| # Copyright (c) 2004 Python Software Foundation. |
| # All rights reserved. |
| |
| # Written by Eric Price <eprice at tjhsst.edu> |
| # and Facundo Batista <facundo at taniquetil.com.ar> |
| # and Raymond Hettinger <python at rcn.com> |
| # and Aahz <aahz at pobox.com> |
| # and Tim Peters |
| |
| # This module is currently Py2.3 compatible and should be kept that way |
| # unless a major compelling advantage arises. IOW, 2.3 compatibility is |
| # strongly preferred, but not guaranteed. |
| |
| # Also, this module should be kept in sync with the latest updates of |
| # the IBM specification as it evolves. Those updates will be treated |
| # as bug fixes (deviation from the spec is a compatibility, usability |
| # bug) and will be backported. At this point the spec is stabilizing |
| # and the updates are becoming fewer, smaller, and less significant. |
| |
| """ |
| This is a Py2.3 implementation of decimal floating point arithmetic based on |
| the General Decimal Arithmetic Specification: |
| |
| www2.hursley.ibm.com/decimal/decarith.html |
| |
| and IEEE standard 854-1987: |
| |
| www.cs.berkeley.edu/~ejr/projects/754/private/drafts/854-1987/dir.html |
| |
| Decimal floating point has finite precision with arbitrarily large bounds. |
| |
| The purpose of the module is to support arithmetic using familiar |
| "schoolhouse" rules and to avoid the some of tricky representation |
| issues associated with binary floating point. The package is especially |
| useful for financial applications or for contexts where users have |
| expectations that are at odds with binary floating point (for instance, |
| in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead |
| of the expected Decimal("0.00") returned by decimal floating point). |
| |
| Here are some examples of using the decimal module: |
| |
| >>> from decimal import * |
| >>> setcontext(ExtendedContext) |
| >>> Decimal(0) |
| Decimal("0") |
| >>> Decimal("1") |
| Decimal("1") |
| >>> Decimal("-.0123") |
| Decimal("-0.0123") |
| >>> Decimal(123456) |
| Decimal("123456") |
| >>> Decimal("123.45e12345678901234567890") |
| Decimal("1.2345E+12345678901234567892") |
| >>> Decimal("1.33") + Decimal("1.27") |
| Decimal("2.60") |
| >>> Decimal("12.34") + Decimal("3.87") - Decimal("18.41") |
| Decimal("-2.20") |
| >>> dig = Decimal(1) |
| >>> print dig / Decimal(3) |
| 0.333333333 |
| >>> getcontext().prec = 18 |
| >>> print dig / Decimal(3) |
| 0.333333333333333333 |
| >>> print dig.sqrt() |
| 1 |
| >>> print Decimal(3).sqrt() |
| 1.73205080756887729 |
| >>> print Decimal(3) ** 123 |
| 4.85192780976896427E+58 |
| >>> inf = Decimal(1) / Decimal(0) |
| >>> print inf |
| Infinity |
| >>> neginf = Decimal(-1) / Decimal(0) |
| >>> print neginf |
| -Infinity |
| >>> print neginf + inf |
| NaN |
| >>> print neginf * inf |
| -Infinity |
| >>> print dig / 0 |
| Infinity |
| >>> getcontext().traps[DivisionByZero] = 1 |
| >>> print dig / 0 |
| Traceback (most recent call last): |
| ... |
| ... |
| ... |
| DivisionByZero: x / 0 |
| >>> c = Context() |
| >>> c.traps[InvalidOperation] = 0 |
| >>> print c.flags[InvalidOperation] |
| 0 |
| >>> c.divide(Decimal(0), Decimal(0)) |
| Decimal("NaN") |
| >>> c.traps[InvalidOperation] = 1 |
| >>> print c.flags[InvalidOperation] |
| 1 |
| >>> c.flags[InvalidOperation] = 0 |
| >>> print c.flags[InvalidOperation] |
| 0 |
| >>> print c.divide(Decimal(0), Decimal(0)) |
| Traceback (most recent call last): |
| ... |
| ... |
| ... |
| InvalidOperation: 0 / 0 |
| >>> print c.flags[InvalidOperation] |
| 1 |
| >>> c.flags[InvalidOperation] = 0 |
| >>> c.traps[InvalidOperation] = 0 |
| >>> print c.divide(Decimal(0), Decimal(0)) |
| NaN |
| >>> print c.flags[InvalidOperation] |
| 1 |
| >>> |
| """ |
| |
| __all__ = [ |
| # Two major classes |
| 'Decimal', 'Context', |
| |
| # Contexts |
| 'DefaultContext', 'BasicContext', 'ExtendedContext', |
| |
| # Exceptions |
| 'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero', |
| 'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow', |
| |
| # Constants for use in setting up contexts |
| 'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING', |
| 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', |
| |
| # Functions for manipulating contexts |
| 'setcontext', 'getcontext' |
| ] |
| |
| import copy as _copy |
| |
| #Rounding |
| ROUND_DOWN = 'ROUND_DOWN' |
| ROUND_HALF_UP = 'ROUND_HALF_UP' |
| ROUND_HALF_EVEN = 'ROUND_HALF_EVEN' |
| ROUND_CEILING = 'ROUND_CEILING' |
| ROUND_FLOOR = 'ROUND_FLOOR' |
| ROUND_UP = 'ROUND_UP' |
| ROUND_HALF_DOWN = 'ROUND_HALF_DOWN' |
| |
| #Rounding decision (not part of the public API) |
| NEVER_ROUND = 'NEVER_ROUND' # Round in division (non-divmod), sqrt ONLY |
| ALWAYS_ROUND = 'ALWAYS_ROUND' # Every operation rounds at end. |
| |
| #Errors |
| |
| class DecimalException(ArithmeticError): |
| """Base exception class. |
| |
| Used exceptions derive from this. |
| If an exception derives from another exception besides this (such as |
| Underflow (Inexact, Rounded, Subnormal) that indicates that it is only |
| called if the others are present. This isn't actually used for |
| anything, though. |
| |
| handle -- Called when context._raise_error is called and the |
| trap_enabler is set. First argument is self, second is the |
| context. More arguments can be given, those being after |
| the explanation in _raise_error (For example, |
| context._raise_error(NewError, '(-x)!', self._sign) would |
| call NewError().handle(context, self._sign).) |
| |
| To define a new exception, it should be sufficient to have it derive |
| from DecimalException. |
| """ |
| def handle(self, context, *args): |
| pass |
| |
| |
| class Clamped(DecimalException): |
| """Exponent of a 0 changed to fit bounds. |
| |
| This occurs and signals clamped if the exponent of a result has been |
| altered in order to fit the constraints of a specific concrete |
| representation. This may occur when the exponent of a zero result would |
| be outside the bounds of a representation, or when a large normal |
| number would have an encoded exponent that cannot be represented. In |
| this latter case, the exponent is reduced to fit and the corresponding |
| number of zero digits are appended to the coefficient ("fold-down"). |
| """ |
| |
| |
| class InvalidOperation(DecimalException): |
| """An invalid operation was performed. |
| |
| Various bad things cause this: |
| |
| Something creates a signaling NaN |
| -INF + INF |
| 0 * (+-)INF |
| (+-)INF / (+-)INF |
| x % 0 |
| (+-)INF % x |
| x._rescale( non-integer ) |
| sqrt(-x) , x > 0 |
| 0 ** 0 |
| x ** (non-integer) |
| x ** (+-)INF |
| An operand is invalid |
| """ |
| def handle(self, context, *args): |
| if args: |
| if args[0] == 1: #sNaN, must drop 's' but keep diagnostics |
| return Decimal( (args[1]._sign, args[1]._int, 'n') ) |
| return NaN |
| |
| class ConversionSyntax(InvalidOperation): |
| """Trying to convert badly formed string. |
| |
| This occurs and signals invalid-operation if an string is being |
| converted to a number and it does not conform to the numeric string |
| syntax. The result is [0,qNaN]. |
| """ |
| |
| def handle(self, context, *args): |
| return (0, (0,), 'n') #Passed to something which uses a tuple. |
| |
| class DivisionByZero(DecimalException, ZeroDivisionError): |
| """Division by 0. |
| |
| This occurs and signals division-by-zero if division of a finite number |
| by zero was attempted (during a divide-integer or divide operation, or a |
| power operation with negative right-hand operand), and the dividend was |
| not zero. |
| |
| The result of the operation is [sign,inf], where sign is the exclusive |
| or of the signs of the operands for divide, or is 1 for an odd power of |
| -0, for power. |
| """ |
| |
| def handle(self, context, sign, double = None, *args): |
| if double is not None: |
| return (Infsign[sign],)*2 |
| return Infsign[sign] |
| |
| class DivisionImpossible(InvalidOperation): |
| """Cannot perform the division adequately. |
| |
| This occurs and signals invalid-operation if the integer result of a |
| divide-integer or remainder operation had too many digits (would be |
| longer than precision). The result is [0,qNaN]. |
| """ |
| |
| def handle(self, context, *args): |
| return (NaN, NaN) |
| |
| class DivisionUndefined(InvalidOperation, ZeroDivisionError): |
| """Undefined result of division. |
| |
| This occurs and signals invalid-operation if division by zero was |
| attempted (during a divide-integer, divide, or remainder operation), and |
| the dividend is also zero. The result is [0,qNaN]. |
| """ |
| |
| def handle(self, context, tup=None, *args): |
| if tup is not None: |
| return (NaN, NaN) #for 0 %0, 0 // 0 |
| return NaN |
| |
| class Inexact(DecimalException): |
| """Had to round, losing information. |
| |
| This occurs and signals inexact whenever the result of an operation is |
| not exact (that is, it needed to be rounded and any discarded digits |
| were non-zero), or if an overflow or underflow condition occurs. The |
| result in all cases is unchanged. |
| |
| The inexact signal may be tested (or trapped) to determine if a given |
| operation (or sequence of operations) was inexact. |
| """ |
| pass |
| |
| class InvalidContext(InvalidOperation): |
| """Invalid context. Unknown rounding, for example. |
| |
| This occurs and signals invalid-operation if an invalid context was |
| detected during an operation. This can occur if contexts are not checked |
| on creation and either the precision exceeds the capability of the |
| underlying concrete representation or an unknown or unsupported rounding |
| was specified. These aspects of the context need only be checked when |
| the values are required to be used. The result is [0,qNaN]. |
| """ |
| |
| def handle(self, context, *args): |
| return NaN |
| |
| class Rounded(DecimalException): |
| """Number got rounded (not necessarily changed during rounding). |
| |
| This occurs and signals rounded whenever the result of an operation is |
| rounded (that is, some zero or non-zero digits were discarded from the |
| coefficient), or if an overflow or underflow condition occurs. The |
| result in all cases is unchanged. |
| |
| The rounded signal may be tested (or trapped) to determine if a given |
| operation (or sequence of operations) caused a loss of precision. |
| """ |
| pass |
| |
| class Subnormal(DecimalException): |
| """Exponent < Emin before rounding. |
