WriteASCIIString(&writer, ": ", 2) < 0) |
| goto error; |
| |
| s = PyObject_Repr(value); |
| if (s == NULL) |
| goto error; |
| res = _PyUnicodeWriter_WriteStr(&writer, s); |
| Py_DECREF(s); |
| if (res < 0) |
| goto error; |
| |
| Py_CLEAR(key); |
| Py_CLEAR(value); |
| } |
| |
| writer.overallocate = 0; |
| if (_PyUnicodeWriter_WriteChar(&writer, '}') < 0) |
| goto error; |
| |
| Py_ReprLeave((PyObject *)mp); |
| |
| return _PyUnicodeWriter_Finish(&writer); |
| |
| error: |
| Py_ReprLeave((PyObject *)mp); |
| _PyUnicodeWriter_Dealloc(&writer); |
| Py_XDECREF(key); |
| Py_XDECREF(value); |
| return NULL; |
| } |
| |
| static Py_ssize_t |
| dict_length(PyDictObject *mp) |
| { |
| return mp->ma_used; |
| } |
| |
| static PyObject * |
| dict_subscript(PyDictObject *mp, PyObject *key) |
| { |
| PyObject *v; |
| Py_hash_t hash; |
| PyDictKeyEntry *ep; |
| PyObject **value_addr; |
| |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) |
| return NULL; |
| v = *value_addr; |
| if (v == NULL) { |
| if (!PyDict_CheckExact(mp)) { |
| /* Look up __missing__ method if we're a subclass. */ |
| PyObject *missing, *res; |
| _Py_IDENTIFIER(__missing__); |
| missing = _PyObject_LookupSpecial((PyObject *)mp, &PyId___missing__); |
| if (missing != NULL) { |
| res = PyObject_CallFunctionObjArgs(missing, |
| key, NULL); |
| Py_DECREF(missing); |
| return res; |
| } |
| else if (PyErr_Occurred()) |
| return NULL; |
| } |
| _PyErr_SetKeyError(key); |
| return NULL; |
| } |
| else |
| Py_INCREF(v); |
| return v; |
| } |
| |
| static int |
| dict_ass_sub(PyDictObject *mp, PyObject *v, PyObject *w) |
| { |
| if (w == NULL) |
| return PyDict_DelItem((PyObject *)mp, v); |
| else |
| return PyDict_SetItem((PyObject *)mp, v, w); |
| } |
| |
| static PyMappingMethods dict_as_mapping = { |
| (lenfunc)dict_length, /*mp_length*/ |
| (binaryfunc)dict_subscript, /*mp_subscript*/ |
| (objobjargproc)dict_ass_sub, /*mp_ass_subscript*/ |
| }; |
| |
| static PyObject * |
| dict_keys(PyDictObject *mp) |
| { |
| PyObject *v; |
| Py_ssize_t i, j; |
| PyDictKeyEntry *ep; |
| Py_ssize_t size, n, offset; |
| PyObject **value_ptr; |
| |
| again: |
| n = mp->ma_used; |
| v = PyList_New(n); |
| if (v == NULL) |
| return NULL; |
| if (n != mp->ma_used) { |
| /* Durnit. The allocations caused the dict to resize. |
| * Just start over, this shouldn't normally happen. |
| */ |
| Py_DECREF(v); |
| goto again; |
| } |
| ep = &mp->ma_keys->dk_entries[0]; |
| size = DK_SIZE(mp->ma_keys); |
| if (mp->ma_values) { |
| value_ptr = mp->ma_values; |
| offset = sizeof(PyObject *); |
| } |
| else { |
| value_ptr = &ep[0].me_value; |
| offset = sizeof(PyDictKeyEntry); |
| } |
| for (i = 0, j = 0; i < size; i++) { |
| if (*value_ptr != NULL) { |
| PyObject *key = ep[i].me_key; |
| Py_INCREF(key); |
| PyList_SET_ITEM(v, j, key); |
| j++; |
| } |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); |
| } |
| assert(j == n); |
| return v; |
| } |
| |
| static PyObject * |
| dict_values(PyDictObject *mp) |
| { |
| PyObject *v; |
| Py_ssize_t i, j; |
| Py_ssize_t size, n, offset; |
| PyObject **value_ptr; |
| |
| again: |
| n = mp->ma_used; |
| v = PyList_New(n); |
| if (v == NULL) |
| return NULL; |
| if (n != mp->ma_used) { |
| /* Durnit. The allocations caused the dict to resize. |
| * Just start over, this shouldn't normally happen. |
| */ |
| Py_DECREF(v); |
| goto again; |
| } |
| size = DK_SIZE(mp->ma_keys); |
| if (mp->ma_values) { |
| value_ptr = mp->ma_values; |
| offset = sizeof(PyObject *); |
| } |
| else { |
| value_ptr = &mp->ma_keys->dk_entries[0].me_value; |
| offset = sizeof(PyDictKeyEntry); |
| } |
| for (i = 0, j = 0; i < size; i++) { |
| PyObject *value = *value_ptr; |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); |
| if (value != NULL) { |
| Py_INCREF(value); |
| PyList_SET_ITEM(v, j, value); |
| j++; |
| } |
| } |
| assert(j == n); |
| return v; |
| } |
| |
| static PyObject * |
| dict_items(PyDictObject *mp) |
| { |
| PyObject *v; |
| Py_ssize_t i, j, n; |
| Py_ssize_t size, offset; |
| PyObject *item, *key; |
| PyDictKeyEntry *ep; |
| PyObject **value_ptr; |
| |
| /* Preallocate the list of tuples, to avoid allocations during |
| * the loop over the items, which could trigger GC, which |
| * could resize the dict. :-( |
| */ |
| again: |
| n = mp->ma_used; |
| v = PyList_New(n); |
| if (v == NULL) |
| return NULL; |
| for (i = 0; i < n; i++) { |
| item = PyTuple_New(2); |
| if (item == NULL) { |
| Py_DECREF(v); |
| return NULL; |
| } |
| PyList_SET_ITEM(v, i, item); |
| } |
| if (n != mp->ma_used) { |
| /* Durnit. The allocations caused the dict to resize. |
| * Just start over, this shouldn't normally happen. |
| */ |
| Py_DECREF(v); |
| goto again; |
| } |
| /* Nothing we do below makes any function calls. */ |
| ep = mp->ma_keys->dk_entries; |
| size = DK_SIZE(mp->ma_keys); |
| if (mp->ma_values) { |
| value_ptr = mp->ma_values; |
| offset = sizeof(PyObject *); |
| } |
| else { |
| value_ptr = &ep[0].me_value; |
| offset = sizeof(PyDictKeyEntry); |
| } |
| for (i = 0, j = 0; i < size; i++) { |
| PyObject *value = *value_ptr; |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); |
| if (value != NULL) { |
| key = ep[i].me_key; |
| item = PyList_GET_ITEM(v, j); |
| Py_INCREF(key); |
| PyTuple_SET_ITEM(item, 0, key); |
| Py_INCREF(value); |
| PyTuple_SET_ITEM(item, 1, value); |
| j++; |
| } |
| } |
| assert(j == n); |
| return v; |
| } |
| |
| /*[clinic input] |
| @classmethod |
| dict.fromkeys |
| iterable: object |
| value: object=None |
| / |
| |
| Returns a new dict with keys from iterable and values equal to value. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| dict_fromkeys_impl(PyTypeObject *type, PyObject *iterable, PyObject *value) |
| /*[clinic end generated code: output=8fb98e4b10384999 input=b85a667f9bf4669d]*/ |
| { |
| return _PyDict_FromKeys((PyObject *)type, iterable, value); |
| } |
| |
| static int |
| dict_update_common(PyObject *self, PyObject *args, PyObject *kwds, char *methname) |
| { |
| PyObject *arg = NULL; |
| int result = 0; |
| |
| if (!PyArg_UnpackTuple(args, methname, 0, 1, &arg)) |
| result = -1; |
| |
| else if (arg != NULL) { |
| _Py_IDENTIFIER(keys); |
| if (_PyObject_HasAttrId(arg, &PyId_keys)) |
| result = PyDict_Merge(self, arg, 1); |
| else |
| result = PyDict_MergeFromSeq2(self, arg, 1); |
| } |
| if (result == 0 && kwds != NULL) { |
| if (PyArg_ValidateKeywordArguments(kwds)) |
| result = PyDict_Merge(self, kwds, 1); |
| else |
| result = -1; |
| } |
| return result; |
| } |
| |
| static PyObject * |
| dict_update(PyObject *self, PyObject *args, PyObject *kwds) |
| { |
| if (dict_update_common(self, args, kwds, "update") != -1) |
| Py_RETURN_NONE; |
| return NULL; |
| } |
| |
| /* Update unconditionally replaces existing items. |
| Merge has a 3rd argument 'override'; if set, it acts like Update, |
