| /* The implementation of the hash table (_Py_hashtable_t) is based on the cfuhash | 
 |    project: | 
 |    http://sourceforge.net/projects/libcfu/ | 
 |  | 
 |    Copyright of cfuhash: | 
 |    ---------------------------------- | 
 |    Creation date: 2005-06-24 21:22:40 | 
 |    Authors: Don | 
 |    Change log: | 
 |  | 
 |    Copyright (c) 2005 Don Owens | 
 |    All rights reserved. | 
 |  | 
 |    This code is released under the BSD license: | 
 |  | 
 |    Redistribution and use in source and binary forms, with or without | 
 |    modification, are permitted provided that the following conditions | 
 |    are met: | 
 |  | 
 |      * Redistributions of source code must retain the above copyright | 
 |        notice, this list of conditions and the following disclaimer. | 
 |  | 
 |      * Redistributions in binary form must reproduce the above | 
 |        copyright notice, this list of conditions and the following | 
 |        disclaimer in the documentation and/or other materials provided | 
 |        with the distribution. | 
 |  | 
 |      * Neither the name of the author nor the names of its | 
 |        contributors may be used to endorse or promote products derived | 
 |        from this software without specific prior written permission. | 
 |  | 
 |    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
 |    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS | 
 |    FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE | 
 |    COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, | 
 |    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
 |    (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | 
 |    SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
 |    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, | 
 |    STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) | 
 |    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED | 
 |    OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |    ---------------------------------- | 
 | */ | 
 |  | 
 | #include "Python.h" | 
 | #include "hashtable.h" | 
 |  | 
 | #define HASHTABLE_MIN_SIZE 16 | 
 | #define HASHTABLE_HIGH 0.50 | 
 | #define HASHTABLE_LOW 0.10 | 
 | #define HASHTABLE_REHASH_FACTOR 2.0 / (HASHTABLE_LOW + HASHTABLE_HIGH) | 
 |  | 
 | #define BUCKETS_HEAD(SLIST) \ | 
 |         ((_Py_hashtable_entry_t *)_Py_SLIST_HEAD(&(SLIST))) | 
 | #define TABLE_HEAD(HT, BUCKET) \ | 
 |         ((_Py_hashtable_entry_t *)_Py_SLIST_HEAD(&(HT)->buckets[BUCKET])) | 
 | #define ENTRY_NEXT(ENTRY) \ | 
 |         ((_Py_hashtable_entry_t *)_Py_SLIST_ITEM_NEXT(ENTRY)) | 
 | #define HASHTABLE_ITEM_SIZE(HT) \ | 
 |         (sizeof(_Py_hashtable_entry_t) + (HT)->data_size) | 
 |  | 
 | /* Forward declaration */ | 
 | static void hashtable_rehash(_Py_hashtable_t *ht); | 
 |  | 
 | static void | 
 | _Py_slist_init(_Py_slist_t *list) | 
 | { | 
 |     list->head = NULL; | 
 | } | 
 |  | 
 | static void | 
 | _Py_slist_prepend(_Py_slist_t *list, _Py_slist_item_t *item) | 
 | { | 
 |     item->next = list->head; | 
 |     list->head = item; | 
 | } | 
 |  | 
 | static void | 
 | _Py_slist_remove(_Py_slist_t *list, _Py_slist_item_t *previous, | 
 |                  _Py_slist_item_t *item) | 
 | { | 
 |     if (previous != NULL) | 
 |         previous->next = item->next; | 
 |     else | 
 |         list->head = item->next; | 
 | } | 
 |  | 
 | Py_uhash_t | 
 | _Py_hashtable_hash_int(const void *key) | 
 | { | 
 |     return (Py_uhash_t)key; | 
 | } | 
 |  | 
 | Py_uhash_t | 
 | _Py_hashtable_hash_ptr(const void *key) | 
 | { | 