| |
| This occurs and signals subnormal whenever the result of a conversion or |
| operation is subnormal (that is, its adjusted exponent is less than |
| Emin, before any rounding). The result in all cases is unchanged. |
| |
| The subnormal signal may be tested (or trapped) to determine if a given |
| or operation (or sequence of operations) yielded a subnormal result. |
| """ |
| pass |
| |
| class Overflow(Inexact, Rounded): |
| """Numerical overflow. |
| |
| This occurs and signals overflow if the adjusted exponent of a result |
| (from a conversion or from an operation that is not an attempt to divide |
| by zero), after rounding, would be greater than the largest value that |
| can be handled by the implementation (the value Emax). |
| |
| The result depends on the rounding mode: |
| |
| For round-half-up and round-half-even (and for round-half-down and |
| round-up, if implemented), the result of the operation is [sign,inf], |
| where sign is the sign of the intermediate result. For round-down, the |
| result is the largest finite number that can be represented in the |
| current precision, with the sign of the intermediate result. For |
| round-ceiling, the result is the same as for round-down if the sign of |
| the intermediate result is 1, or is [0,inf] otherwise. For round-floor, |
| the result is the same as for round-down if the sign of the intermediate |
| result is 0, or is [1,inf] otherwise. In all cases, Inexact and Rounded |
| will also be raised. |
| """ |
| |
| def handle(self, context, sign, *args): |
| if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN, |
| ROUND_HALF_DOWN, ROUND_UP): |
| return Infsign[sign] |
| if sign == 0: |
| if context.rounding == ROUND_CEILING: |
| return Infsign[sign] |
| return Decimal((sign, (9,)*context.prec, |
| context.Emax-context.prec+1)) |
| if sign == 1: |
| if context.rounding == ROUND_FLOOR: |
| return Infsign[sign] |
| return Decimal( (sign, (9,)*context.prec, |
| context.Emax-context.prec+1)) |
| |
| |
| class Underflow(Inexact, Rounded, Subnormal): |
| """Numerical underflow with result rounded to 0. |
| |
| This occurs and signals underflow if a result is inexact and the |
| adjusted exponent of the result would be smaller (more negative) than |
| the smallest value that can be handled by the implementation (the value |
| Emin). That is, the result is both inexact and subnormal. |
| |
| The result after an underflow will be a subnormal number rounded, if |
| necessary, so that its exponent is not less than Etiny. This may result |
| in 0 with the sign of the intermediate result and an exponent of Etiny. |
| |
| In all cases, Inexact, Rounded, and Subnormal will also be raised. |
| """ |
| |
| # List of public traps and flags |
| _signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded, |
| Underflow, InvalidOperation, Subnormal] |
| |
| # Map conditions (per the spec) to signals |
| _condition_map = {ConversionSyntax:InvalidOperation, |
| DivisionImpossible:InvalidOperation, |
| DivisionUndefined:InvalidOperation, |
| InvalidContext:InvalidOperation} |
| |
| ##### Context Functions ####################################### |
| |
| # The getcontext() and setcontext() function manage access to a thread-local |
| # current context. Py2.4 offers direct support for thread locals. If that |
| # is not available, use threading.currentThread() which is slower but will |
| # work for older Pythons. If threads are not part of the build, create a |
| # mock threading object with threading.local() returning the module namespace. |
| |
| try: |
| import threading |
| except ImportError: |
| # Python was compiled without threads; create a mock object instead |
| import sys |
| class MockThreading: |
| def local(self, sys=sys): |
| return sys.modules[__name__] |
| threading = MockThreading() |
| del sys, MockThreading |
| |
| try: |
| threading.local |
| |
| except AttributeError: |
| |
| #To fix reloading, force it to create a new context |
| #Old contexts have different exceptions in their dicts, making problems. |
| if hasattr(threading.currentThread(), '__decimal_context__'): |
| del threading.currentThread().__decimal_context__ |
| |
| def setcontext(context): |
| """Set this thread's context to context.""" |
| if context in (DefaultContext, BasicContext, ExtendedContext): |
| context = context.copy() |
| context.clear_flags() |
| threading.currentThread().__decimal_context__ = context |
| |
| def getcontext(): |
| """Returns this thread's context. |
| |
| If this thread does not yet have a context, returns |
| a new context and sets this thread's context. |
| New contexts are copies of DefaultContext. |
| """ |
| try: |
| return threading.currentThread().__decimal_context__ |
| except AttributeError: |
| context = Context() |
| threading.currentThread().__decimal_context__ = context |
| return context |
| |
| else: |
| |
| local = threading.local() |
| if hasattr(local, '__decimal_context__'): |
| del local.__decimal_context__ |
| |
| def getcontext(_local=local): |
| """Returns this thread's context. |
| |
| If this thread does not yet have a context, returns |
| a new context and sets this thread's context. |
| New contexts are copies of DefaultContext. |
| """ |
| try: |
| return _local.__decimal_context__ |
| except AttributeError: |
| context = Context() |
| _local.__decimal_context__ = context |
| return context |
| |
| def setcontext(context, _local=local): |
| """Set this thread's context to context.""" |
| if context in (DefaultContext, BasicContext, ExtendedContext): |
| context = context.copy() |
| context.clear_flags() |
| _local.__decimal_context__ = context |
| |
| del threading, local # Don't contaminate the namespace |
| |
| |
| ##### Decimal class ########################################### |
| |
| class Decimal(object): |
| """Floating point class for decimal arithmetic.""" |
| |
| __slots__ = ('_exp','_int','_sign', '_is_special') |
| # Generally, the value of the Decimal instance is given by |
| # (-1)**_sign * _int * 10**_exp |
| # Special values are signified by _is_special == True |
| |
| # We're immutable, so use __new__ not __init__ |
| def __new__(cls, value="0", context=None): |
| """Create a decimal point instance. |
| |
| >>> Decimal('3.14') # string input |
| Decimal("3.14") |
| >>> Decimal((0, (3, 1, 4), -2)) # tuple input (sign, digit_tuple, exponent) |
| Decimal("3.14") |
| >>> Decimal(314) # int or long |
| Decimal("314") |
| >>> Decimal(Decimal(314)) # another decimal instance |
| Decimal("314") |
| """ |
| |
| self = object.__new__(cls) |
| self._is_special = False |
| |
| # From an internal working value |
| if isinstance(value, _WorkRep): |
| self._sign = value.sign |
| self._int = tuple(map(int, str(value.int))) |
| self._exp = int(value.exp) |
| return self |
| |
| # From another decimal |
| if isinstance(value, Decimal): |
| self._exp = value._exp |
| self._sign = value._sign |
| self._int = value._int |
| self._is_special = value._is_special |
| return self |
| |
| # From an integer |
| if isinstance(value, (int,long)): |
| if value >= 0: |
| self._sign = 0 |
| else: |
| self._sign = 1 |
| self._exp = 0 |
| self._int = tuple(map(int, str(abs(value)))) |
| return self |
| |
| # tuple/list conversion (possibly from as_tuple()) |
| if isinstance(value, (list,tuple)): |
| if len(value) != 3: |
| raise ValueError, 'Invalid arguments' |
| if value[0] not in (0,1): |
| raise ValueError, 'Invalid sign' |
| for digit in value[1]: |
| if not isinstance(digit, (int,long)) or digit < 0: |
| raise ValueError, "The second value in the tuple must be composed of non negative integer elements." |
| |
| self._sign = value[0] |
| self._int = tuple(value[1]) |
| if value[2] in ('F','n','N'): |
| self._exp = value[2] |
| self._is_special = True |
| else: |
| self._exp = int(value[2]) |
| return self |
| |
| if isinstance(value, float): |
| raise TypeError("Cannot convert float to Decimal. " + |
| "First convert the float to a string") |
| |
| # Other argument types may require the context during interpretation |
| if context is None: |
| context = getcontext() |
| |
| # From a string |
| # REs insist on real strings, so we can too. |
| if isinstance(value, basestring): |
| if _isinfinity(value): |
| self._exp = 'F' |
| self._int = (0,) |
| self._is_special = True |
| if _isinfinity(value) == 1: |
| self._sign = 0 |
| else: |
| self._sign = 1 |
| return self |
| if _isnan(value): |
| sig, sign, diag = _isnan(value) |
| self._is_special = True |
| if len(diag) > context.prec: #Diagnostic info too long |
| self._sign, self._int, self._exp = \ |
| context._raise_error(ConversionSyntax) |
| return self |
| if sig == 1: |
| self._exp = 'n' #qNaN |
| else: #sig == 2 |
| self._exp = 'N' #sNaN |
| self._sign = sign |
| self._int = tuple(map(int, diag)) #Diagnostic info |
| return self |
| try: |
| self._sign, self._int, self._exp = _string2exact(value) |
| except ValueError: |
| self._is_special = True |
| self._sign, self._int, self._exp = context._raise_error(ConversionSyntax) |
| return self |
| |
| raise TypeError("Cannot convert %r to Decimal" % value) |
| |
| def _isnan(self): |
| """Returns whether the number is not actually one. |
| |
| 0 if a number |
| 1 if NaN |
| 2 if sNaN |
| """ |
| if self._is_special: |
| exp = self._exp |
| if exp == 'n': |
| return 1 |
| elif exp == 'N': |
| return 2 |
| return 0 |
| |
| def _isinfinity(self): |
| """Returns whether the number is infinite |
| |
| 0 if finite or not a number |
| 1 if +INF |
| -1 if -INF |
| """ |
| if self._exp == 'F': |
| if self._sign: |
| return -1 |
| return 1 |
| return 0 |
| |
| def _check_nans(self, other = None, context=None): |
| """Returns whether the number is not actually one. |
| |
| if self, other are sNaN, signal |
| if self, other are NaN return nan |
| return 0 |
| |
| Done before operations. |
| """ |
| |
| self_is_nan = self._isnan() |
| if other is None: |
| other_is_nan = False |
| else: |
| other_is_nan = other._isnan() |
| |
| if self_is_nan or other_is_nan: |
| if context is None: |
| context = getcontext() |
| |
| if self_is_nan == 2: |
| return context._raise_error(InvalidOperation, 'sNaN', |
| 1, self) |
| if other_is_nan == 2: |
| return context._raise_error(InvalidOperation, 'sNaN', |
| 1, other) |
| if self_is_nan: |
| return self |
| |
| return other |
| return 0 |
| |
| def __nonzero__(self): |
| """Is the number non-zero? |
| |
| 0 if self == 0 |