| otherwise it leaves existing items unchanged. |
| |
| PyDict_{Update,Merge} update/merge from a mapping object. |
| |
| PyDict_MergeFromSeq2 updates/merges from any iterable object |
| producing iterable objects of length 2. |
| */ |
| |
| int |
| PyDict_MergeFromSeq2(PyObject *d, PyObject *seq2, int override) |
| { |
| PyObject *it; /* iter(seq2) */ |
| Py_ssize_t i; /* index into seq2 of current element */ |
| PyObject *item; /* seq2[i] */ |
| PyObject *fast; /* item as a 2-tuple or 2-list */ |
| |
| assert(d != NULL); |
| assert(PyDict_Check(d)); |
| assert(seq2 != NULL); |
| |
| it = PyObject_GetIter(seq2); |
| if (it == NULL) |
| return -1; |
| |
| for (i = 0; ; ++i) { |
| PyObject *key, *value; |
| Py_ssize_t n; |
| |
| fast = NULL; |
| item = PyIter_Next(it); |
| if (item == NULL) { |
| if (PyErr_Occurred()) |
| goto Fail; |
| break; |
| } |
| |
| /* Convert item to sequence, and verify length 2. */ |
| fast = PySequence_Fast(item, ""); |
| if (fast == NULL) { |
| if (PyErr_ExceptionMatches(PyExc_TypeError)) |
| PyErr_Format(PyExc_TypeError, |
| "cannot convert dictionary update " |
| "sequence element #%zd to a sequence", |
| i); |
| goto Fail; |
| } |
| n = PySequence_Fast_GET_SIZE(fast); |
| if (n != 2) { |
| PyErr_Format(PyExc_ValueError, |
| "dictionary update sequence element #%zd " |
| "has length %zd; 2 is required", |
| i, n); |
| goto Fail; |
| } |
| |
| /* Update/merge with this (key, value) pair. */ |
| key = PySequence_Fast_GET_ITEM(fast, 0); |
| value = PySequence_Fast_GET_ITEM(fast, 1); |
| if (override || PyDict_GetItem(d, key) == NULL) { |
| int status = PyDict_SetItem(d, key, value); |
| if (status < 0) |
| goto Fail; |
| } |
| Py_DECREF(fast); |
| Py_DECREF(item); |
| } |
| |
| i = 0; |
| goto Return; |
| Fail: |
| Py_XDECREF(item); |
| Py_XDECREF(fast); |
| i = -1; |
| Return: |
| Py_DECREF(it); |
| return Py_SAFE_DOWNCAST(i, Py_ssize_t, int); |
| } |
| |
| int |
| PyDict_Update(PyObject *a, PyObject *b) |
| { |
| return PyDict_Merge(a, b, 1); |
| } |
| |
| int |
| PyDict_Merge(PyObject *a, PyObject *b, int override) |
| { |
| PyDictObject *mp, *other; |
| Py_ssize_t i, n; |
| PyDictKeyEntry *entry; |
| |
| /* We accept for the argument either a concrete dictionary object, |
| * or an abstract "mapping" object. For the former, we can do |
| * things quite efficiently. For the latter, we only require that |
| * PyMapping_Keys() and PyObject_GetItem() be supported. |
| */ |
| if (a == NULL || !PyDict_Check(a) || b == NULL) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| mp = (PyDictObject*)a; |
| if (PyDict_Check(b)) { |
| other = (PyDictObject*)b; |
| if (other == mp || other->ma_used == 0) |
| /* a.update(a) or a.update({}); nothing to do */ |
| return 0; |
| if (mp->ma_used == 0) |
| /* Since the target dict is empty, PyDict_GetItem() |
| * always returns NULL. Setting override to 1 |
| * skips the unnecessary test. |
| */ |
| override = 1; |
| /* Do one big resize at the start, rather than |
| * incrementally resizing as we insert new items. Expect |
| * that there will be no (or few) overlapping keys. |
| */ |
| if (mp->ma_keys->dk_usable * 3 < other->ma_used * 2) |
| if (dictresize(mp, (mp->ma_used + other->ma_used)*2) != 0) |
| return -1; |
| for (i = 0, n = DK_SIZE(other->ma_keys); i < n; i++) { |
| PyObject *value; |
| entry = &other->ma_keys->dk_entries[i]; |
| if (other->ma_values) |
| value = other->ma_values[i]; |
| else |
| value = entry->me_value; |
| |
| if (value != NULL && |
| (override || |
| PyDict_GetItem(a, entry->me_key) == NULL)) { |
| if (insertdict(mp, entry->me_key, |
| entry->me_hash, |
| value) != 0) |
| return -1; |
| } |
| } |
| } |
| else { |
| /* Do it the generic, slower way */ |
| PyObject *keys = PyMapping_Keys(b); |
| PyObject *iter; |
| PyObject *key, *value; |
| int status; |
| |
| if (keys == NULL) |
| /* Docstring says this is equivalent to E.keys() so |
| * if E doesn't have a .keys() method we want |
| * AttributeError to percolate up. Might as well |
| * do the same for any other error. |
| */ |
| return -1; |
| |
| iter = PyObject_GetIter(keys); |
| Py_DECREF(keys); |
| if (iter == NULL) |
| return -1; |
| |
| for (key = PyIter_Next(iter); key; key = PyIter_Next(iter)) { |
| if (!override && PyDict_GetItem(a, key) != NULL) { |
| Py_DECREF(key); |
| continue; |
| } |
| value = PyObject_GetItem(b, key); |
| if (value == NULL) { |
| Py_DECREF(iter); |
| Py_DECREF(key); |
| return -1; |
| } |
| status = PyDict_SetItem(a, key, value); |
| Py_DECREF(key); |
| Py_DECREF(value); |
| if (status < 0) { |
| Py_DECREF(iter); |
| return -1; |
| } |
| } |
| Py_DECREF(iter); |
| if (PyErr_Occurred()) |
| /* Iterator completed, via error */ |
| return -1; |
| } |
| return 0; |
| } |
| |
| static PyObject * |
| dict_copy(PyDictObject *mp) |
| { |
| return PyDict_Copy((PyObject*)mp); |
| } |
| |
| PyObject * |
| PyDict_Copy(PyObject *o) |
| { |
| PyObject *copy; |
| PyDictObject *mp; |
| Py_ssize_t i, n; |
| |
| if (o == NULL || !PyDict_Check(o)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| mp = (PyDictObject *)o; |
| if (_PyDict_HasSplitTable(mp)) { |
| PyDictObject *split_copy; |
| PyObject **newvalues = new_values(DK_SIZE(mp->ma_keys)); |
| if (newvalues == NULL) |
| return PyErr_NoMemory(); |
| split_copy = PyObject_GC_New(PyDictObject, &PyDict_Type); |
| if (split_copy == NULL) { |
| free_values(newvalues); |
| return NULL; |
| } |
| split_copy->ma_values = newvalues; |
| split_copy->ma_keys = mp->ma_keys; |
| split_copy->ma_used = mp->ma_used; |
| DK_INCREF(mp->ma_keys); |
| for (i = 0, n = DK_SIZE(mp->ma_keys); i < n; i++) { |
| PyObject *value = mp->ma_values[i]; |
| Py_XINCREF(value); |
| split_copy->ma_values[i] = value; |
| } |
| if (_PyObject_GC_IS_TRACKED(mp)) |
| _PyObject_GC_TRACK(split_copy); |
| return (PyObject *)split_copy; |
| } |
| copy = PyDict_New(); |
| if (copy == NULL) |
| return NULL; |
| if (PyDict_Merge(copy, o, 1) == 0) |
| return copy; |
| Py_DECREF(copy); |
| return NULL; |
| } |
| |
| Py_ssize_t |
| PyDict_Size(PyObject *mp) |
| { |
| if (mp == NULL || !PyDict_Check(mp)) { |
| PyErr_BadInternalCall(); |
| return -1; |
| } |
| return ((PyDictObject *)mp)->ma_used; |
| } |
| |
| PyObject * |
| PyDict_Keys(PyObject *mp) |
| { |
| if (mp == NULL || !PyDict_Check(mp)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return dict_keys((PyDictObject *)mp); |
| } |
| |
| PyObject * |
| PyDict_Values(PyObject *mp) |
| { |
| if (mp == NULL || !PyDict_Check(mp)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return dict_values((PyDictObject *)mp); |
| } |
| |
| PyObject * |
| PyDict_Items(PyObject *mp) |
| { |
| if (mp == NULL || !PyDict_Check(mp)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| return dict_items((PyDictObject *)mp); |
| } |
| |
| /* Return 1 if dicts equal, 0 if not, -1 if error. |