 |     return (Py_uhash_t)_Py_HashPointer((void *)key); | 
 | } | 
 |  | 
 | int | 
 | _Py_hashtable_compare_direct(const void *key, const _Py_hashtable_entry_t *entry) | 
 | { | 
 |     return entry->key == key; | 
 | } | 
 |  | 
 | /* makes sure the real size of the buckets array is a power of 2 */ | 
 | static size_t | 
 | round_size(size_t s) | 
 | { | 
 |     size_t i; | 
 |     if (s < HASHTABLE_MIN_SIZE) | 
 |         return HASHTABLE_MIN_SIZE; | 
 |     i = 1; | 
 |     while (i < s) | 
 |         i <<= 1; | 
 |     return i; | 
 | } | 
 |  | 
 | _Py_hashtable_t * | 
 | _Py_hashtable_new_full(size_t data_size, size_t init_size, | 
 |                        _Py_hashtable_hash_func hash_func, | 
 |                        _Py_hashtable_compare_func compare_func, | 
 |                        _Py_hashtable_copy_data_func copy_data_func, | 
 |                        _Py_hashtable_free_data_func free_data_func, | 
 |                        _Py_hashtable_get_data_size_func get_data_size_func, | 
 |                        _Py_hashtable_allocator_t *allocator) | 
 | { | 
 |     _Py_hashtable_t *ht; | 
 |     size_t buckets_size; | 
 |     _Py_hashtable_allocator_t alloc; | 
 |  | 
 |     if (allocator == NULL) { | 
 |         alloc.malloc = PyMem_RawMalloc; | 
 |         alloc.free = PyMem_RawFree; | 
 |     } | 
 |     else | 
 |         alloc = *allocator; | 
 |  | 
 |     ht = (_Py_hashtable_t *)alloc.malloc(sizeof(_Py_hashtable_t)); | 
 |     if (ht == NULL) | 
 |         return ht; | 
 |  | 
 |     ht->num_buckets = round_size(init_size); | 
 |     ht->entries = 0; | 
 |     ht->data_size = data_size; | 
 |  | 
 |     buckets_size = ht->num_buckets * sizeof(ht->buckets[0]); | 
 |     ht->buckets = alloc.malloc(buckets_size); | 
 |     if (ht->buckets == NULL) { | 
 |         alloc.free(ht); | 
 |         return NULL; | 
 |     } | 
 |     memset(ht->buckets, 0, buckets_size); | 
 |  | 
 |     ht->hash_func = hash_func; | 
 |     ht->compare_func = compare_func; | 
 |     ht->copy_data_func = copy_data_func; | 
 |     ht->free_data_func = free_data_func; | 
 |     ht->get_data_size_func = get_data_size_func; | 
 |     ht->alloc = alloc; | 
 |     return ht; | 
 | } | 
 |  | 
 | _Py_hashtable_t * | 
 | _Py_hashtable_new(size_t data_size, | 
 |                   _Py_hashtable_hash_func hash_func, | 
 |                   _Py_hashtable_compare_func compare_func) | 
 | { | 
 |     return _Py_hashtable_new_full(data_size, HASHTABLE_MIN_SIZE, | 
 |                                   hash_func, compare_func, | 
 |                                   NULL, NULL, NULL, NULL); | 
 | } | 
 |  | 
 | size_t | 
 | _Py_hashtable_size(_Py_hashtable_t *ht) | 
 | { | 
 |     size_t size; | 
 |     size_t hv; | 
 |  | 
 |     size = sizeof(_Py_hashtable_t); | 
 |  | 
 |     /* buckets */ | 
 |     size += ht->num_buckets * sizeof(_Py_hashtable_entry_t *); | 
 |  | 
 |     /* entries */ | 
 |     size += ht->entries * HASHTABLE_ITEM_SIZE(ht); | 
 |  | 
 |     /* data linked from entries */ | 
 |     if (ht->get_data_size_func) { | 
 |         for (hv = 0; hv < ht->num_buckets; hv++) { | 
 |             _Py_hashtable_entry_t *entry; | 
 |  | 
 |             for (entry = TABLE_HEAD(ht, hv); entry; entry = ENTRY_NEXT(entry)) { | 
 |                 void *data; | 
 |  | 
 |                 data = _Py_HASHTABLE_ENTRY_DATA_AS_VOID_P(entry); | 
 |                 size += ht->get_data_size_func(data); | 
 |             } | 
 |         } | 
 |     } | 
 |     return size; | 
 | } | 
 |  | 
 | #ifdef Py_DEBUG | 
 | void | 
 | _Py_hashtable_print_stats(_Py_hashtable_t *ht) | 
 | { | 
 |     size_t size; | 