| 1 if self != 0 |
| """ |
| if self._is_special: |
| return 1 |
| return sum(self._int) != 0 |
| |
| def __cmp__(self, other, context=None): |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| if self._is_special or other._is_special: |
| ans = self._check_nans(other, context) |
| if ans: |
| return 1 # Comparison involving NaN's always reports self > other |
| |
| # INF = INF |
| return cmp(self._isinfinity(), other._isinfinity()) |
| |
| if not self and not other: |
| return 0 #If both 0, sign comparison isn't certain. |
| |
| #If different signs, neg one is less |
| if other._sign < self._sign: |
| return -1 |
| if self._sign < other._sign: |
| return 1 |
| |
| self_adjusted = self.adjusted() |
| other_adjusted = other.adjusted() |
| if self_adjusted == other_adjusted and \ |
| self._int + (0,)*(self._exp - other._exp) == \ |
| other._int + (0,)*(other._exp - self._exp): |
| return 0 #equal, except in precision. ([0]*(-x) = []) |
| elif self_adjusted > other_adjusted and self._int[0] != 0: |
| return (-1)**self._sign |
| elif self_adjusted < other_adjusted and other._int[0] != 0: |
| return -((-1)**self._sign) |
| |
| # Need to round, so make sure we have a valid context |
| if context is None: |
| context = getcontext() |
| |
| context = context._shallow_copy() |
| rounding = context._set_rounding(ROUND_UP) #round away from 0 |
| |
| flags = context._ignore_all_flags() |
| res = self.__sub__(other, context=context) |
| |
| context._regard_flags(*flags) |
| |
| context.rounding = rounding |
| |
| if not res: |
| return 0 |
| elif res._sign: |
| return -1 |
| return 1 |
| |
| def __eq__(self, other): |
| if not isinstance(other, (Decimal, int, long)): |
| return NotImplemented |
| return self.__cmp__(other) == 0 |
| |
| def __ne__(self, other): |
| if not isinstance(other, (Decimal, int, long)): |
| return NotImplemented |
| return self.__cmp__(other) != 0 |
| |
| def compare(self, other, context=None): |
| """Compares one to another. |
| |
| -1 => a < b |
| 0 => a = b |
| 1 => a > b |
| NaN => one is NaN |
| Like __cmp__, but returns Decimal instances. |
| """ |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| #compare(NaN, NaN) = NaN |
| if (self._is_special or other and other._is_special): |
| ans = self._check_nans(other, context) |
| if ans: |
| return ans |
| |
| return Decimal(self.__cmp__(other, context)) |
| |
| def __hash__(self): |
| """x.__hash__() <==> hash(x)""" |
| # Decimal integers must hash the same as the ints |
| # Non-integer decimals are normalized and hashed as strings |
| # Normalization assures that hast(100E-1) == hash(10) |
| if self._is_special: |
| if self._isnan(): |
| raise TypeError('Cannot hash a NaN value.') |
| return hash(str(self)) |
| i = int(self) |
| if self == Decimal(i): |
| return hash(i) |
| assert self.__nonzero__() # '-0' handled by integer case |
| return hash(str(self.normalize())) |
| |
| def as_tuple(self): |
| """Represents the number as a triple tuple. |
| |
| To show the internals exactly as they are. |
| """ |
| return (self._sign, self._int, self._exp) |
| |
| def __repr__(self): |
| """Represents the number as an instance of Decimal.""" |
| # Invariant: eval(repr(d)) == d |
| return 'Decimal("%s")' % str(self) |
| |
| def __str__(self, eng = 0, context=None): |
| """Return string representation of the number in scientific notation. |
| |
| Captures all of the information in the underlying representation. |
| """ |
| |
| if self._is_special: |
| if self._isnan(): |
| minus = '-'*self._sign |
| if self._int == (0,): |
| info = '' |
| else: |
| info = ''.join(map(str, self._int)) |
| if self._isnan() == 2: |
| return minus + 'sNaN' + info |
| return minus + 'NaN' + info |
| if self._isinfinity(): |
| minus = '-'*self._sign |
| return minus + 'Infinity' |
| |
| if context is None: |
| context = getcontext() |
| |
| tmp = map(str, self._int) |
| numdigits = len(self._int) |
| leftdigits = self._exp + numdigits |
| if eng and not self: #self = 0eX wants 0[.0[0]]eY, not [[0]0]0eY |
| if self._exp < 0 and self._exp >= -6: #short, no need for e/E |
| s = '-'*self._sign + '0.' + '0'*(abs(self._exp)) |
| return s |
| #exp is closest mult. of 3 >= self._exp |
| exp = ((self._exp - 1)// 3 + 1) * 3 |
| if exp != self._exp: |
| s = '0.'+'0'*(exp - self._exp) |
| else: |
| s = '0' |
| if exp != 0: |
| if context.capitals: |
| s += 'E' |
| else: |
| s += 'e' |
| if exp > 0: |
| s += '+' #0.0e+3, not 0.0e3 |
| s += str(exp) |
| s = '-'*self._sign + s |
| return s |
| if eng: |
| dotplace = (leftdigits-1)%3+1 |
| adjexp = leftdigits -1 - (leftdigits-1)%3 |
| else: |
| adjexp = leftdigits-1 |
| dotplace = 1 |
| if self._exp == 0: |
| pass |
| elif self._exp < 0 and adjexp >= 0: |
| tmp.insert(leftdigits, '.') |
| elif self._exp < 0 and adjexp >= -6: |
| tmp[0:0] = ['0'] * int(-leftdigits) |
| tmp.insert(0, '0.') |
| else: |
| if numdigits > dotplace: |
| tmp.insert(dotplace, '.') |
| elif numdigits < dotplace: |
| tmp.extend(['0']*(dotplace-numdigits)) |
| if adjexp: |
| if not context.capitals: |
| tmp.append('e') |
| else: |
| tmp.append('E') |
| if adjexp > 0: |
| tmp.append('+') |
| tmp.append(str(adjexp)) |
| if eng: |
| while tmp[0:1] == ['0']: |
| tmp[0:1] = [] |
| if len(tmp) == 0 or tmp[0] == '.' or tmp[0].lower() == 'e': |
| tmp[0:0] = ['0'] |
| if self._sign: |
| tmp.insert(0, '-') |
| |
| return ''.join(tmp) |
| |
| def to_eng_string(self, context=None): |
| """Convert to engineering-type string. |
| |
| Engineering notation has an exponent which is a multiple of 3, so there |
| are up to 3 digits left of the decimal place. |
| |
| Same rules for when in exponential and when as a value as in __str__. |
| """ |
| return self.__str__(eng=1, context=context) |
| |
| def __neg__(self, context=None): |
| """Returns a copy with the sign switched. |
| |
| Rounds, if it has reason. |
| """ |
| if self._is_special: |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| |
| if not self: |
| # -Decimal('0') is Decimal('0'), not Decimal('-0') |
| sign = 0 |
| elif self._sign: |
| sign = 0 |
| else: |
| sign = 1 |
| |
| if context is None: |
| context = getcontext() |
| if context._rounding_decision == ALWAYS_ROUND: |
| return Decimal((sign, self._int, self._exp))._fix(context) |
| return Decimal( (sign, self._int, self._exp)) |
| |
| def __pos__(self, context=None): |
| """Returns a copy, unless it is a sNaN. |
| |
| Rounds the number (if more then precision digits) |
| """ |
| if self._is_special: |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| |
| sign = self._sign |
| if not self: |
| # + (-0) = 0 |
| sign = 0 |
| |
| if context is None: |
| context = getcontext() |
| |
| if context._rounding_decision == ALWAYS_ROUND: |
| ans = self._fix(context) |
| else: |
| ans = Decimal(self) |
| ans._sign = sign |
| return ans |
| |
| def __abs__(self, round=1, context=None): |
| """Returns the absolute value of self. |
| |
| If the second argument is 0, do not round. |
| """ |
| if self._is_special: |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| |
| if not round: |
| if context is None: |
| context = getcontext() |
| context = context._shallow_copy() |
| context._set_rounding_decision(NEVER_ROUND) |
| |
| if self._sign: |
| ans = self.__neg__(context=context) |
| else: |
| ans = self.__pos__(context=context) |
| |
| return ans |
| |
| def __add__(self, other, context=None): |
| """Returns self + other. |
| |
| -INF + INF (or the reverse) cause InvalidOperation errors. |
| """ |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| if context is None: |
| context = getcontext() |
| |
| if self._is_special or other._is_special: |
| ans = self._check_nans(other, context) |
| if ans: |
| return ans |
| |
| if self._isinfinity(): |
| #If both INF, same sign => same as both, opposite => error. |
| if self._sign != other._sign and other._isinfinity(): |
| return context._raise_error(InvalidOperation, '-INF + INF') |
| return Decimal(self) |
| if other._isinfinity(): |
| return Decimal(other) #Can't both be infinity here |
| |
| shouldround = context._rounding_decision == ALWAYS_ROUND |
| |
| exp = min(self._exp, other._exp) |
| negativezero = 0 |
| if context.rounding == ROUND_FLOOR and self._sign != other._sign: |
| #If the answer is 0, the sign should be negative, in this case. |
| negativezero = 1 |
| |
| if not self and not other: |
| sign = min(self._sign, other._sign) |
| if negativezero: |
| sign = 1 |
| return Decimal( (sign, (0,), exp)) |
| if not self: |
| exp = max(exp, other._exp - context.prec-1) |
| ans = other._rescale(exp, watchexp=0, context=context) |
| if shouldround: |
| ans = ans._fix(context) |
| return ans |
| if not other: |
| exp = max(exp, self._exp - context.prec-1) |
| ans = self._rescale(exp, watchexp=0, context=context) |
| if shouldround: |
| ans = ans._fix(context) |
| return ans |
| |
| op1 = _WorkRep(self) |
| op2 = _WorkRep(other) |
| op1, op2 = _normalize(op1, op2, shouldround, context.prec) |
| |
| result = _WorkRep() |
| if op1.sign != op2.sign: |
| # Equal and opposite |
| if op1.int == op2.int: |
| if exp < context.Etiny(): |
| exp = context.Etiny() |
| context._raise_error(Clamped) |
| return Decimal((negativezero, (0,), exp)) |
| if op1.int < op2.int: |
| op1, op2 = op2, op1 |
| #OK, now abs(op1) > abs(op2) |
| if op1.sign == 1: |
| result.sign = 1 |
| op1.sign, op2.sign = op2.sign, op1.sign |
| else: |
| result.sign = 0 |
| #So we know the sign, and op1 > 0. |
| elif op1.sign == 1: |
| result.sign = 1 |
| op1.sign, op2.sign = (0, 0) |
| else: |
| result.sign = 0 |
| #Now, op1 > abs(op2) > 0 |
| |
| if op2.sign == 0: |
| result.int = op1.int + op2.int |
| else: |
| result.int = op1.int - op2.int |
| |
| result.exp = op1.exp |
| ans = Decimal(result) |
| if shouldround: |
| ans = ans._fix(context) |
| return ans |
| |
| __radd__ = __add__ |
| |
| def __sub__(self, other, context=None): |
| """Return self + (-other)""" |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| if self._is_special or other._is_special: |
| ans = self._check_nans(other, context=context) |
| if ans: |
| return ans |
| |
| # -Decimal(0) = Decimal(0), which we don't want since |
| # (-0 - 0 = -0 + (-0) = -0, but -0 + 0 = 0.) |
| # so we change the sign directly to a copy |
| tmp = Decimal(other) |
| tmp._sign = 1-tmp._sign |
| |
| return self.__add__(tmp, context=context) |
| |
| def __rsub__(self, other, context=None): |