| * Gets out as soon as any difference is detected. |
| * Uses only Py_EQ comparison. |
| */ |
| static int |
| dict_equal(PyDictObject *a, PyDictObject *b) |
| { |
| Py_ssize_t i; |
| |
| if (a->ma_used != b->ma_used) |
| /* can't be equal if # of entries differ */ |
| return 0; |
| /* Same # of entries -- check all of 'em. Exit early on any diff. */ |
| for (i = 0; i < DK_SIZE(a->ma_keys); i++) { |
| PyDictKeyEntry *ep = &a->ma_keys->dk_entries[i]; |
| PyObject *aval; |
| if (a->ma_values) |
| aval = a->ma_values[i]; |
| else |
| aval = ep->me_value; |
| if (aval != NULL) { |
| int cmp; |
| PyObject *bval; |
| PyObject **vaddr; |
| PyObject *key = ep->me_key; |
| /* temporarily bump aval's refcount to ensure it stays |
| alive until we're done with it */ |
| Py_INCREF(aval); |
| /* ditto for key */ |
| Py_INCREF(key); |
| /* reuse the known hash value */ |
| if ((b->ma_keys->dk_lookup)(b, key, ep->me_hash, &vaddr) == NULL) |
| bval = NULL; |
| else |
| bval = *vaddr; |
| Py_DECREF(key); |
| if (bval == NULL) { |
| Py_DECREF(aval); |
| if (PyErr_Occurred()) |
| return -1; |
| return 0; |
| } |
| cmp = PyObject_RichCompareBool(aval, bval, Py_EQ); |
| Py_DECREF(aval); |
| if (cmp <= 0) /* error or not equal */ |
| return cmp; |
| } |
| } |
| return 1; |
| } |
| |
| static PyObject * |
| dict_richcompare(PyObject *v, PyObject *w, int op) |
| { |
| int cmp; |
| PyObject *res; |
| |
| if (!PyDict_Check(v) || !PyDict_Check(w)) { |
| res = Py_NotImplemented; |
| } |
| else if (op == Py_EQ || op == Py_NE) { |
| cmp = dict_equal((PyDictObject *)v, (PyDictObject *)w); |
| if (cmp < 0) |
| return NULL; |
| res = (cmp == (op == Py_EQ)) ? Py_True : Py_False; |
| } |
| else |
| res = Py_NotImplemented; |
| Py_INCREF(res); |
| return res; |
| } |
| |
| /*[clinic input] |
| |
| @coexist |
| dict.__contains__ |
| |
| key: object |
| / |
| |
| True if D has a key k, else False. |
| [clinic start generated code]*/ |
| |
| static PyObject * |
| dict___contains__(PyDictObject *self, PyObject *key) |
| /*[clinic end generated code: output=a3d03db709ed6e6b input=b852b2a19b51ab24]*/ |
| { |
| register PyDictObject *mp = self; |
| Py_hash_t hash; |
| PyDictKeyEntry *ep; |
| PyObject **value_addr; |
| |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) |
| return NULL; |
| return PyBool_FromLong(*value_addr != NULL); |
| } |
| |
| static PyObject * |
| dict_get(PyDictObject *mp, PyObject *args) |
| { |
| PyObject *key; |
| PyObject *failobj = Py_None; |
| PyObject *val = NULL; |
| Py_hash_t hash; |
| PyDictKeyEntry *ep; |
| PyObject **value_addr; |
| |
| if (!PyArg_UnpackTuple(args, "get", 1, 2, &key, &failobj)) |
| return NULL; |
| |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) |
| return NULL; |
| val = *value_addr; |
| if (val == NULL) |
| val = failobj; |
| Py_INCREF(val); |
| return val; |
| } |
| |
| PyObject * |
| PyDict_SetDefault(PyObject *d, PyObject *key, PyObject *defaultobj) |
| { |
| PyDictObject *mp = (PyDictObject *)d; |
| PyObject *val = NULL; |
| Py_hash_t hash; |
| PyDictKeyEntry *ep; |
| PyObject **value_addr; |
| |
| if (!PyDict_Check(d)) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return NULL; |
| } |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| if (ep == NULL) |
| return NULL; |
| val = *value_addr; |
| if (val == NULL) { |
| if (mp->ma_keys->dk_usable <= 0) { |
| /* Need to resize. */ |
| if (insertion_resize(mp) < 0) |
| return NULL; |
| ep = find_empty_slot(mp, key, hash, &value_addr); |
| } |
| Py_INCREF(defaultobj); |
| Py_INCREF(key); |
| MAINTAIN_TRACKING(mp, key, defaultobj); |
| ep->me_key = key; |
| ep->me_hash = hash; |
| *value_addr = defaultobj; |
| val = defaultobj; |
| mp->ma_keys->dk_usable--; |
| mp->ma_used++; |
| } |
| return val; |
| } |
| |
| static PyObject * |
| dict_setdefault(PyDictObject *mp, PyObject *args) |
| { |
| PyObject *key, *val; |
| PyObject *defaultobj = Py_None; |
| |
| if (!PyArg_UnpackTuple(args, "setdefault", 1, 2, &key, &defaultobj)) |
| return NULL; |
| |
| val = PyDict_SetDefault((PyObject *)mp, key, defaultobj); |
| Py_XINCREF(val); |
| return val; |
| } |
| |
| static PyObject * |
| dict_clear(PyDictObject *mp) |
| { |
| PyDict_Clear((PyObject *)mp); |
| Py_RETURN_NONE; |
| } |
| |
| static PyObject * |
| dict_pop(PyDictObject *mp, PyObject *args) |
| { |
| PyObject *key, *deflt = NULL; |
| |
| if(!PyArg_UnpackTuple(args, "pop", 1, 2, &key, &deflt)) |
| return NULL; |
| |
| return _PyDict_Pop(mp, key, deflt); |
| } |
| |
| static PyObject * |
| dict_popitem(PyDictObject *mp) |
| { |
| Py_hash_t i = 0; |
| PyDictKeyEntry *ep; |
| PyObject *res; |
| |
| |
| /* Allocate the result tuple before checking the size. Believe it |
| * or not, this allocation could trigger a garbage collection which |
| * could empty the dict, so if we checked the size first and that |
| * happened, the result would be an infinite loop (searching for an |
| * entry that no longer exists). Note that the usual popitem() |
| * idiom is "while d: k, v = d.popitem()". so needing to throw the |
| * tuple away if the dict *is* empty isn't a significant |
| * inefficiency -- possible, but unlikely in practice. |
| */ |
| res = PyTuple_New(2); |
| if (res == NULL) |
| return NULL; |
| if (mp->ma_used == 0) { |
| Py_DECREF(res); |
| PyErr_SetString(PyExc_KeyError, |
| "popitem(): dictionary is empty"); |
| return NULL; |
| } |
| /* Convert split table to combined table */ |
| if (mp->ma_keys->dk_lookup == lookdict_split) { |
| if (dictresize(mp, DK_SIZE(mp->ma_keys))) { |
| Py_DECREF(res); |
| return NULL; |
| } |
| } |
| ENSURE_ALLOWS_DELETIONS(mp); |
| /* Set ep to "the first" dict entry with a value. We abuse the hash |
| * field of slot 0 to hold a search finger: |
| * If slot 0 has a value, use slot 0. |
| * Else slot 0 is being used to hold a search finger, |
| * and we use its hash value as the first index to look. |
| */ |
| ep = &mp->ma_keys->dk_entries[0]; |
| if (ep->me_value == NULL) { |
| Py_ssize_t mask = DK_MASK(mp->ma_keys); |
| i = ep->me_hash; |
| /* The hash field may be a real hash value, or it may be a |
| * legit search finger, or it may be a once-legit search |
| * finger that's out of bounds now because it wrapped around |
| * or the table shrunk -- simply make sure it's in bounds now. |
| */ |
| if (i > mask || i < 1) |
| i = 1; /* skip slot 0 */ |
| while ((ep = &mp->ma_keys->dk_entries[i])->me_value == NULL) { |
| i++; |
| if (i > mask) |
| i = 1; |
| } |
| } |
| PyTuple_SET_ITEM(res, 0, ep->me_key); |
| PyTuple_SET_ITEM(res, 1, ep->me_value); |
| Py_INCREF(dummy); |
| ep->me_key = dummy; |
| ep->me_value = NULL; |
| mp->ma_used--; |
| assert(mp->ma_keys->dk_entries[0].me_value == NULL); |
| mp->ma_keys->dk_entries[0].me_hash = i + 1; /* next place to start */ |
| return res; |
| } |
| |
| static int |
| dict_traverse(PyObject *op, visitproc visit, void *arg) |