 |     size_t chain_len, max_chain_len, total_chain_len, nchains; | 
 |     _Py_hashtable_entry_t *entry; | 
 |     size_t hv; | 
 |     double load; | 
 |  | 
 |     size = _Py_hashtable_size(ht); | 
 |  | 
 |     load = (double)ht->entries / ht->num_buckets; | 
 |  | 
 |     max_chain_len = 0; | 
 |     total_chain_len = 0; | 
 |     nchains = 0; | 
 |     for (hv = 0; hv < ht->num_buckets; hv++) { | 
 |         entry = TABLE_HEAD(ht, hv); | 
 |         if (entry != NULL) { | 
 |             chain_len = 0; | 
 |             for (; entry; entry = ENTRY_NEXT(entry)) { | 
 |                 chain_len++; | 
 |             } | 
 |             if (chain_len > max_chain_len) | 
 |                 max_chain_len = chain_len; | 
 |             total_chain_len += chain_len; | 
 |             nchains++; | 
 |         } | 
 |     } | 
 |     printf("hash table %p: entries=%" | 
 |            PY_FORMAT_SIZE_T "u/%" PY_FORMAT_SIZE_T "u (%.0f%%), ", | 
 |            ht, ht->entries, ht->num_buckets, load * 100.0); | 
 |     if (nchains) | 
 |         printf("avg_chain_len=%.1f, ", (double)total_chain_len / nchains); | 
 |     printf("max_chain_len=%" PY_FORMAT_SIZE_T "u, %" PY_FORMAT_SIZE_T "u kB\n", | 
 |            max_chain_len, size / 1024); | 
 | } | 
 | #endif | 
 |  | 
 | /* Get an entry. Return NULL if the key does not exist. */ | 
 | _Py_hashtable_entry_t * | 
 | _Py_hashtable_get_entry(_Py_hashtable_t *ht, const void *key) | 
 | { | 
 |     Py_uhash_t key_hash; | 
 |     size_t index; | 
 |     _Py_hashtable_entry_t *entry; | 
 |  | 
 |     key_hash = ht->hash_func(key); | 
 |     index = key_hash & (ht->num_buckets - 1); | 
 |  | 
 |     for (entry = TABLE_HEAD(ht, index); entry != NULL; entry = ENTRY_NEXT(entry)) { | 
 |         if (entry->key_hash == key_hash && ht->compare_func(key, entry)) | 
 |             break; | 
 |     } | 
 |  | 
 |     return entry; | 
 | } | 
 |  | 
 | static int | 
 | _hashtable_pop_entry(_Py_hashtable_t *ht, const void *key, void *data, size_t data_size) | 
 | { | 
 |     Py_uhash_t key_hash; | 
 |     size_t index; | 
 |     _Py_hashtable_entry_t *entry, *previous; | 
 |  | 
 |     key_hash = ht->hash_func(key); | 
 |     index = key_hash & (ht->num_buckets - 1); | 
 |  | 
 |     previous = NULL; | 
 |     for (entry = TABLE_HEAD(ht, index); entry != NULL; entry = ENTRY_NEXT(entry)) { | 
 |         if (entry->key_hash == key_hash && ht->compare_func(key, entry)) | 
 |             break; | 
 |         previous = entry; | 
 |     } | 
 |  | 
 |     if (entry == NULL) | 
 |         return 0; | 
 |  | 
 |     _Py_slist_remove(&ht->buckets[index], (_Py_slist_item_t *)previous, | 
 |                      (_Py_slist_item_t *)entry); | 
 |     ht->entries--; | 
 |  | 
 |     if (data != NULL) | 
 |         _Py_HASHTABLE_ENTRY_READ_DATA(ht, data, data_size, entry); | 
 |     ht->alloc.free(entry); | 
 |  | 
 |     if ((float)ht->entries / (float)ht->num_buckets < HASHTABLE_LOW) | 
 |         hashtable_rehash(ht); | 
 |     return 1; | 
 | } | 
 |  | 
 | /* Add a new entry to the hash. The key must not be present in the hash table. | 
 |    Return 0 on success, -1 on memory error. */ | 
 | int | 
 | _Py_hashtable_set(_Py_hashtable_t *ht, const void *key, | 
 |                   void *data, size_t data_size) | 
 | { | 
 |     Py_uhash_t key_hash; | 
 |     size_t index; | 
 |     _Py_hashtable_entry_t *entry; | 
 |  | 
 |     assert(data != NULL || data_size == 0); | 
 | #ifndef NDEBUG | 
 |     /* Don't write the assertion on a single line because it is interesting | 
 |        to know the duplicated entry if the assertion failed. The entry can | 