| """Return other + (-self)""" |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| tmp = Decimal(self) |
| tmp._sign = 1 - tmp._sign |
| return other.__add__(tmp, context=context) |
| |
| def _increment(self, round=1, context=None): |
| """Special case of add, adding 1eExponent |
| |
| Since it is common, (rounding, for example) this adds |
| (sign)*one E self._exp to the number more efficiently than add. |
| |
| For example: |
| Decimal('5.624e10')._increment() == Decimal('5.625e10') |
| """ |
| if self._is_special: |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| |
| return Decimal(self) # Must be infinite, and incrementing makes no difference |
| |
| L = list(self._int) |
| L[-1] += 1 |
| spot = len(L)-1 |
| while L[spot] == 10: |
| L[spot] = 0 |
| if spot == 0: |
| L[0:0] = [1] |
| break |
| L[spot-1] += 1 |
| spot -= 1 |
| ans = Decimal((self._sign, L, self._exp)) |
| |
| if context is None: |
| context = getcontext() |
| if round and context._rounding_decision == ALWAYS_ROUND: |
| ans = ans._fix(context) |
| return ans |
| |
| def __mul__(self, other, context=None): |
| """Return self * other. |
| |
| (+-) INF * 0 (or its reverse) raise InvalidOperation. |
| """ |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| if context is None: |
| context = getcontext() |
| |
| resultsign = self._sign ^ other._sign |
| |
| if self._is_special or other._is_special: |
| ans = self._check_nans(other, context) |
| if ans: |
| return ans |
| |
| if self._isinfinity(): |
| if not other: |
| return context._raise_error(InvalidOperation, '(+-)INF * 0') |
| return Infsign[resultsign] |
| |
| if other._isinfinity(): |
| if not self: |
| return context._raise_error(InvalidOperation, '0 * (+-)INF') |
| return Infsign[resultsign] |
| |
| resultexp = self._exp + other._exp |
| shouldround = context._rounding_decision == ALWAYS_ROUND |
| |
| # Special case for multiplying by zero |
| if not self or not other: |
| ans = Decimal((resultsign, (0,), resultexp)) |
| if shouldround: |
| #Fixing in case the exponent is out of bounds |
| ans = ans._fix(context) |
| return ans |
| |
| # Special case for multiplying by power of 10 |
| if self._int == (1,): |
| ans = Decimal((resultsign, other._int, resultexp)) |
| if shouldround: |
| ans = ans._fix(context) |
| return ans |
| if other._int == (1,): |
| ans = Decimal((resultsign, self._int, resultexp)) |
| if shouldround: |
| ans = ans._fix(context) |
| return ans |
| |
| op1 = _WorkRep(self) |
| op2 = _WorkRep(other) |
| |
| ans = Decimal( (resultsign, map(int, str(op1.int * op2.int)), resultexp)) |
| if shouldround: |
| ans = ans._fix(context) |
| |
| return ans |
| __rmul__ = __mul__ |
| |
| def __div__(self, other, context=None): |
| """Return self / other.""" |
| return self._divide(other, context=context) |
| __truediv__ = __div__ |
| |
| def _divide(self, other, divmod = 0, context=None): |
| """Return a / b, to context.prec precision. |
| |
| divmod: |
| 0 => true division |
| 1 => (a //b, a%b) |
| 2 => a //b |
| 3 => a%b |
| |
| Actually, if divmod is 2 or 3 a tuple is returned, but errors for |
| computing the other value are not raised. |
| """ |
| other = _convert_other(other) |
| if other is NotImplemented: |
| if divmod in (0, 1): |
| return NotImplemented |
| return (NotImplemented, NotImplemented) |
| |
| if context is None: |
| context = getcontext() |
| |
| sign = self._sign ^ other._sign |
| |
| if self._is_special or other._is_special: |
| ans = self._check_nans(other, context) |
| if ans: |
| if divmod: |
| return (ans, ans) |
| return ans |
| |
| if self._isinfinity() and other._isinfinity(): |
| if divmod: |
| return (context._raise_error(InvalidOperation, |
| '(+-)INF // (+-)INF'), |
| context._raise_error(InvalidOperation, |
| '(+-)INF % (+-)INF')) |
| return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF') |
| |
| if self._isinfinity(): |
| if divmod == 1: |
| return (Infsign[sign], |
| context._raise_error(InvalidOperation, 'INF % x')) |
| elif divmod == 2: |
| return (Infsign[sign], NaN) |
| elif divmod == 3: |
| return (Infsign[sign], |
| context._raise_error(InvalidOperation, 'INF % x')) |
| return Infsign[sign] |
| |
| if other._isinfinity(): |
| if divmod: |
| return (Decimal((sign, (0,), 0)), Decimal(self)) |
| context._raise_error(Clamped, 'Division by infinity') |
| return Decimal((sign, (0,), context.Etiny())) |
| |
| # Special cases for zeroes |
| if not self and not other: |
| if divmod: |
| return context._raise_error(DivisionUndefined, '0 / 0', 1) |
| return context._raise_error(DivisionUndefined, '0 / 0') |
| |
| if not self: |
| if divmod: |
| otherside = Decimal(self) |
| otherside._exp = min(self._exp, other._exp) |
| return (Decimal((sign, (0,), 0)), otherside) |
| exp = self._exp - other._exp |
| if exp < context.Etiny(): |
| exp = context.Etiny() |
| context._raise_error(Clamped, '0e-x / y') |
| if exp > context.Emax: |
| exp = context.Emax |
| context._raise_error(Clamped, '0e+x / y') |
| return Decimal( (sign, (0,), exp) ) |
| |
| if not other: |
| if divmod: |
| return context._raise_error(DivisionByZero, 'divmod(x,0)', |
| sign, 1) |
| return context._raise_error(DivisionByZero, 'x / 0', sign) |
| |
| #OK, so neither = 0, INF or NaN |
| |
| shouldround = context._rounding_decision == ALWAYS_ROUND |
| |
| #If we're dividing into ints, and self < other, stop. |
| #self.__abs__(0) does not round. |
| if divmod and (self.__abs__(0, context) < other.__abs__(0, context)): |
| |
| if divmod == 1 or divmod == 3: |
| exp = min(self._exp, other._exp) |
| ans2 = self._rescale(exp, context=context, watchexp=0) |
| if shouldround: |
| ans2 = ans2._fix(context) |
| return (Decimal( (sign, (0,), 0) ), |
| ans2) |
| |
| elif divmod == 2: |
| #Don't round the mod part, if we don't need it. |
| return (Decimal( (sign, (0,), 0) ), Decimal(self)) |
| |
| op1 = _WorkRep(self) |
| op2 = _WorkRep(other) |
| op1, op2, adjust = _adjust_coefficients(op1, op2) |
| res = _WorkRep( (sign, 0, (op1.exp - op2.exp)) ) |
| if divmod and res.exp > context.prec + 1: |
| return context._raise_error(DivisionImpossible) |
| |
| prec_limit = 10 ** context.prec |
| while 1: |
| while op2.int <= op1.int: |
| res.int += 1 |
| op1.int -= op2.int |
| if res.exp == 0 and divmod: |
| if res.int >= prec_limit and shouldround: |
| return context._raise_error(DivisionImpossible) |
| otherside = Decimal(op1) |
| frozen = context._ignore_all_flags() |
| |
| exp = min(self._exp, other._exp) |
| otherside = otherside._rescale(exp, context=context, watchexp=0) |
| context._regard_flags(*frozen) |
| if shouldround: |
| otherside = otherside._fix(context) |
| return (Decimal(res), otherside) |
| |
| if op1.int == 0 and adjust >= 0 and not divmod: |
| break |
| if res.int >= prec_limit and shouldround: |
| if divmod: |
| return context._raise_error(DivisionImpossible) |
| shouldround=1 |
| # Really, the answer is a bit higher, so adding a one to |
| # the end will make sure the rounding is right. |
| if op1.int != 0: |
| res.int *= 10 |
| res.int += 1 |
| res.exp -= 1 |
| |
| break |
| res.int *= 10 |
| res.exp -= 1 |
| adjust += 1 |
| op1.int *= 10 |
| op1.exp -= 1 |
| |
| if res.exp == 0 and divmod and op2.int > op1.int: |
| #Solves an error in precision. Same as a previous block. |
| |
| if res.int >= prec_limit and shouldround: |
| return context._raise_error(DivisionImpossible) |
| otherside = Decimal(op1) |
| frozen = context._ignore_all_flags() |
| |
| exp = min(self._exp, other._exp) |
| otherside = otherside._rescale(exp, context=context) |
| |
| context._regard_flags(*frozen) |
| |
| return (Decimal(res), otherside) |
| |
| ans = Decimal(res) |
| if shouldround: |
| ans = ans._fix(context) |
| return ans |
| |
| def __rdiv__(self, other, context=None): |
| """Swaps self/other and returns __div__.""" |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| return other.__div__(self, context=context) |
| __rtruediv__ = __rdiv__ |
| |
| def __divmod__(self, other, context=None): |
| """ |
| (self // other, self % other) |
| """ |
| return self._divide(other, 1, context) |
| |
| def __rdivmod__(self, other, context=None): |
| """Swaps self/other and returns __divmod__.""" |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| return other.__divmod__(self, context=context) |
| |
| def __mod__(self, other, context=None): |
| """ |
| self % other |
| """ |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| if self._is_special or other._is_special: |
| ans = self._check_nans(other, context) |
| if ans: |
| return ans |
| |
| if self and not other: |
| return context._raise_error(InvalidOperation, 'x % 0') |
| |
| return self._divide(other, 3, context)[1] |
| |
| def __rmod__(self, other, context=None): |
| """Swaps self/other and returns __mod__.""" |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| return other.__mod__(self, context=context) |
| |
| def remainder_near(self, other, context=None): |
| """ |
| Remainder nearest to 0- abs(remainder-near) <= other/2 |
| """ |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| if self._is_special or other._is_special: |
| ans = self._check_nans(other, context) |
| if ans: |
| return ans |
| if self and not other: |
| return context._raise_error(InvalidOperation, 'x % 0') |
| |
| if context is None: |
| context = getcontext() |
| # If DivisionImpossible causes an error, do not leave Rounded/Inexact |
| # ignored in the calling function. |
| context = context._shallow_copy() |
| flags = context._ignore_flags(Rounded, Inexact) |
| #keep DivisionImpossible flags |
| (side, r) = self.__divmod__(other, context=context) |
| |
| if r._isnan(): |
| context._regard_flags(*flags) |
| return r |
| |
| context = context._shallow_copy() |
| rounding = context._set_rounding_decision(NEVER_ROUND) |
| |
| if other._sign: |
| comparison = other.__div__(Decimal(-2), context=context) |
| else: |
| comparison = other.__div__(Decimal(2), context=context) |
| |
| context._set_rounding_decision(rounding) |
| context._regard_flags(*flags) |
| |
| s1, s2 = r._sign, comparison._sign |
| r._sign, comparison._sign = 0, 0 |
| |
| if r < comparison: |
| r._sign, comparison._sign = s1, s2 |
| #Get flags now |
| self.__divmod__(other, context=context) |
| return r._fix(context) |
| r._sign, comparison._sign = s1, s2 |
| |
| rounding = context._set_rounding_decision(NEVER_ROUND) |
| |
| (side, r) = self.__divmod__(other, context=context) |
| context._set_rounding_decision(rounding) |
| if r._isnan(): |
| return r |
| |