| { |
| Py_ssize_t i, n; |
| PyDictObject *mp = (PyDictObject *)op; |
| if (mp->ma_keys->dk_lookup == lookdict) { |
| for (i = 0; i < DK_SIZE(mp->ma_keys); i++) { |
| if (mp->ma_keys->dk_entries[i].me_value != NULL) { |
| Py_VISIT(mp->ma_keys->dk_entries[i].me_value); |
| Py_VISIT(mp->ma_keys->dk_entries[i].me_key); |
| } |
| } |
| } else { |
| if (mp->ma_values != NULL) { |
| for (i = 0, n = DK_SIZE(mp->ma_keys); i < n; i++) { |
| Py_VISIT(mp->ma_values[i]); |
| } |
| } |
| else { |
| for (i = 0, n = DK_SIZE(mp->ma_keys); i < n; i++) { |
| Py_VISIT(mp->ma_keys->dk_entries[i].me_value); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int |
| dict_tp_clear(PyObject *op) |
| { |
| PyDict_Clear(op); |
| return 0; |
| } |
| |
| static PyObject *dictiter_new(PyDictObject *, PyTypeObject *); |
| |
| PyObject * |
| _PyDict_SizeOf(PyDictObject *mp) |
| { |
| Py_ssize_t size, res; |
| |
| size = DK_SIZE(mp->ma_keys); |
| res = sizeof(PyDictObject); |
| if (mp->ma_values) |
| res += size * sizeof(PyObject*); |
| /* If the dictionary is split, the keys portion is accounted-for |
| in the type object. */ |
| if (mp->ma_keys->dk_refcnt == 1) |
| res += sizeof(PyDictKeysObject) + (size-1) * sizeof(PyDictKeyEntry); |
| return PyLong_FromSsize_t(res); |
| } |
| |
| Py_ssize_t |
| _PyDict_KeysSize(PyDictKeysObject *keys) |
| { |
| return sizeof(PyDictKeysObject) + (DK_SIZE(keys)-1) * sizeof(PyDictKeyEntry); |
| } |
| |
| PyDoc_STRVAR(getitem__doc__, "x.__getitem__(y) <==> x[y]"); |
| |
| PyDoc_STRVAR(sizeof__doc__, |
| "D.__sizeof__() -> size of D in memory, in bytes"); |
| |
| PyDoc_STRVAR(get__doc__, |
| "D.get(k[,d]) -> D[k] if k in D, else d. d defaults to None."); |
| |
| PyDoc_STRVAR(setdefault_doc__, |
| "D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D"); |
| |
| PyDoc_STRVAR(pop__doc__, |
| "D.pop(k[,d]) -> v, remove specified key and return the corresponding value.\n\ |
| If key is not found, d is returned if given, otherwise KeyError is raised"); |
| |
| PyDoc_STRVAR(popitem__doc__, |
| "D.popitem() -> (k, v), remove and return some (key, value) pair as a\n\ |
| 2-tuple; but raise KeyError if D is empty."); |
| |
| PyDoc_STRVAR(update__doc__, |
| "D.update([E, ]**F) -> None. Update D from dict/iterable E and F.\n\ |
| If E is present and has a .keys() method, then does: for k in E: D[k] = E[k]\n\ |
| If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v\n\ |
| In either case, this is followed by: for k in F: D[k] = F[k]"); |
| |
| PyDoc_STRVAR(clear__doc__, |
| "D.clear() -> None. Remove all items from D."); |
| |
| PyDoc_STRVAR(copy__doc__, |
| "D.copy() -> a shallow copy of D"); |
| |
| /* Forward */ |
| static PyObject *dictkeys_new(PyObject *); |
| static PyObject *dictitems_new(PyObject *); |
| static PyObject *dictvalues_new(PyObject *); |
| |
| PyDoc_STRVAR(keys__doc__, |
| "D.keys() -> a set-like object providing a view on D's keys"); |
| PyDoc_STRVAR(items__doc__, |
| "D.items() -> a set-like object providing a view on D's items"); |
| PyDoc_STRVAR(values__doc__, |
| "D.values() -> an object providing a view on D's values"); |
| |
| static PyMethodDef mapp_methods[] = { |
| DICT___CONTAINS___METHODDEF |
| {"__getitem__", (PyCFunction)dict_subscript, METH_O | METH_COEXIST, |
| getitem__doc__}, |
| {"__sizeof__", (PyCFunction)_PyDict_SizeOf, METH_NOARGS, |
| sizeof__doc__}, |
| {"get", (PyCFunction)dict_get, METH_VARARGS, |
| get__doc__}, |
| {"setdefault", (PyCFunction)dict_setdefault, METH_VARARGS, |
| setdefault_doc__}, |
| {"pop", (PyCFunction)dict_pop, METH_VARARGS, |
| pop__doc__}, |
| {"popitem", (PyCFunction)dict_popitem, METH_NOARGS, |
| popitem__doc__}, |
| {"keys", (PyCFunction)dictkeys_new, METH_NOARGS, |
| keys__doc__}, |
| {"items", (PyCFunction)dictitems_new, METH_NOARGS, |
| items__doc__}, |
| {"values", (PyCFunction)dictvalues_new, METH_NOARGS, |
| values__doc__}, |
| {"update", (PyCFunction)dict_update, METH_VARARGS | METH_KEYWORDS, |
| update__doc__}, |
| DICT_FROMKEYS_METHODDEF |
| {"clear", (PyCFunction)dict_clear, METH_NOARGS, |
| clear__doc__}, |
| {"copy", (PyCFunction)dict_copy, METH_NOARGS, |
| copy__doc__}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| /* Return 1 if `key` is in dict `op`, 0 if not, and -1 on error. */ |
| int |
| PyDict_Contains(PyObject *op, PyObject *key) |
| { |
| Py_hash_t hash; |
| PyDictObject *mp = (PyDictObject *)op; |
| PyDictKeyEntry *ep; |
| PyObject **value_addr; |
| |
| if (!PyUnicode_CheckExact(key) || |
| (hash = ((PyASCIIObject *) key)->hash) == -1) { |
| hash = PyObject_Hash(key); |
| if (hash == -1) |
| return -1; |
| } |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| return (ep == NULL) ? -1 : (*value_addr != NULL); |
| } |
| |
| /* Internal version of PyDict_Contains used when the hash value is already known */ |
| int |
| _PyDict_Contains(PyObject *op, PyObject *key, Py_hash_t hash) |
| { |
| PyDictObject *mp = (PyDictObject *)op; |
| PyDictKeyEntry *ep; |
| PyObject **value_addr; |
| |
| ep = (mp->ma_keys->dk_lookup)(mp, key, hash, &value_addr); |
| return (ep == NULL) ? -1 : (*value_addr != NULL); |
| } |
| |
| /* Hack to implement "key in dict" */ |
| static PySequenceMethods dict_as_sequence = { |
| 0, /* sq_length */ |
| 0, /* sq_concat */ |
| 0, /* sq_repeat */ |
| 0, /* sq_item */ |
| 0, /* sq_slice */ |
| 0, /* sq_ass_item */ |
| 0, /* sq_ass_slice */ |
| PyDict_Contains, /* sq_contains */ |
| 0, /* sq_inplace_concat */ |
| 0, /* sq_inplace_repeat */ |
| }; |
| |
| static PyObject * |
| dict_new(PyTypeObject *type, PyObject *args, PyObject *kwds) |
| { |
| PyObject *self; |
| PyDictObject *d; |
| |
| assert(type != NULL && type->tp_alloc != NULL); |
| self = type->tp_alloc(type, 0); |
| if (self == NULL) |
| return NULL; |
| d = (PyDictObject *)self; |
| |
| /* The object has been implicitly tracked by tp_alloc */ |
| if (type == &PyDict_Type) |
| _PyObject_GC_UNTRACK(d); |
| |
| d->ma_used = 0; |
| d->ma_keys = new_keys_object(PyDict_MINSIZE_COMBINED); |
| if (d->ma_keys == NULL) { |
| Py_DECREF(self); |
| return NULL; |
| } |
| return self; |
| } |
| |
| static int |
| dict_init(PyObject *self, PyObject *args, PyObject *kwds) |
| { |
| return dict_update_common(self, args, kwds, "dict"); |
| } |
| |
| static PyObject * |
| dict_iter(PyDictObject *dict) |
| { |
| return dictiter_new(dict, &PyDictIterKey_Type); |
| } |
| |
| PyDoc_STRVAR(dictionary_doc, |
| "dict() -> new empty dictionary\n" |
| "dict(mapping) -> new dictionary initialized from a mapping object's\n" |
| " (key, value) pairs\n" |
| "dict(iterable) -> new dictionary initialized as if via:\n" |
| " d = {}\n" |
| " for k, v in iterable:\n" |
| " d[k] = v\n" |
| "dict(**kwargs) -> new dictionary initialized with the name=value pairs\n" |
| " in the keyword argument list. For example: dict(one=1, two=2)"); |
| |