 |        be read using a debugger. */ | 
 |     entry = _Py_hashtable_get_entry(ht, key); | 
 |     assert(entry == NULL); | 
 | #endif | 
 |  | 
 |     key_hash = ht->hash_func(key); | 
 |     index = key_hash & (ht->num_buckets - 1); | 
 |  | 
 |     entry = ht->alloc.malloc(HASHTABLE_ITEM_SIZE(ht)); | 
 |     if (entry == NULL) { | 
 |         /* memory allocation failed */ | 
 |         return -1; | 
 |     } | 
 |  | 
 |     entry->key = (void *)key; | 
 |     entry->key_hash = key_hash; | 
 |  | 
 |     assert(data_size == ht->data_size); | 
 |     memcpy(_Py_HASHTABLE_ENTRY_DATA(entry), data, data_size); | 
 |  | 
 |     _Py_slist_prepend(&ht->buckets[index], (_Py_slist_item_t*)entry); | 
 |     ht->entries++; | 
 |  | 
 |     if ((float)ht->entries / (float)ht->num_buckets > HASHTABLE_HIGH) | 
 |         hashtable_rehash(ht); | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Get data from an entry. Copy entry data into data and return 1 if the entry | 
 |    exists, return 0 if the entry does not exist. */ | 
 | int | 
 | _Py_hashtable_get(_Py_hashtable_t *ht, const void *key, void *data, size_t data_size) | 
 | { | 
 |     _Py_hashtable_entry_t *entry; | 
 |  | 
 |     assert(data != NULL); | 
 |  | 
 |     entry = _Py_hashtable_get_entry(ht, key); | 
 |     if (entry == NULL) | 
 |         return 0; | 
 |     _Py_HASHTABLE_ENTRY_READ_DATA(ht, data, data_size, entry); | 
 |     return 1; | 
 | } | 
 |  | 
 | int | 
 | _Py_hashtable_pop(_Py_hashtable_t *ht, const void *key, void *data, size_t data_size) | 
 | { | 
 |     assert(data != NULL); | 
 |     assert(ht->free_data_func == NULL); | 
 |     return _hashtable_pop_entry(ht, key, data, data_size); | 
 | } | 
 |  | 
 | /* Delete an entry. The entry must exist. */ | 
 | void | 
 | _Py_hashtable_delete(_Py_hashtable_t *ht, const void *key) | 
 | { | 
 | #ifndef NDEBUG | 
 |     int found = _hashtable_pop_entry(ht, key, NULL, 0); | 
 |     assert(found); | 
 | #else | 
 |     (void)_hashtable_pop_entry(ht, key, NULL, 0); | 
 | #endif | 
 | } | 
 |  | 
 | /* Prototype for a pointer to a function to be called foreach | 
 |    key/value pair in the hash by hashtable_foreach().  Iteration | 
 |    stops if a non-zero value is returned. */ | 
 | int | 
 | _Py_hashtable_foreach(_Py_hashtable_t *ht, | 
 |                       int (*func) (_Py_hashtable_entry_t *entry, void *arg), | 
 |                       void *arg) | 
 | { | 
 |     _Py_hashtable_entry_t *entry; | 
 |     size_t hv; | 
 |  | 
 |     for (hv = 0; hv < ht->num_buckets; hv++) { | 
 |         for (entry = TABLE_HEAD(ht, hv); entry; entry = ENTRY_NEXT(entry)) { | 
 |             int res = func(entry, arg); | 
 |             if (res) | 
 |                 return res; | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static void | 
 | hashtable_rehash(_Py_hashtable_t *ht) | 
 | { | 
 |     size_t buckets_size, new_size, bucket; | 
 |     _Py_slist_t *old_buckets = NULL; | 
 |     size_t old_num_buckets; | 
 |  | 
 |     new_size = round_size((size_t)(ht->entries * HASHTABLE_REHASH_FACTOR)); | 
 |     if (new_size == ht->num_buckets) | 
 |         return; | 
 |  | 
 |     old_num_buckets = ht->num_buckets; | 
 |  | 
 |     buckets_size = new_size * sizeof(ht->buckets[0]); | 
 |     old_buckets = ht->buckets; | 
 |     ht->buckets = ht->alloc.malloc(buckets_size); | 
 |     if (ht->buckets == NULL) { | 
 |         /* cancel rehash on memory allocation failure */ | 
 |         ht->buckets = old_buckets ; | 
 |         /* memory allocation failed */ | 
 |         return; | 
 |     } | 