| decrease = not side._iseven() |
| rounding = context._set_rounding_decision(NEVER_ROUND) |
| side = side.__abs__(context=context) |
| context._set_rounding_decision(rounding) |
| |
| s1, s2 = r._sign, comparison._sign |
| r._sign, comparison._sign = 0, 0 |
| if r > comparison or decrease and r == comparison: |
| r._sign, comparison._sign = s1, s2 |
| context.prec += 1 |
| if len(side.__add__(Decimal(1), context=context)._int) >= context.prec: |
| context.prec -= 1 |
| return context._raise_error(DivisionImpossible)[1] |
| context.prec -= 1 |
| if self._sign == other._sign: |
| r = r.__sub__(other, context=context) |
| else: |
| r = r.__add__(other, context=context) |
| else: |
| r._sign, comparison._sign = s1, s2 |
| |
| return r._fix(context) |
| |
| def __floordiv__(self, other, context=None): |
| """self // other""" |
| return self._divide(other, 2, context)[0] |
| |
| def __rfloordiv__(self, other, context=None): |
| """Swaps self/other and returns __floordiv__.""" |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| return other.__floordiv__(self, context=context) |
| |
| def __float__(self): |
| """Float representation.""" |
| return float(str(self)) |
| |
| def __int__(self): |
| """Converts self to an int, truncating if necessary.""" |
| if self._is_special: |
| if self._isnan(): |
| context = getcontext() |
| return context._raise_error(InvalidContext) |
| elif self._isinfinity(): |
| raise OverflowError, "Cannot convert infinity to long" |
| if self._exp >= 0: |
| s = ''.join(map(str, self._int)) + '0'*self._exp |
| else: |
| s = ''.join(map(str, self._int))[:self._exp] |
| if s == '': |
| s = '0' |
| sign = '-'*self._sign |
| return int(sign + s) |
| |
| def __long__(self): |
| """Converts to a long. |
| |
| Equivalent to long(int(self)) |
| """ |
| return long(self.__int__()) |
| |
| def _fix(self, context): |
| """Round if it is necessary to keep self within prec precision. |
| |
| Rounds and fixes the exponent. Does not raise on a sNaN. |
| |
| Arguments: |
| self - Decimal instance |
| context - context used. |
| """ |
| if self._is_special: |
| return self |
| if context is None: |
| context = getcontext() |
| prec = context.prec |
| ans = self._fixexponents(context) |
| if len(ans._int) > prec: |
| ans = ans._round(prec, context=context) |
| ans = ans._fixexponents(context) |
| return ans |
| |
| def _fixexponents(self, context): |
| """Fix the exponents and return a copy with the exponent in bounds. |
| Only call if known to not be a special value. |
| """ |
| folddown = context._clamp |
| Emin = context.Emin |
| ans = self |
| ans_adjusted = ans.adjusted() |
| if ans_adjusted < Emin: |
| Etiny = context.Etiny() |
| if ans._exp < Etiny: |
| if not ans: |
| ans = Decimal(self) |
| ans._exp = Etiny |
| context._raise_error(Clamped) |
| return ans |
| ans = ans._rescale(Etiny, context=context) |
| #It isn't zero, and exp < Emin => subnormal |
| context._raise_error(Subnormal) |
| if context.flags[Inexact]: |
| context._raise_error(Underflow) |
| else: |
| if ans: |
| #Only raise subnormal if non-zero. |
| context._raise_error(Subnormal) |
| else: |
| Etop = context.Etop() |
| if folddown and ans._exp > Etop: |
| context._raise_error(Clamped) |
| ans = ans._rescale(Etop, context=context) |
| else: |
| Emax = context.Emax |
| if ans_adjusted > Emax: |
| if not ans: |
| ans = Decimal(self) |
| ans._exp = Emax |
| context._raise_error(Clamped) |
| return ans |
| context._raise_error(Inexact) |
| context._raise_error(Rounded) |
| return context._raise_error(Overflow, 'above Emax', ans._sign) |
| return ans |
| |
| def _round(self, prec=None, rounding=None, context=None): |
| """Returns a rounded version of self. |
| |
| You can specify the precision or rounding method. Otherwise, the |
| context determines it. |
| """ |
| |
| if self._is_special: |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| |
| if self._isinfinity(): |
| return Decimal(self) |
| |
| if context is None: |
| context = getcontext() |
| |
| if rounding is None: |
| rounding = context.rounding |
| if prec is None: |
| prec = context.prec |
| |
| if not self: |
| if prec <= 0: |
| dig = (0,) |
| exp = len(self._int) - prec + self._exp |
| else: |
| dig = (0,) * prec |
| exp = len(self._int) + self._exp - prec |
| ans = Decimal((self._sign, dig, exp)) |
| context._raise_error(Rounded) |
| return ans |
| |
| if prec == 0: |
| temp = Decimal(self) |
| temp._int = (0,)+temp._int |
| prec = 1 |
| elif prec < 0: |
| exp = self._exp + len(self._int) - prec - 1 |
| temp = Decimal( (self._sign, (0, 1), exp)) |
| prec = 1 |
| else: |
| temp = Decimal(self) |
| |
| numdigits = len(temp._int) |
| if prec == numdigits: |
| return temp |
| |
| # See if we need to extend precision |
| expdiff = prec - numdigits |
| if expdiff > 0: |
| tmp = list(temp._int) |
| tmp.extend([0] * expdiff) |
| ans = Decimal( (temp._sign, tmp, temp._exp - expdiff)) |
| return ans |
| |
| #OK, but maybe all the lost digits are 0. |
| lostdigits = self._int[expdiff:] |
| if lostdigits == (0,) * len(lostdigits): |
| ans = Decimal( (temp._sign, temp._int[:prec], temp._exp - expdiff)) |
| #Rounded, but not Inexact |
| context._raise_error(Rounded) |
| return ans |
| |
| # Okay, let's round and lose data |
| |
| this_function = getattr(temp, self._pick_rounding_function[rounding]) |
| #Now we've got the rounding function |
| |
| if prec != context.prec: |
| context = context._shallow_copy() |
| context.prec = prec |
| ans = this_function(prec, expdiff, context) |
| context._raise_error(Rounded) |
| context._raise_error(Inexact, 'Changed in rounding') |
| |
| return ans |
| |
| _pick_rounding_function = {} |
| |
| def _round_down(self, prec, expdiff, context): |
| """Also known as round-towards-0, truncate.""" |
| return Decimal( (self._sign, self._int[:prec], self._exp - expdiff) ) |
| |
| def _round_half_up(self, prec, expdiff, context, tmp = None): |
| """Rounds 5 up (away from 0)""" |
| |
| if tmp is None: |
| tmp = Decimal( (self._sign,self._int[:prec], self._exp - expdiff)) |
| if self._int[prec] >= 5: |
| tmp = tmp._increment(round=0, context=context) |
| if len(tmp._int) > prec: |
| return Decimal( (tmp._sign, tmp._int[:-1], tmp._exp + 1)) |
| return tmp |
| |
| def _round_half_even(self, prec, expdiff, context): |
| """Round 5 to even, rest to nearest.""" |
| |
| tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff)) |
| half = (self._int[prec] == 5) |
| if half: |
| for digit in self._int[prec+1:]: |
| if digit != 0: |
| half = 0 |
| break |
| if half: |
| if self._int[prec-1] & 1 == 0: |
| return tmp |
| return self._round_half_up(prec, expdiff, context, tmp) |
| |
| def _round_half_down(self, prec, expdiff, context): |
| """Round 5 down""" |
| |
| tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff)) |
| half = (self._int[prec] == 5) |
| if half: |
| for digit in self._int[prec+1:]: |
| if digit != 0: |
| half = 0 |
| break |
| if half: |
| return tmp |
| return self._round_half_up(prec, expdiff, context, tmp) |
| |
| def _round_up(self, prec, expdiff, context): |
| """Rounds away from 0.""" |
| tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff) ) |
| for digit in self._int[prec:]: |
| if digit != 0: |
| tmp = tmp._increment(round=1, context=context) |
| if len(tmp._int) > prec: |
| return Decimal( (tmp._sign, tmp._int[:-1], tmp._exp + 1)) |
| else: |
| return tmp |
| return tmp |
| |
| def _round_ceiling(self, prec, expdiff, context): |
| """Rounds up (not away from 0 if negative.)""" |
| if self._sign: |
| return self._round_down(prec, expdiff, context) |
| else: |
| return self._round_up(prec, expdiff, context) |
| |
| def _round_floor(self, prec, expdiff, context): |
| """Rounds down (not towards 0 if negative)""" |
| if not self._sign: |
| return self._round_down(prec, expdiff, context) |
| else: |
| return self._round_up(prec, expdiff, context) |
| |
| def __pow__(self, n, modulo = None, context=None): |
| """Return self ** n (mod modulo) |
| |
| If modulo is None (default), don't take it mod modulo. |
| """ |
| n = _convert_other(n) |
| if n is NotImplemented: |
| return n |
| |
| if context is None: |
| context = getcontext() |
| |
| if self._is_special or n._is_special or n.adjusted() > 8: |
| #Because the spot << doesn't work with really big exponents |
| if n._isinfinity() or n.adjusted() > 8: |
| return context._raise_error(InvalidOperation, 'x ** INF') |
| |
| ans = self._check_nans(n, context) |
| if ans: |
| return ans |
| |
| if not n._isinteger(): |
| return context._raise_error(InvalidOperation, 'x ** (non-integer)') |
| |
| if not self and not n: |
| return context._raise_error(InvalidOperation, '0 ** 0') |
| |
| if not n: |
| return Decimal(1) |
| |
| if self == Decimal(1): |
| return Decimal(1) |
| |
| sign = self._sign and not n._iseven() |
| n = int(n) |
| |
| if self._isinfinity(): |
| if modulo: |
| return context._raise_error(InvalidOperation, 'INF % x') |
| if n > 0: |
| return Infsign[sign] |
| return Decimal( (sign, (0,), 0) ) |
| |
| #with ludicrously large exponent, just raise an overflow and return inf. |
| if not modulo and n > 0 and (self._exp + len(self._int) - 1) * n > context.Emax \ |
| and self: |
| |
| tmp = Decimal('inf') |
| tmp._sign = sign |
| context._raise_error(Rounded) |
| context._raise_error(Inexact) |
| context._raise_error(Overflow, 'Big power', sign) |
| return tmp |
| |
| elength = len(str(abs(n))) |
| firstprec = context.prec |
| |
| if not modulo and firstprec + elength + 1 > DefaultContext.Emax: |
| return context._raise_error(Overflow, 'Too much precision.', sign) |
| |
| mul = Decimal(self) |
| val = Decimal(1) |
| context = context._shallow_copy() |
| context.prec = firstprec + elength + 1 |
| if n < 0: |
| #n is a long now, not Decimal instance |
| n = -n |
| mul = Decimal(1).__div__(mul, context=context) |
| |
| spot = 1 |
| while spot <= n: |
| spot <<= 1 |
| |
| spot >>= 1 |
| #Spot is the highest power of 2 less than n |
| while spot: |
| val = val.__mul__(val, context=context) |
| if val._isinfinity(): |
| val = Infsign[sign] |
| break |
| if spot & n: |
| val = val.__mul__(mul, context=context) |
| if modulo is not None: |
| val = val.__mod__(modulo, context=context) |
| spot >>= 1 |
| context.prec = firstprec |
| |
| if context._rounding_decision == ALWAYS_ROUND: |
| return val._fix(context) |
| return val |
| |
| def __rpow__(self, other, context=None): |