| PyTypeObject PyDict_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "dict", |
| sizeof(PyDictObject), |
| 0, |
| (destructor)dict_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)dict_repr, /* tp_repr */ |
| 0, /* tp_as_number */ |
| &dict_as_sequence, /* tp_as_sequence */ |
| &dict_as_mapping, /* tp_as_mapping */ |
| PyObject_HashNotImplemented, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC | |
| Py_TPFLAGS_BASETYPE | Py_TPFLAGS_DICT_SUBCLASS, /* tp_flags */ |
| dictionary_doc, /* tp_doc */ |
| dict_traverse, /* tp_traverse */ |
| dict_tp_clear, /* tp_clear */ |
| dict_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| (getiterfunc)dict_iter, /* tp_iter */ |
| 0, /* tp_iternext */ |
| mapp_methods, /* tp_methods */ |
| 0, /* tp_members */ |
| 0, /* tp_getset */ |
| 0, /* tp_base */ |
| 0, /* tp_dict */ |
| 0, /* tp_descr_get */ |
| 0, /* tp_descr_set */ |
| 0, /* tp_dictoffset */ |
| dict_init, /* tp_init */ |
| PyType_GenericAlloc, /* tp_alloc */ |
| dict_new, /* tp_new */ |
| PyObject_GC_Del, /* tp_free */ |
| }; |
| |
| PyObject * |
| _PyDict_GetItemId(PyObject *dp, struct _Py_Identifier *key) |
| { |
| PyObject *kv; |
| kv = _PyUnicode_FromId(key); /* borrowed */ |
| if (kv == NULL) { |
| PyErr_Clear(); |
| return NULL; |
| } |
| return PyDict_GetItem(dp, kv); |
| } |
| |
| /* For backward compatibility with old dictionary interface */ |
| |
| PyObject * |
| PyDict_GetItemString(PyObject *v, const char *key) |
| { |
| PyObject *kv, *rv; |
| kv = PyUnicode_FromString(key); |
| if (kv == NULL) { |
| PyErr_Clear(); |
| return NULL; |
| } |
| rv = PyDict_GetItem(v, kv); |
| Py_DECREF(kv); |
| return rv; |
| } |
| |
| int |
| _PyDict_SetItemId(PyObject *v, struct _Py_Identifier *key, PyObject *item) |
| { |
| PyObject *kv; |
| kv = _PyUnicode_FromId(key); /* borrowed */ |
| if (kv == NULL) |
| return -1; |
| return PyDict_SetItem(v, kv, item); |
| } |
| |
| int |
| PyDict_SetItemString(PyObject *v, const char *key, PyObject *item) |
| { |
| PyObject *kv; |
| int err; |
| kv = PyUnicode_FromString(key); |
| if (kv == NULL) |
| return -1; |
| PyUnicode_InternInPlace(&kv); /* XXX Should we really? */ |
| err = PyDict_SetItem(v, kv, item); |
| Py_DECREF(kv); |
| return err; |
| } |
| |
| int |
| _PyDict_DelItemId(PyObject *v, _Py_Identifier *key) |
| { |
| PyObject *kv = _PyUnicode_FromId(key); /* borrowed */ |
| if (kv == NULL) |
| return -1; |
| return PyDict_DelItem(v, kv); |
| } |
| |
| int |
| PyDict_DelItemString(PyObject *v, const char *key) |
| { |
| PyObject *kv; |
| int err; |
| kv = PyUnicode_FromString(key); |
| if (kv == NULL) |
| return -1; |
| err = PyDict_DelItem(v, kv); |
| Py_DECREF(kv); |
| return err; |
| } |
| |
| /* Dictionary iterator types */ |
| |
| typedef struct { |
| PyObject_HEAD |
| PyDictObject *di_dict; /* Set to NULL when iterator is exhausted */ |
| Py_ssize_t di_used; |
| Py_ssize_t di_pos; |
| PyObject* di_result; /* reusable result tuple for iteritems */ |
| Py_ssize_t len; |
| } dictiterobject; |
| |
| static PyObject * |
| dictiter_new(PyDictObject *dict, PyTypeObject *itertype) |
| { |
| dictiterobject *di; |
| di = PyObject_GC_New(dictiterobject, itertype); |
| if (di == NULL) |
| return NULL; |
| Py_INCREF(dict); |
| di->di_dict = dict; |
| di->di_used = dict->ma_used; |
| di->di_pos = 0; |
| di->len = dict->ma_used; |
| if (itertype == &PyDictIterItem_Type) { |
| di->di_result = PyTuple_Pack(2, Py_None, Py_None); |
| if (di->di_result == NULL) { |
| Py_DECREF(di); |
| return NULL; |
| } |
| } |
| else |
| di->di_result = NULL; |
| _PyObject_GC_TRACK(di); |
| return (PyObject *)di; |
| } |
| |
| static void |
| dictiter_dealloc(dictiterobject *di) |
| { |
| Py_XDECREF(di->di_dict); |
| Py_XDECREF(di->di_result); |
| PyObject_GC_Del(di); |
| } |
| |
| static int |
| dictiter_traverse(dictiterobject *di, visitproc visit, void *arg) |
| { |
| Py_VISIT(di->di_dict); |
| Py_VISIT(di->di_result); |
| return 0; |
| } |
| |
| static PyObject * |
| dictiter_len(dictiterobject *di) |
| { |
| Py_ssize_t len = 0; |
| if (di->di_dict != NULL && di->di_used == di->di_dict->ma_used) |
| len = di->len; |
| return PyLong_FromSize_t(len); |
| } |
| |
| PyDoc_STRVAR(length_hint_doc, |
| "Private method returning an estimate of len(list(it))."); |
| |
| static PyObject * |
| dictiter_reduce(dictiterobject *di); |
| |
| PyDoc_STRVAR(reduce_doc, "Return state information for pickling."); |
| |
| static PyMethodDef dictiter_methods[] = { |
| {"__length_hint__", (PyCFunction)dictiter_len, METH_NOARGS, |
| length_hint_doc}, |
| {"__reduce__", (PyCFunction)dictiter_reduce, METH_NOARGS, |
| reduce_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| static PyObject *dictiter_iternextkey(dictiterobject *di) |
| { |
| PyObject *key; |
| Py_ssize_t i, mask, offset; |
| PyDictKeysObject *k; |
| PyDictObject *d = di->di_dict; |
| PyObject **value_ptr; |
| |
| if (d == NULL) |
| return NULL; |
| assert (PyDict_Check(d)); |
| |
| if (di->di_used != d->ma_used) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "dictionary changed size during iteration"); |
| di->di_used = -1; /* Make this state sticky */ |
| return NULL; |
| } |
| |
| i = di->di_pos; |
| if (i < 0) |
| goto fail; |
| k = d->ma_keys; |
| if (d->ma_values) { |
| value_ptr = &d->ma_values[i]; |
| offset = sizeof(PyObject *); |
| } |
| else { |
| value_ptr = &k->dk_entries[i].me_value; |
| offset = sizeof(PyDictKeyEntry); |
| } |
| mask = DK_SIZE(k)-1; |
| while (i <= mask && *value_ptr == NULL) { |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); |
| i++; |
| } |
| di->di_pos = i+1; |
| if (i > mask) |
| goto fail; |
| di->len--; |
| key = k->dk_entries[i].me_key; |
| Py_INCREF(key); |
| return key; |
| |
| fail: |
| Py_DECREF(d); |
| di->di_dict = NULL; |
| return NULL; |
| } |
| |
| PyTypeObject PyDictIterKey_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "dict_keyiterator", /* tp_name */ |
| sizeof(dictiterobject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)dictiter_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)dictiter_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| PyObject_SelfIter, /* tp_iter */ |
| (iternextfunc)dictiter_iternextkey, /* tp_iternext */ |
| dictiter_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| static PyObject *dictiter_iternextvalue(dictiterobject *di) |
| { |
| PyObject *value; |
| Py_ssize_t i, mask, offset; |
| PyDictObject *d = di->di_dict; |
| PyObject **value_ptr; |
| |
| if (d == NULL) |
| return NULL; |
| assert (PyDict_Check(d)); |
| |
| if (di->di_used != d->ma_used) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "dictionary changed size during iteration"); |
| di->di_used = -1; /* Make this state sticky */ |
| return NULL; |
| } |
| |
| i = di->di_pos; |
| mask = DK_SIZE(d->ma_keys)-1; |
| if (i < 0 || i > mask) |
| goto fail; |