 |     memset(ht->buckets, 0, buckets_size); | 
 |  | 
 |     ht->num_buckets = new_size; | 
 |  | 
 |     for (bucket = 0; bucket < old_num_buckets; bucket++) { | 
 |         _Py_hashtable_entry_t *entry, *next; | 
 |         for (entry = BUCKETS_HEAD(old_buckets[bucket]); entry != NULL; entry = next) { | 
 |             size_t entry_index; | 
 |  | 
 |             assert(ht->hash_func(entry->key) == entry->key_hash); | 
 |             next = ENTRY_NEXT(entry); | 
 |             entry_index = entry->key_hash & (new_size - 1); | 
 |  | 
 |             _Py_slist_prepend(&ht->buckets[entry_index], (_Py_slist_item_t*)entry); | 
 |         } | 
 |     } | 
 |  | 
 |     ht->alloc.free(old_buckets); | 
 | } | 
 |  | 
 | void | 
 | _Py_hashtable_clear(_Py_hashtable_t *ht) | 
 | { | 
 |     _Py_hashtable_entry_t *entry, *next; | 
 |     size_t i; | 
 |  | 
 |     for (i=0; i < ht->num_buckets; i++) { | 
 |         for (entry = TABLE_HEAD(ht, i); entry != NULL; entry = next) { | 
 |             next = ENTRY_NEXT(entry); | 
 |             if (ht->free_data_func) | 
 |                 ht->free_data_func(_Py_HASHTABLE_ENTRY_DATA_AS_VOID_P(entry)); | 
 |             ht->alloc.free(entry); | 
 |         } | 
 |         _Py_slist_init(&ht->buckets[i]); | 
 |     } | 
 |     ht->entries = 0; | 
 |     hashtable_rehash(ht); | 
 | } | 
 |  | 
 | void | 
 | _Py_hashtable_destroy(_Py_hashtable_t *ht) | 
 | { | 
 |     size_t i; | 
 |  | 
 |     for (i = 0; i < ht->num_buckets; i++) { | 
 |         _Py_slist_item_t *entry = ht->buckets[i].head; | 
 |         while (entry) { | 
 |             _Py_slist_item_t *entry_next = entry->next; | 
 |             if (ht->free_data_func) | 
 |                 ht->free_data_func(_Py_HASHTABLE_ENTRY_DATA_AS_VOID_P(entry)); | 
 |             ht->alloc.free(entry); | 
 |             entry = entry_next; | 
 |         } | 
 |     } | 
 |  | 
 |     ht->alloc.free(ht->buckets); | 
 |     ht->alloc.free(ht); | 
 | } | 
 |  | 
 | /* Return a copy of the hash table */ | 
 | _Py_hashtable_t * | 
 | _Py_hashtable_copy(_Py_hashtable_t *src) | 
 | { | 
 |     _Py_hashtable_t *dst; | 
 |     _Py_hashtable_entry_t *entry; | 
 |     size_t bucket; | 
 |     int err; | 
 |     void *data, *new_data; | 
 |  | 
 |     dst = _Py_hashtable_new_full(src->data_size, src->num_buckets, | 
 |                             src->hash_func, src->compare_func, | 
 |                             src->copy_data_func, src->free_data_func, | 
 |                             src->get_data_size_func, &src->alloc); | 
 |     if (dst == NULL) | 
 |         return NULL; | 
 |  | 
 |     for (bucket=0; bucket < src->num_buckets; bucket++) { | 
 |         entry = TABLE_HEAD(src, bucket); | 
 |         for (; entry; entry = ENTRY_NEXT(entry)) { | 
 |             if (src->copy_data_func) { | 
 |                 data = _Py_HASHTABLE_ENTRY_DATA_AS_VOID_P(entry); | 
 |                 new_data = src->copy_data_func(data); | 
 |                 if (new_data != NULL) | 
 |                     err = _Py_hashtable_set(dst, entry->key, | 
 |                                         &new_data, src->data_size); | 
 |                 else | 
 |                     err = 1; | 
 |             } | 
 |             else { | 
 |                 data = _Py_HASHTABLE_ENTRY_DATA(entry); | 
 |                 err = _Py_hashtable_set(dst, entry->key, data, src->data_size); | 
 |             } | 
 |             if (err) { | 
 |                 _Py_hashtable_destroy(dst); | 
 |                 return NULL; | 
 |             } | 
 |         } | 
 |     } | 
 |     return dst; | 
 | } | 
 |  |