| """Swaps self/other and returns __pow__.""" |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| return other.__pow__(self, context=context) |
| |
| def normalize(self, context=None): |
| """Normalize- strip trailing 0s, change anything equal to 0 to 0e0""" |
| |
| if self._is_special: |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| |
| dup = self._fix(context) |
| if dup._isinfinity(): |
| return dup |
| |
| if not dup: |
| return Decimal( (dup._sign, (0,), 0) ) |
| end = len(dup._int) |
| exp = dup._exp |
| while dup._int[end-1] == 0: |
| exp += 1 |
| end -= 1 |
| return Decimal( (dup._sign, dup._int[:end], exp) ) |
| |
| |
| def quantize(self, exp, rounding=None, context=None, watchexp=1): |
| """Quantize self so its exponent is the same as that of exp. |
| |
| Similar to self._rescale(exp._exp) but with error checking. |
| """ |
| if self._is_special or exp._is_special: |
| ans = self._check_nans(exp, context) |
| if ans: |
| return ans |
| |
| if exp._isinfinity() or self._isinfinity(): |
| if exp._isinfinity() and self._isinfinity(): |
| return self #if both are inf, it is OK |
| if context is None: |
| context = getcontext() |
| return context._raise_error(InvalidOperation, |
| 'quantize with one INF') |
| return self._rescale(exp._exp, rounding, context, watchexp) |
| |
| def same_quantum(self, other): |
| """Test whether self and other have the same exponent. |
| |
| same as self._exp == other._exp, except NaN == sNaN |
| """ |
| if self._is_special or other._is_special: |
| if self._isnan() or other._isnan(): |
| return self._isnan() and other._isnan() and True |
| if self._isinfinity() or other._isinfinity(): |
| return self._isinfinity() and other._isinfinity() and True |
| return self._exp == other._exp |
| |
| def _rescale(self, exp, rounding=None, context=None, watchexp=1): |
| """Rescales so that the exponent is exp. |
| |
| exp = exp to scale to (an integer) |
| rounding = rounding version |
| watchexp: if set (default) an error is returned if exp is greater |
| than Emax or less than Etiny. |
| """ |
| if context is None: |
| context = getcontext() |
| |
| if self._is_special: |
| if self._isinfinity(): |
| return context._raise_error(InvalidOperation, 'rescale with an INF') |
| |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| |
| if watchexp and (context.Emax < exp or context.Etiny() > exp): |
| return context._raise_error(InvalidOperation, 'rescale(a, INF)') |
| |
| if not self: |
| ans = Decimal(self) |
| ans._int = (0,) |
| ans._exp = exp |
| return ans |
| |
| diff = self._exp - exp |
| digits = len(self._int) + diff |
| |
| if watchexp and digits > context.prec: |
| return context._raise_error(InvalidOperation, 'Rescale > prec') |
| |
| tmp = Decimal(self) |
| tmp._int = (0,) + tmp._int |
| digits += 1 |
| |
| if digits < 0: |
| tmp._exp = -digits + tmp._exp |
| tmp._int = (0,1) |
| digits = 1 |
| tmp = tmp._round(digits, rounding, context=context) |
| |
| if tmp._int[0] == 0 and len(tmp._int) > 1: |
| tmp._int = tmp._int[1:] |
| tmp._exp = exp |
| |
| tmp_adjusted = tmp.adjusted() |
| if tmp and tmp_adjusted < context.Emin: |
| context._raise_error(Subnormal) |
| elif tmp and tmp_adjusted > context.Emax: |
| return context._raise_error(InvalidOperation, 'rescale(a, INF)') |
| return tmp |
| |
| def to_integral(self, rounding=None, context=None): |
| """Rounds to the nearest integer, without raising inexact, rounded.""" |
| if self._is_special: |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| if self._exp >= 0: |
| return self |
| if context is None: |
| context = getcontext() |
| flags = context._ignore_flags(Rounded, Inexact) |
| ans = self._rescale(0, rounding, context=context) |
| context._regard_flags(flags) |
| return ans |
| |
| def sqrt(self, context=None): |
| """Return the square root of self. |
| |
| Uses a converging algorithm (Xn+1 = 0.5*(Xn + self / Xn)) |
| Should quadratically approach the right answer. |
| """ |
| if self._is_special: |
| ans = self._check_nans(context=context) |
| if ans: |
| return ans |
| |
| if self._isinfinity() and self._sign == 0: |
| return Decimal(self) |
| |
| if not self: |
| #exponent = self._exp / 2, using round_down. |
| #if self._exp < 0: |
| # exp = (self._exp+1) // 2 |
| #else: |
| exp = (self._exp) // 2 |
| if self._sign == 1: |
| #sqrt(-0) = -0 |
| return Decimal( (1, (0,), exp)) |
| else: |
| return Decimal( (0, (0,), exp)) |
| |
| if context is None: |
| context = getcontext() |
| |
| if self._sign == 1: |
| return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0') |
| |
| tmp = Decimal(self) |
| |
| expadd = tmp._exp // 2 |
| if tmp._exp & 1: |
| tmp._int += (0,) |
| tmp._exp = 0 |
| else: |
| tmp._exp = 0 |
| |
| context = context._shallow_copy() |
| flags = context._ignore_all_flags() |
| firstprec = context.prec |
| context.prec = 3 |
| if tmp.adjusted() & 1 == 0: |
| ans = Decimal( (0, (8,1,9), tmp.adjusted() - 2) ) |
| ans = ans.__add__(tmp.__mul__(Decimal((0, (2,5,9), -2)), |
| context=context), context=context) |
| ans._exp -= 1 + tmp.adjusted() // 2 |
| else: |
| ans = Decimal( (0, (2,5,9), tmp._exp + len(tmp._int)- 3) ) |
| ans = ans.__add__(tmp.__mul__(Decimal((0, (8,1,9), -3)), |
| context=context), context=context) |
| ans._exp -= 1 + tmp.adjusted() // 2 |
| |
| #ans is now a linear approximation. |
| |
| Emax, Emin = context.Emax, context.Emin |
| context.Emax, context.Emin = DefaultContext.Emax, DefaultContext.Emin |
| |
| half = Decimal('0.5') |
| |
| maxp = firstprec + 2 |
| rounding = context._set_rounding(ROUND_HALF_EVEN) |
| while 1: |
| context.prec = min(2*context.prec - 2, maxp) |
| ans = half.__mul__(ans.__add__(tmp.__div__(ans, context=context), |
| context=context), context=context) |
| if context.prec == maxp: |
| break |
| |
| #round to the answer's precision-- the only error can be 1 ulp. |
| context.prec = firstprec |
| prevexp = ans.adjusted() |
| ans = ans._round(context=context) |
| |
| #Now, check if the other last digits are better. |
| context.prec = firstprec + 1 |
| # In case we rounded up another digit and we should actually go lower. |
| if prevexp != ans.adjusted(): |
| ans._int += (0,) |
| ans._exp -= 1 |
| |
| |
| lower = ans.__sub__(Decimal((0, (5,), ans._exp-1)), context=context) |
| context._set_rounding(ROUND_UP) |
| if lower.__mul__(lower, context=context) > (tmp): |
| ans = ans.__sub__(Decimal((0, (1,), ans._exp)), context=context) |
| |
| else: |
| upper = ans.__add__(Decimal((0, (5,), ans._exp-1)),context=context) |
| context._set_rounding(ROUND_DOWN) |
| if upper.__mul__(upper, context=context) < tmp: |
| ans = ans.__add__(Decimal((0, (1,), ans._exp)),context=context) |
| |
| ans._exp += expadd |
| |
| context.prec = firstprec |
| context.rounding = rounding |
| ans = ans._fix(context) |
| |
| rounding = context._set_rounding_decision(NEVER_ROUND) |
| if not ans.__mul__(ans, context=context) == self: |
| # Only rounded/inexact if here. |
| context._regard_flags(flags) |
| context._raise_error(Rounded) |
| context._raise_error(Inexact) |
| else: |
| #Exact answer, so let's set the exponent right. |
| #if self._exp < 0: |
| # exp = (self._exp +1)// 2 |
| #else: |
| exp = self._exp // 2 |
| context.prec += ans._exp - exp |
| ans = ans._rescale(exp, context=context) |
| context.prec = firstprec |
| context._regard_flags(flags) |
| context.Emax, context.Emin = Emax, Emin |
| |
| return ans._fix(context) |
| |
| def max(self, other, context=None): |
| """Returns the larger value. |
| |
| like max(self, other) except if one is not a number, returns |
| NaN (and signals if one is sNaN). Also rounds. |
| """ |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| if self._is_special or other._is_special: |
| # if one operand is a quiet NaN and the other is number, then the |
| # number is always returned |
| sn = self._isnan() |
| on = other._isnan() |
| if sn or on: |
| if on == 1 and sn != 2: |
| return self |
| if sn == 1 and on != 2: |
| return other |
| return self._check_nans(other, context) |
| |
| ans = self |
| c = self.__cmp__(other) |
| if c == 0: |
| # if both operands are finite and equal in numerical value |
| # then an ordering is applied: |
| # |
| # if the signs differ then max returns the operand with the |
| # positive sign and min returns the operand with the negative sign |
| # |
| # if the signs are the same then the exponent is used to select |
| # the result. |
| if self._sign != other._sign: |
| if self._sign: |
| ans = other |
| elif self._exp < other._exp and not self._sign: |
| ans = other |
| elif self._exp > other._exp and self._sign: |
| ans = other |
| elif c == -1: |
| ans = other |
| |
| if context is None: |
| context = getcontext() |
| if context._rounding_decision == ALWAYS_ROUND: |
| return ans._fix(context) |
| return ans |
| |
| def min(self, other, context=None): |
| """Returns the smaller value. |
| |
| like min(self, other) except if one is not a number, returns |
| NaN (and signals if one is sNaN). Also rounds. |
| """ |
| other = _convert_other(other) |
| if other is NotImplemented: |
| return other |
| |
| if self._is_special or other._is_special: |
| # if one operand is a quiet NaN and the other is number, then the |
| # number is always returned |
| sn = self._isnan() |
| on = other._isnan() |
| if sn or on: |
| if on == 1 and sn != 2: |
| return self |
| if sn == 1 and on != 2: |
| return other |
| return self._check_nans(other, context) |
| |
| ans = self |
| c = self.__cmp__(other) |
| if c == 0: |
| # if both operands are finite and equal in numerical value |
| # then an ordering is applied: |
| # |
| # if the signs differ then max returns the operand with the |
| # positive sign and min returns the operand with the negative sign |
| # |
| # if the signs are the same then the exponent is used to select |
| # the result. |
| if self._sign != other._sign: |
| if other._sign: |
| ans = other |
| elif self._exp > other._exp and not self._sign: |
| ans = other |
| elif self._exp < other._exp and self._sign: |
| ans = other |
| elif c == 1: |
| ans = other |
| |
| if context is None: |
| context = getcontext() |
| if context._rounding_decision == ALWAYS_ROUND: |
| return ans._fix(context) |
| return ans |
| |
| def _isinteger(self): |
| """Returns whether self is an integer""" |
| if self._exp >= 0: |
| return True |
| rest = self._int[self._exp:] |
| return rest == (0,)*len(rest) |
| |
| def _iseven(self): |
| """Returns 1 if self is even. Assumes self is an integer.""" |
| if self._exp > 0: |