| if (d->ma_values) { |
| value_ptr = &d->ma_values[i]; |
| offset = sizeof(PyObject *); |
| } |
| else { |
| value_ptr = &d->ma_keys->dk_entries[i].me_value; |
| offset = sizeof(PyDictKeyEntry); |
| } |
| while (i <= mask && *value_ptr == NULL) { |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); |
| i++; |
| if (i > mask) |
| goto fail; |
| } |
| di->di_pos = i+1; |
| di->len--; |
| value = *value_ptr; |
| Py_INCREF(value); |
| return value; |
| |
| fail: |
| Py_DECREF(d); |
| di->di_dict = NULL; |
| return NULL; |
| } |
| |
| PyTypeObject PyDictIterValue_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "dict_valueiterator", /* tp_name */ |
| sizeof(dictiterobject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)dictiter_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)dictiter_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| PyObject_SelfIter, /* tp_iter */ |
| (iternextfunc)dictiter_iternextvalue, /* tp_iternext */ |
| dictiter_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| static PyObject *dictiter_iternextitem(dictiterobject *di) |
| { |
| PyObject *key, *value, *result = di->di_result; |
| Py_ssize_t i, mask, offset; |
| PyDictObject *d = di->di_dict; |
| PyObject **value_ptr; |
| |
| if (d == NULL) |
| return NULL; |
| assert (PyDict_Check(d)); |
| |
| if (di->di_used != d->ma_used) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "dictionary changed size during iteration"); |
| di->di_used = -1; /* Make this state sticky */ |
| return NULL; |
| } |
| |
| i = di->di_pos; |
| if (i < 0) |
| goto fail; |
| mask = DK_SIZE(d->ma_keys)-1; |
| if (d->ma_values) { |
| value_ptr = &d->ma_values[i]; |
| offset = sizeof(PyObject *); |
| } |
| else { |
| value_ptr = &d->ma_keys->dk_entries[i].me_value; |
| offset = sizeof(PyDictKeyEntry); |
| } |
| while (i <= mask && *value_ptr == NULL) { |
| value_ptr = (PyObject **)(((char *)value_ptr) + offset); |
| i++; |
| } |
| di->di_pos = i+1; |
| if (i > mask) |
| goto fail; |
| |
| if (result->ob_refcnt == 1) { |
| Py_INCREF(result); |
| Py_DECREF(PyTuple_GET_ITEM(result, 0)); |
| Py_DECREF(PyTuple_GET_ITEM(result, 1)); |
| } else { |
| result = PyTuple_New(2); |
| if (result == NULL) |
| return NULL; |
| } |
| di->len--; |
| key = d->ma_keys->dk_entries[i].me_key; |
| value = *value_ptr; |
| Py_INCREF(key); |
| Py_INCREF(value); |
| PyTuple_SET_ITEM(result, 0, key); /* steals reference */ |
| PyTuple_SET_ITEM(result, 1, value); /* steals reference */ |
| return result; |
| |
| fail: |
| Py_DECREF(d); |
| di->di_dict = NULL; |
| return NULL; |
| } |
| |
| PyTypeObject PyDictIterItem_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "dict_itemiterator", /* tp_name */ |
| sizeof(dictiterobject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)dictiter_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| 0, /* tp_repr */ |
| 0, /* tp_as_number */ |
| 0, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)dictiter_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| PyObject_SelfIter, /* tp_iter */ |
| (iternextfunc)dictiter_iternextitem, /* tp_iternext */ |
| dictiter_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| |
| static PyObject * |
| dictiter_reduce(dictiterobject *di) |
| { |
| PyObject *list; |
| dictiterobject tmp; |
| |
| list = PyList_New(0); |
| if (!list) |
| return NULL; |
| |
| /* copy the itertor state */ |
| tmp = *di; |
| Py_XINCREF(tmp.di_dict); |
| |
| /* iterate the temporary into a list */ |
| for(;;) { |
| PyObject *element = 0; |
| if (Py_TYPE(di) == &PyDictIterItem_Type) |
| element = dictiter_iternextitem(&tmp); |
| else if (Py_TYPE(di) == &PyDictIterKey_Type) |
| element = dictiter_iternextkey(&tmp); |
| else if (Py_TYPE(di) == &PyDictIterValue_Type) |
| element = dictiter_iternextvalue(&tmp); |
| else |
| assert(0); |
| if (element) { |
| if (PyList_Append(list, element)) { |
| Py_DECREF(element); |
| Py_DECREF(list); |
| Py_XDECREF(tmp.di_dict); |
| return NULL; |
| } |
| Py_DECREF(element); |
| } else |
| break; |
| } |
| Py_XDECREF(tmp.di_dict); |
| /* check for error */ |
| if (tmp.di_dict != NULL) { |
| /* we have an error */ |
| Py_DECREF(list); |
| return NULL; |
| } |
| return Py_BuildValue("N(N)", _PyObject_GetBuiltin("iter"), list); |
| } |
| |
| /***********************************************/ |
| /* View objects for keys(), items(), values(). */ |
| /***********************************************/ |
| |
| /* The instance lay-out is the same for all three; but the type differs. */ |
| |
| static void |
| dictview_dealloc(_PyDictViewObject *dv) |
| { |
| Py_XDECREF(dv->dv_dict); |
| PyObject_GC_Del(dv); |
| } |
| |
| static int |
| dictview_traverse(_PyDictViewObject *dv, visitproc visit, void *arg) |
| { |
| Py_VISIT(dv->dv_dict); |
| return 0; |
| } |
| |
| static Py_ssize_t |
| dictview_len(_PyDictViewObject *dv) |
| { |
| Py_ssize_t len = 0; |
| if (dv->dv_dict != NULL) |
| len = dv->dv_dict->ma_used; |
| return len; |
| } |
| |
| PyObject * |
| _PyDictView_New(PyObject *dict, PyTypeObject *type) |
| { |
| _PyDictViewObject *dv; |
| if (dict == NULL) { |
| PyErr_BadInternalCall(); |
| return NULL; |
| } |
| if (!PyDict_Check(dict)) { |
| /* XXX Get rid of this restriction later */ |
| PyErr_Format(PyExc_TypeError, |
| "%s() requires a dict argument, not '%s'", |
| type->tp_name, dict->ob_type->tp_name); |
| return NULL; |
| } |
| dv = PyObject_GC_New(_PyDictViewObject, type); |
| if (dv == NULL) |
| return NULL; |
| Py_INCREF(dict); |
| dv->dv_dict = (PyDictObject *)dict; |
| _PyObject_GC_TRACK(dv); |
| return (PyObject *)dv; |
| } |
| |
| /* TODO(guido): The views objects are not complete: |
| |
| * support more set operations |
| * support arbitrary mappings? |
| - either these should be static or exported in dictobject.h |
| - if public then they should probably be in builtins |
| */ |
| |
| /* Return 1 if self is a subset of other, iterating over self; |
| 0 if not; -1 if an error occurred. */ |
| static int |
| all_contained_in(PyObject *self, PyObject *other) |
| { |
| PyObject *iter = PyObject_GetIter(self); |
| int ok = 1; |
| |
| if (iter == NULL) |
| return -1; |
| for (;;) { |
| PyObject *next = PyIter_Next(iter); |
| if (next == NULL) { |
| if (PyErr_Occurred()) |
| ok = -1; |
| break; |
| } |
| ok = PySequence_Contains(other, next); |
| Py_DECREF(next); |
| if (ok <= 0) |
| break; |
| } |
| Py_DECREF(iter); |
| return ok; |
| } |
| |
| static PyObject * |
| dictview_richcompare(PyObject *self, PyObject *other, int op) |
| { |
| Py_ssize_t len_self, len_other; |
| int ok; |
| PyObject *result; |
| |
| assert(self != NULL); |
| assert(PyDictViewSet_Check(self)); |
| assert(other != NULL); |
| |
| if (!PyAnySet_Check(other) && !PyDictViewSet_Check(other)) |
| Py_RETURN_NOTIMPLEMENTED; |
| |
| len_self = PyObject_Size(self); |
| if (len_self < 0) |
| return NULL; |
| len_other = PyObject_Size(other); |
| if (len_other < 0) |
| return NULL; |
| |
| ok = 0; |
| switch(op) { |
| |
| case Py_NE: |
| case Py_EQ: |
| if (len_self == len_other) |
| ok = all_contained_in(self, other); |
| if (op == Py_NE && ok >= 0) |
| ok = !ok; |
| break; |
| |
| case Py_LT: |
| if (len_self < len_other) |
| ok = all_contained_in(self, other); |
| break; |
| |
| case Py_LE: |
| if (len_self <= len_other) |
| ok = all_contained_in(self, other); |
| break; |
| |
| case Py_GT: |
| if (len_self > len_other) |
| ok = all_contained_in(other, self); |
| break; |
| |
| case Py_GE: |
| if (len_self >= len_other) |
| ok = all_contained_in(other, self); |
| break; |
| |
| } |
| if (ok < 0) |
| return NULL; |
| result = ok ? Py_True : Py_False; |
| Py_INCREF(result); |
| return result; |
| } |
| |
| static PyObject * |
| dictview_repr(_PyDictViewObject *dv) |
| { |
| PyObject *seq; |
| PyObject *result; |
| |
| seq = PySequence_List((PyObject *)dv); |
| if (seq == NULL) |
| return NULL; |
| |
| result = PyUnicode_FromFormat("%s(%R)", Py_TYPE(dv)->tp_name, seq); |
| Py_DECREF(seq); |
| return result; |
| } |
| |
| /*** dict_keys ***/ |
| |
| static PyObject * |
| dictkeys_iter(_PyDictViewObject *dv) |
| { |
| if (dv->dv_dict == NULL) { |
| Py_RETURN_NONE; |
| } |
| return dictiter_new(dv->dv_dict, &PyDictIterKey_Type); |
| } |
| |
| static int |
| dictkeys_contains(_PyDictViewObject *dv, PyObject *obj) |
| { |
| if (dv->dv_dict == NULL) |
| return 0; |
| return PyDict_Contains((PyObject *)dv->dv_dict, obj); |
| } |
| |
| static PySequenceMethods dictkeys_as_sequence = { |
| (lenfunc)dictview_len, /* sq_length */ |
| 0, /* sq_concat */ |
| 0, /* sq_repeat */ |
| 0, /* sq_item */ |
| 0, /* sq_slice */ |
| 0, /* sq_ass_item */ |
| 0, /* sq_ass_slice */ |
| (objobjproc)dictkeys_contains, /* sq_contains */ |
| }; |
| |
| static PyObject* |
| dictviews_sub(PyObject* self, PyObject *other) |
| { |
| PyObject *result = PySet_New(self); |
| PyObject *tmp; |
| _Py_IDENTIFIER(difference_update); |
| |
| if (result == NULL) |
| return NULL; |
| |
| tmp = _PyObject_CallMethodId(result, &PyId_difference_update, "O", other); |
| if (tmp == NULL) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| |
| Py_DECREF(tmp); |
| return result; |
| } |
| |
| PyObject* |
| _PyDictView_Intersect(PyObject* self, PyObject *other) |
| { |
| PyObject *result = PySet_New(self); |
| PyObject *tmp; |
| _Py_IDENTIFIER(intersection_update); |
| |
| if (result == NULL) |
| return NULL; |
| |
| tmp = _PyObject_CallMethodId(result, &PyId_intersection_update, "O", other); |
| if (tmp == NULL) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| |
| Py_DECREF(tmp); |
| return result; |
| } |
| |
| static PyObject* |
| dictviews_or(PyObject* self, PyObject *other) |
| { |
| PyObject *result = PySet_New(self); |
| PyObject *tmp; |
| _Py_IDENTIFIER(update); |
| |
| if (result == NULL) |
| return NULL; |
| |
| tmp = _PyObject_CallMethodId(result, &PyId_update, "O", other); |
| if (tmp == NULL) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| |
| Py_DECREF(tmp); |
| return result; |
| } |
| |
| static PyObject* |
| dictviews_xor(PyObject* self, PyObject *other) |
| { |
| PyObject *result = PySet_New(self); |
| PyObject *tmp; |
| _Py_IDENTIFIER(symmetric_difference_update); |
| |
| if (result == NULL) |
| return NULL; |
| |
| tmp = _PyObject_CallMethodId(result, &PyId_symmetric_difference_update, "O", |
| other); |
| if (tmp == NULL) { |
| Py_DECREF(result); |
| return NULL; |
| } |
| |
| Py_DECREF(tmp); |
| return result; |
| } |
| |
| static PyNumberMethods dictviews_as_number = { |
| 0, /*nb_add*/ |
| (binaryfunc)dictviews_sub, /*nb_subtract*/ |
| 0, /*nb_multiply*/ |
| 0, /*nb_remainder*/ |
| 0, /*nb_divmod*/ |
| 0, /*nb_power*/ |
| 0, /*nb_negative*/ |
| 0, /*nb_positive*/ |
| 0, /*nb_absolute*/ |
| 0, /*nb_bool*/ |
| 0, /*nb_invert*/ |
| 0, /*nb_lshift*/ |
| 0, /*nb_rshift*/ |
| (binaryfunc)_PyDictView_Intersect, /*nb_and*/ |
| (binaryfunc)dictviews_xor, /*nb_xor*/ |
| (binaryfunc)dictviews_or, /*nb_or*/ |
| }; |
| |
| static PyObject* |
| dictviews_isdisjoint(PyObject *self, PyObject *other) |
| { |
| PyObject *it; |
| PyObject *item = NULL; |
| |
| if (self == other) { |
| if (dictview_len((_PyDictViewObject *)self) == 0) |
| Py_RETURN_TRUE; |
| else |
| Py_RETURN_FALSE; |
| } |
| |
| /* Iterate over the shorter object (only if other is a set, |
| * because PySequence_Contains may be expensive otherwise): */ |
| if (PyAnySet_Check(other) || PyDictViewSet_Check(other)) { |
| Py_ssize_t len_self = dictview_len((_PyDictViewObject *)self); |
| Py_ssize_t len_other = PyObject_Size(other); |
| if (len_other == -1) |
| return NULL; |
| |
| if ((len_other > len_self)) { |
| PyObject *tmp = other; |
| other = self; |
| self = tmp; |
| } |
| } |
| |
| it = PyObject_GetIter(other); |
| if (it == NULL) |
| return NULL; |
| |
| while ((item = PyIter_Next(it)) != NULL) { |
| int contains = PySequence_Contains(self, item); |
| Py_DECREF(item); |
| if (contains == -1) { |
| Py_DECREF(it); |
| return NULL; |
| } |
| |
| if (contains) { |
| Py_DECREF(it); |
| Py_RETURN_FALSE; |
| } |
| } |
| Py_DECREF(it); |
| if (PyErr_Occurred()) |
| return NULL; /* PyIter_Next raised an exception. */ |
| Py_RETURN_TRUE; |
| } |
| |
| PyDoc_STRVAR(isdisjoint_doc, |
| "Return True if the view and the given iterable have a null intersection."); |
| |
| static PyMethodDef dictkeys_methods[] = { |
| {"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O, |
| isdisjoint_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyTypeObject PyDictKeys_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "dict_keys", /* tp_name */ |
| sizeof(_PyDictViewObject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)dictview_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)dictview_repr, /* tp_repr */ |
| &dictviews_as_number, /* tp_as_number */ |
| &dictkeys_as_sequence, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)dictview_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| dictview_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| (getiterfunc)dictkeys_iter, /* tp_iter */ |
| 0, /* tp_iternext */ |
| dictkeys_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| static PyObject * |
| dictkeys_new(PyObject *dict) |
| { |
| return _PyDictView_New(dict, &PyDictKeys_Type); |
| } |
| |
| /*** dict_items ***/ |
| |
| static PyObject * |
| dictitems_iter(_PyDictViewObject *dv) |
| { |
| if (dv->dv_dict == NULL) { |
| Py_RETURN_NONE; |
| } |
| return dictiter_new(dv->dv_dict, &PyDictIterItem_Type); |
| } |
| |
| static int |
| dictitems_contains(_PyDictViewObject *dv, PyObject *obj) |
| { |
| PyObject *key, *value, *found; |
| if (dv->dv_dict == NULL) |
| return 0; |
| if (!PyTuple_Check(obj) || PyTuple_GET_SIZE(obj) != 2) |
| return 0; |
| key = PyTuple_GET_ITEM(obj, 0); |