| return 1 |
| return self._int[-1+self._exp] & 1 == 0 |
| |
| def adjusted(self): |
| """Return the adjusted exponent of self""" |
| try: |
| return self._exp + len(self._int) - 1 |
| #If NaN or Infinity, self._exp is string |
| except TypeError: |
| return 0 |
| |
| # support for pickling, copy, and deepcopy |
| def __reduce__(self): |
| return (self.__class__, (str(self),)) |
| |
| def __copy__(self): |
| if type(self) == Decimal: |
| return self # I'm immutable; therefore I am my own clone |
| return self.__class__(str(self)) |
| |
| def __deepcopy__(self, memo): |
| if type(self) == Decimal: |
| return self # My components are also immutable |
| return self.__class__(str(self)) |
| |
| ##### Context class ########################################### |
| |
| |
| # get rounding method function: |
| rounding_functions = [name for name in Decimal.__dict__.keys() if name.startswith('_round_')] |
| for name in rounding_functions: |
| #name is like _round_half_even, goes to the global ROUND_HALF_EVEN value. |
| globalname = name[1:].upper() |
| val = globals()[globalname] |
| Decimal._pick_rounding_function[val] = name |
| |
| del name, val, globalname, rounding_functions |
| |
| class Context(object): |
| """Contains the context for a Decimal instance. |
| |
| Contains: |
| prec - precision (for use in rounding, division, square roots..) |
| rounding - rounding type. (how you round) |
| _rounding_decision - ALWAYS_ROUND, NEVER_ROUND -- do you round? |
| traps - If traps[exception] = 1, then the exception is |
| raised when it is caused. Otherwise, a value is |
| substituted in. |
| flags - When an exception is caused, flags[exception] is incremented. |
| (Whether or not the trap_enabler is set) |
| Should be reset by user of Decimal instance. |
| Emin - Minimum exponent |
| Emax - Maximum exponent |
| capitals - If 1, 1*10^1 is printed as 1E+1. |
| If 0, printed as 1e1 |
| _clamp - If 1, change exponents if too high (Default 0) |
| """ |
| |
| def __init__(self, prec=None, rounding=None, |
| traps=None, flags=None, |
| _rounding_decision=None, |
| Emin=None, Emax=None, |
| capitals=None, _clamp=0, |
| _ignored_flags=None): |
| if flags is None: |
| flags = [] |
| if _ignored_flags is None: |
| _ignored_flags = [] |
| if not isinstance(flags, dict): |
| flags = dict([(s,s in flags) for s in _signals]) |
| del s |
| if traps is not None and not isinstance(traps, dict): |
| traps = dict([(s,s in traps) for s in _signals]) |
| del s |
| for name, val in locals().items(): |
| if val is None: |
| setattr(self, name, _copy.copy(getattr(DefaultContext, name))) |
| else: |
| setattr(self, name, val) |
| del self.self |
| |
| def __repr__(self): |
| """Show the current context.""" |
| s = [] |
| s.append('Context(prec=%(prec)d, rounding=%(rounding)s, Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d' % vars(self)) |
| s.append('flags=[' + ', '.join([f.__name__ for f, v in self.flags.items() if v]) + ']') |
| s.append('traps=[' + ', '.join([t.__name__ for t, v in self.traps.items() if v]) + ']') |
| return ', '.join(s) + ')' |
| |
| def clear_flags(self): |
| """Reset all flags to zero""" |
| for flag in self.flags: |
| self.flags[flag] = 0 |
| |
| def _shallow_copy(self): |
| """Returns a shallow copy from self.""" |
| nc = Context(self.prec, self.rounding, self.traps, self.flags, |
| self._rounding_decision, self.Emin, self.Emax, |
| self.capitals, self._clamp, self._ignored_flags) |
| return nc |
| |
| def copy(self): |
| """Returns a deep copy from self.""" |
| nc = Context(self.prec, self.rounding, self.traps.copy(), self.flags.copy(), |
| self._rounding_decision, self.Emin, self.Emax, |
| self.capitals, self._clamp, self._ignored_flags) |
| return nc |
| __copy__ = copy |
| |
| def _raise_error(self, condition, explanation = None, *args): |
| """Handles an error |
| |
| If the flag is in _ignored_flags, returns the default response. |
| Otherwise, it increments the flag, then, if the corresponding |
| trap_enabler is set, it reaises the exception. Otherwise, it returns |
| the default value after incrementing the flag. |
| """ |
| error = _condition_map.get(condition, condition) |
| if error in self._ignored_flags: |
| #Don't touch the flag |
| return error().handle(self, *args) |
| |
| self.flags[error] += 1 |
| if not self.traps[error]: |
| #The errors define how to handle themselves. |
| return condition().handle(self, *args) |
| |
| # Errors should only be risked on copies of the context |
| #self._ignored_flags = [] |
| raise error, explanation |
| |
| def _ignore_all_flags(self): |
| """Ignore all flags, if they are raised""" |
| return self._ignore_flags(*_signals) |
| |
| def _ignore_flags(self, *flags): |
| """Ignore the flags, if they are raised""" |
| # Do not mutate-- This way, copies of a context leave the original |
| # alone. |
| self._ignored_flags = (self._ignored_flags + list(flags)) |
| return list(flags) |
| |
| def _regard_flags(self, *flags): |
| """Stop ignoring the flags, if they are raised""" |
| if flags and isinstance(flags[0], (tuple,list)): |
| flags = flags[0] |
| for flag in flags: |
| self._ignored_flags.remove(flag) |
| |
| def __hash__(self): |
| """A Context cannot be hashed.""" |
| # We inherit object.__hash__, so we must deny this explicitly |
| raise TypeError, "Cannot hash a Context." |
| |
| def Etiny(self): |
| """Returns Etiny (= Emin - prec + 1)""" |
| return int(self.Emin - self.prec + 1) |
| |
| def Etop(self): |
| """Returns maximum exponent (= Emax - prec + 1)""" |
| return int(self.Emax - self.prec + 1) |
| |
| def _set_rounding_decision(self, type): |
| """Sets the rounding decision. |
| |
| Sets the rounding decision, and returns the current (previous) |
| rounding decision. Often used like: |
| |
| context = context._shallow_copy() |
| # That so you don't change the calling context |
| # if an error occurs in the middle (say DivisionImpossible is raised). |
| |
| rounding = context._set_rounding_decision(NEVER_ROUND) |
| instance = instance / Decimal(2) |
| context._set_rounding_decision(rounding) |
| |
| This will make it not round for that operation. |
| """ |
| |
| rounding = self._rounding_decision |
| self._rounding_decision = type |
| return rounding |
| |
| def _set_rounding(self, type): |
| """Sets the rounding type. |
| |
| Sets the rounding type, and returns the current (previous) |
| rounding type. Often used like: |
| |
| context = context.copy() |
| # so you don't change the calling context |
| # if an error occurs in the middle. |
| rounding = context._set_rounding(ROUND_UP) |
| val = self.__sub__(other, context=context) |
| context._set_rounding(rounding) |
| |
| This will make it round up for that operation. |
| """ |
| rounding = self.rounding |
| self.rounding= type |
| return rounding |
| |
| def create_decimal(self, num='0'): |
| """Creates a new Decimal instance but using self as context.""" |
| d = Decimal(num, context=self) |
| return d._fix(self) |
| |
| #Methods |
| def abs(self, a): |
| """Returns the absolute value of the operand. |
| |
| If the operand is negative, the result is the same as using the minus |
| operation on the operand. Otherwise, the result is the same as using |
| the plus operation on the operand. |
| |
| >>> ExtendedContext.abs(Decimal('2.1')) |
| Decimal("2.1") |
| >>> ExtendedContext.abs(Decimal('-100')) |
| Decimal("100") |
| >>> ExtendedContext.abs(Decimal('101.5')) |
| Decimal("101.5") |
| >>> ExtendedContext.abs(Decimal('-101.5')) |
| Decimal("101.5") |
| """ |
| return a.__abs__(context=self) |
| |
| def add(self, a, b): |
| """Return the sum of the two operands. |
| |
| >>> ExtendedContext.add(Decimal('12'), Decimal('7.00')) |
| Decimal("19.00") |
| >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4')) |
| Decimal("1.02E+4") |
| """ |
| return a.__add__(b, context=self) |
| |
| def _apply(self, a): |
| return str(a._fix(self)) |
| |
| def compare(self, a, b): |
| """Compares values numerically. |
| |
| If the signs of the operands differ, a value representing each operand |
| ('-1' if the operand is less than zero, '0' if the operand is zero or |
| negative zero, or '1' if the operand is greater than zero) is used in |
| place of that operand for the comparison instead of the actual |
| operand. |
| |
| The comparison is then effected by subtracting the second operand from |
| the first and then returning a value according to the result of the |
| subtraction: '-1' if the result is less than zero, '0' if the result is |
| zero or negative zero, or '1' if the result is greater than zero. |
| |
| >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3')) |
| Decimal("-1") |
| >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1')) |
| Decimal("0") |
| >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10')) |
| Decimal("0") |
| >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1')) |
| Decimal("1") |
| >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3')) |
| Decimal("1") |
| >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1')) |
| Decimal("-1") |
| """ |
| return a.compare(b, context=self) |
| |
| def divide(self, a, b): |
| """Decimal division in a specified context. |
| |
| >>> ExtendedContext.divide(Decimal('1'), Decimal('3')) |
| Decimal("0.333333333") |
| >>> ExtendedContext.divide(Decimal('2'), Decimal('3')) |
| Decimal("0.666666667") |
| >>> ExtendedContext.divide(Decimal('5'), Decimal('2')) |
| Decimal("2.5") |
| >>> ExtendedContext.divide(Decimal('1'), Decimal('10')) |
| Decimal("0.1") |
| >>> ExtendedContext.divide(Decimal('12'), Decimal('12')) |
| Decimal("1") |
| >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2')) |
| Decimal("4.00") |
| >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0')) |
| Decimal("1.20") |
| >>> ExtendedContext.divide(Decimal('1000'), Decimal('100')) |
| Decimal("10") |
| >>> ExtendedContext.divide(Decimal('1000'), Decimal('1')) |
| Decimal("1000") |
| >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2')) |
| Decimal("1.20E+6") |
| """ |
| return a.__div__(b, context=self) |
| |
| def divide_int(self, a, b): |
| """Divides two numbers and returns the integer part of the result. |
| |
| >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3')) |
| Decimal("0") |
| >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3')) |
| Decimal("3") |
| >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3')) |
| Decimal("3") |
| """ |
| return a.__floordiv__(b, context=self) |