| value = PyTuple_GET_ITEM(obj, 1); |
| found = PyDict_GetItem((PyObject *)dv->dv_dict, key); |
| if (found == NULL) { |
| if (PyErr_Occurred()) |
| return -1; |
| return 0; |
| } |
| return PyObject_RichCompareBool(value, found, Py_EQ); |
| } |
| |
| static PySequenceMethods dictitems_as_sequence = { |
| (lenfunc)dictview_len, /* sq_length */ |
| 0, /* sq_concat */ |
| 0, /* sq_repeat */ |
| 0, /* sq_item */ |
| 0, /* sq_slice */ |
| 0, /* sq_ass_item */ |
| 0, /* sq_ass_slice */ |
| (objobjproc)dictitems_contains, /* sq_contains */ |
| }; |
| |
| static PyMethodDef dictitems_methods[] = { |
| {"isdisjoint", (PyCFunction)dictviews_isdisjoint, METH_O, |
| isdisjoint_doc}, |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyTypeObject PyDictItems_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "dict_items", /* tp_name */ |
| sizeof(_PyDictViewObject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)dictview_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)dictview_repr, /* tp_repr */ |
| &dictviews_as_number, /* tp_as_number */ |
| &dictitems_as_sequence, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)dictview_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| dictview_richcompare, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| (getiterfunc)dictitems_iter, /* tp_iter */ |
| 0, /* tp_iternext */ |
| dictitems_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| static PyObject * |
| dictitems_new(PyObject *dict) |
| { |
| return _PyDictView_New(dict, &PyDictItems_Type); |
| } |
| |
| /*** dict_values ***/ |
| |
| static PyObject * |
| dictvalues_iter(_PyDictViewObject *dv) |
| { |
| if (dv->dv_dict == NULL) { |
| Py_RETURN_NONE; |
| } |
| return dictiter_new(dv->dv_dict, &PyDictIterValue_Type); |
| } |
| |
| static PySequenceMethods dictvalues_as_sequence = { |
| (lenfunc)dictview_len, /* sq_length */ |
| 0, /* sq_concat */ |
| 0, /* sq_repeat */ |
| 0, /* sq_item */ |
| 0, /* sq_slice */ |
| 0, /* sq_ass_item */ |
| 0, /* sq_ass_slice */ |
| (objobjproc)0, /* sq_contains */ |
| }; |
| |
| static PyMethodDef dictvalues_methods[] = { |
| {NULL, NULL} /* sentinel */ |
| }; |
| |
| PyTypeObject PyDictValues_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "dict_values", /* tp_name */ |
| sizeof(_PyDictViewObject), /* tp_basicsize */ |
| 0, /* tp_itemsize */ |
| /* methods */ |
| (destructor)dictview_dealloc, /* tp_dealloc */ |
| 0, /* tp_print */ |
| 0, /* tp_getattr */ |
| 0, /* tp_setattr */ |
| 0, /* tp_reserved */ |
| (reprfunc)dictview_repr, /* tp_repr */ |
| 0, /* tp_as_number */ |
| &dictvalues_as_sequence, /* tp_as_sequence */ |
| 0, /* tp_as_mapping */ |
| 0, /* tp_hash */ |
| 0, /* tp_call */ |
| 0, /* tp_str */ |
| PyObject_GenericGetAttr, /* tp_getattro */ |
| 0, /* tp_setattro */ |
| 0, /* tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC,/* tp_flags */ |
| 0, /* tp_doc */ |
| (traverseproc)dictview_traverse, /* tp_traverse */ |
| 0, /* tp_clear */ |
| 0, /* tp_richcompare */ |
| 0, /* tp_weaklistoffset */ |
| (getiterfunc)dictvalues_iter, /* tp_iter */ |
| 0, /* tp_iternext */ |
| dictvalues_methods, /* tp_methods */ |
| 0, |
| }; |
| |
| static PyObject * |
| dictvalues_new(PyObject *dict) |
| { |
| return _PyDictView_New(dict, &PyDictValues_Type); |
| } |
| |
| /* Returns NULL if cannot allocate a new PyDictKeysObject, |
| but does not set an error */ |
| PyDictKeysObject * |
| _PyDict_NewKeysForClass(void) |
| { |
| PyDictKeysObject *keys = new_keys_object(PyDict_MINSIZE_SPLIT); |
| if (keys == NULL) |
| PyErr_Clear(); |
| else |
| keys->dk_lookup = lookdict_split; |
| return keys; |
| } |
| |
| #define CACHED_KEYS(tp) (((PyHeapTypeObject*)tp)->ht_cached_keys) |
| |
| PyObject * |
| PyObject_GenericGetDict(PyObject *obj, void *context) |
| { |
| PyObject *dict, **dictptr = _PyObject_GetDictPtr(obj); |
| if (dictptr == NULL) { |
| PyErr_SetString(PyExc_AttributeError, |
| "This object has no __dict__"); |
| return NULL; |
| } |
| dict = *dictptr; |
| if (dict == NULL) { |
| PyTypeObject *tp = Py_TYPE(obj); |
| if ((tp->tp_flags & Py_TPFLAGS_HEAPTYPE) && CACHED_KEYS(tp)) { |
| DK_INCREF(CACHED_KEYS(tp)); |
| *dictptr = dict = new_dict_with_shared_keys(CACHED_KEYS(tp)); |
| } |
| else { |
| *dictptr = dict = PyDict_New(); |
| } |
| } |
| Py_XINCREF(dict); |
| return dict; |
| } |
| |
| int |
| _PyObjectDict_SetItem(PyTypeObject *tp, PyObject **dictptr, |
| PyObject *key, PyObject *value) |
| { |
| PyObject *dict; |
| int res; |
| PyDictKeysObject *cached; |
| |
| assert(dictptr != NULL); |
| if ((tp->tp_flags & Py_TPFLAGS_HEAPTYPE) && (cached = CACHED_KEYS(tp))) { |
| assert(dictptr != NULL); |
| dict = *dictptr; |
| if (dict == NULL) { |
| DK_INCREF(cached); |
| dict = new_dict_with_shared_keys(cached); |
| if (dict == NULL) |
| return -1; |
| *dictptr = dict; |
| } |
| if (value == NULL) { |
| res = PyDict_DelItem(dict, key); |
| if (cached != ((PyDictObject *)dict)->ma_keys) { |
| CACHED_KEYS(tp) = NULL; |
| DK_DECREF(cached); |
| } |
| } else { |
| res = PyDict_SetItem(dict, key, value); |
| if (cached != ((PyDictObject *)dict)->ma_keys) { |
| /* Either update tp->ht_cached_keys or delete it */ |
| if (cached->dk_refcnt == 1) { |
| CACHED_KEYS(tp) = make_keys_shared(dict); |
| } else { |
| CACHED_KEYS(tp) = NULL; |
| } |
| DK_DECREF(cached); |
| if (CACHED_KEYS(tp) == NULL && PyErr_Occurred()) |
| return -1; |
| } |
| } |
| } else { |
| dict = *dictptr; |
| if (dict == NULL) { |
| dict = PyDict_New(); |
| if (dict == NULL) |
| return -1; |
| *dictptr = dict; |
| } |
| if (value == NULL) { |
| res = PyDict_DelItem(dict, key); |
| } else { |
| res = PyDict_SetItem(dict, key, value); |
| } |
| } |
| return res; |
| } |
| |
| void |
| _PyDictKeys_DecRef(PyDictKeysObject *keys) |
| { |
| DK_DECREF(keys); |
| } |
| |
| |
| /* ARGSUSED */ |
| static PyObject * |
| dummy_repr(PyObject *op) |
| { |
| return PyUnicode_FromString("<dummy key>"); |
| } |
| |
| /* ARGUSED */ |
| static void |
| dummy_dealloc(PyObject* ignore) |
| { |
| /* This should never get called, but we also don't want to SEGV if |
| * we accidentally decref dummy-key out of existence. |
| */ |
| Py_FatalError("deallocating <dummy key>"); |
| } |
| |
| static PyTypeObject PyDictDummy_Type = { |
| PyVarObject_HEAD_INIT(&PyType_Type, 0) |
| "<dummy key> type", |
| 0, |
| 0, |
| dummy_dealloc, /*tp_dealloc*/ /*never called*/ |
| 0, /*tp_print*/ |
| 0, /*tp_getattr*/ |
| 0, /*tp_setattr*/ |
| 0, /*tp_reserved*/ |
| dummy_repr, /*tp_repr*/ |
| 0, /*tp_as_number*/ |
| 0, /*tp_as_sequence*/ |
| 0, /*tp_as_mapping*/ |
| 0, /*tp_hash */ |
| 0, /*tp_call */ |
| 0, /*tp_str */ |
| 0, /*tp_getattro */ |
| 0, /*tp_setattro */ |
| 0, /*tp_as_buffer */ |
| Py_TPFLAGS_DEFAULT, /*tp_flags */ |
| }; |
| |
| static PyObject _dummy_struct = { |
| _PyObject_EXTRA_INIT |
| 2, &PyDictDummy_Type |
| }; |
| |