| |
| def divmod(self, a, b): |
| return a.__divmod__(b, context=self) |
| |
| def max(self, a,b): |
| """max compares two values numerically and returns the maximum. |
| |
| If either operand is a NaN then the general rules apply. |
| Otherwise, the operands are compared as as though by the compare |
| operation. If they are numerically equal then the left-hand operand |
| is chosen as the result. Otherwise the maximum (closer to positive |
| infinity) of the two operands is chosen as the result. |
| |
| >>> ExtendedContext.max(Decimal('3'), Decimal('2')) |
| Decimal("3") |
| >>> ExtendedContext.max(Decimal('-10'), Decimal('3')) |
| Decimal("3") |
| >>> ExtendedContext.max(Decimal('1.0'), Decimal('1')) |
| Decimal("1") |
| >>> ExtendedContext.max(Decimal('7'), Decimal('NaN')) |
| Decimal("7") |
| """ |
| return a.max(b, context=self) |
| |
| def min(self, a,b): |
| """min compares two values numerically and returns the minimum. |
| |
| If either operand is a NaN then the general rules apply. |
| Otherwise, the operands are compared as as though by the compare |
| operation. If they are numerically equal then the left-hand operand |
| is chosen as the result. Otherwise the minimum (closer to negative |
| infinity) of the two operands is chosen as the result. |
| |
| >>> ExtendedContext.min(Decimal('3'), Decimal('2')) |
| Decimal("2") |
| >>> ExtendedContext.min(Decimal('-10'), Decimal('3')) |
| Decimal("-10") |
| >>> ExtendedContext.min(Decimal('1.0'), Decimal('1')) |
| Decimal("1.0") |
| >>> ExtendedContext.min(Decimal('7'), Decimal('NaN')) |
| Decimal("7") |
| """ |
| return a.min(b, context=self) |
| |
| def minus(self, a): |
| """Minus corresponds to unary prefix minus in Python. |
| |
| The operation is evaluated using the same rules as subtract; the |
| operation minus(a) is calculated as subtract('0', a) where the '0' |
| has the same exponent as the operand. |
| |
| >>> ExtendedContext.minus(Decimal('1.3')) |
| Decimal("-1.3") |
| >>> ExtendedContext.minus(Decimal('-1.3')) |
| Decimal("1.3") |
| """ |
| return a.__neg__(context=self) |
| |
| def multiply(self, a, b): |
| """multiply multiplies two operands. |
| |
| If either operand is a special value then the general rules apply. |
| Otherwise, the operands are multiplied together ('long multiplication'), |
| resulting in a number which may be as long as the sum of the lengths |
| of the two operands. |
| |
| >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3')) |
| Decimal("3.60") |
| >>> ExtendedContext.multiply(Decimal('7'), Decimal('3')) |
| Decimal("21") |
| >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8')) |
| Decimal("0.72") |
| >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0')) |
| Decimal("-0.0") |
| >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321')) |
| Decimal("4.28135971E+11") |
| """ |
| return a.__mul__(b, context=self) |
| |
| def normalize(self, a): |
| """normalize reduces an operand to its simplest form. |
| |
| Essentially a plus operation with all trailing zeros removed from the |
| result. |
| |
| >>> ExtendedContext.normalize(Decimal('2.1')) |
| Decimal("2.1") |
| >>> ExtendedContext.normalize(Decimal('-2.0')) |
| Decimal("-2") |
| >>> ExtendedContext.normalize(Decimal('1.200')) |
| Decimal("1.2") |
| >>> ExtendedContext.normalize(Decimal('-120')) |
| Decimal("-1.2E+2") |
| >>> ExtendedContext.normalize(Decimal('120.00')) |
| Decimal("1.2E+2") |
| >>> ExtendedContext.normalize(Decimal('0.00')) |
| Decimal("0") |
| """ |
| return a.normalize(context=self) |
| |
| def plus(self, a): |
| """Plus corresponds to unary prefix plus in Python. |
| |
| The operation is evaluated using the same rules as add; the |
| operation plus(a) is calculated as add('0', a) where the '0' |
| has the same exponent as the operand. |
| |
| >>> ExtendedContext.plus(Decimal('1.3')) |
| Decimal("1.3") |
| >>> ExtendedContext.plus(Decimal('-1.3')) |
| Decimal("-1.3") |
| """ |
| return a.__pos__(context=self) |
| |
| def power(self, a, b, modulo=None): |
| """Raises a to the power of b, to modulo if given. |
| |
| The right-hand operand must be a whole number whose integer part (after |
| any exponent has been applied) has no more than 9 digits and whose |
| fractional part (if any) is all zeros before any rounding. The operand |
| may be positive, negative, or zero; if negative, the absolute value of |
| the power is used, and the left-hand operand is inverted (divided into |
| 1) before use. |
| |
| If the increased precision needed for the intermediate calculations |
| exceeds the capabilities of the implementation then an Invalid operation |
| condition is raised. |
| |
| If, when raising to a negative power, an underflow occurs during the |
| division into 1, the operation is not halted at that point but |
| continues. |
| |
| >>> ExtendedContext.power(Decimal('2'), Decimal('3')) |
| Decimal("8") |
| >>> ExtendedContext.power(Decimal('2'), Decimal('-3')) |
| Decimal("0.125") |
| >>> ExtendedContext.power(Decimal('1.7'), Decimal('8')) |
| Decimal("69.7575744") |
| >>> ExtendedContext.power(Decimal('Infinity'), Decimal('-2')) |
| Decimal("0") |
| >>> ExtendedContext.power(Decimal('Infinity'), Decimal('-1')) |
| Decimal("0") |
| >>> ExtendedContext.power(Decimal('Infinity'), Decimal('0')) |
| Decimal("1") |
| >>> ExtendedContext.power(Decimal('Infinity'), Decimal('1')) |
| Decimal("Infinity") |
| >>> ExtendedContext.power(Decimal('Infinity'), Decimal('2')) |
| Decimal("Infinity") |
| >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('-2')) |
| Decimal("0") |
| >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('-1')) |
| Decimal("-0") |
| >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('0')) |
| Decimal("1") |
| >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('1')) |
| Decimal("-Infinity") |
| >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('2')) |
| Decimal("Infinity") |
| >>> ExtendedContext.power(Decimal('0'), Decimal('0')) |
| Decimal("NaN") |
| """ |
| return a.__pow__(b, modulo, context=self) |
| |
| def quantize(self, a, b): |
| """Returns a value equal to 'a' (rounded) and having the exponent of 'b'. |
| |
| The coefficient of the result is derived from that of the left-hand |
| operand. It may be rounded using the current rounding setting (if the |
| exponent is being increased), multiplied by a positive power of ten (if |
| the exponent is being decreased), or is unchanged (if the exponent is |
| already equal to that of the right-hand operand). |
| |
| Unlike other operations, if the length of the coefficient after the |
| quantize operation would be greater than precision then an Invalid |
| operation condition is raised. This guarantees that, unless there is an |
| error condition, the exponent of the result of a quantize is always |
| equal to that of the right-hand operand. |
| |
| Also unlike other operations, quantize will never raise Underflow, even |
| if the result is subnormal and inexact. |
| |
| >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001')) |
| Decimal("2.170") |
| >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01')) |
| Decimal("2.17") |
| >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1')) |
| Decimal("2.2") |
| >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0')) |
| Decimal("2") |
| >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1')) |
| Decimal("0E+1") |
| >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity')) |
| Decimal("-Infinity") |
| >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity')) |
| Decimal("NaN") |
| >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1')) |
| Decimal("-0") |
| >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5')) |
| Decimal("-0E+5") |
| >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2')) |
| Decimal("NaN") |
| >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2')) |
| Decimal("NaN") |
| >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1')) |
| Decimal("217.0") |
| >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0')) |
| Decimal("217") |
| >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1')) |
| Decimal("2.2E+2") |
| >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2')) |
| Decimal("2E+2") |
| """ |
| return a.quantize(b, context=self) |
| |
| def remainder(self, a, b): |
| """Returns the remainder from integer division. |
| |
| The result is the residue of the dividend after the operation of |
| calculating integer division as described for divide-integer, rounded to |
| precision digits if necessary. The sign of the result, if non-zero, is |
| the same as that of the original dividend. |
| |
| This operation will fail under the same conditions as integer division |
| (that is, if integer division on the same two operands would fail, the |
| remainder cannot be calculated). |
| |
| >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3')) |
| Decimal("2.1") |
| >>> ExtendedContext.remainder(Decimal('10'), Decimal('3')) |
| Decimal("1") |
| >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3')) |
| Decimal("-1") |
| >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1')) |
| Decimal("0.2") |
| >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3')) |
| Decimal("0.1") |
| >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3')) |
| Decimal("1.0") |
| """ |
| return a.__mod__(b, context=self) |
| |
| def remainder_near(self, a, b): |
| """Returns to be "a - b * n", where n is the integer nearest the exact |
| value of "x / b" (if two integers are equally near then the even one |
| is chosen). If the result is equal to 0 then its sign will be the |
| sign of a. |
| |
| This operation will fail under the same conditions as integer division |
| (that is, if integer division on the same two operands would fail, the |
| remainder cannot be calculated). |
| |
| >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3')) |
| Decimal("-0.9") |
| >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6')) |
| Decimal("-2") |
| >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3')) |
| Decimal("1") |
| >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3')) |
| Decimal("-1") |
| >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1')) |
| Decimal("0.2") |
| >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3')) |
| Decimal("0.1") |
| >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3')) |
| Decimal("-0.3") |
| """ |
| return a.remainder_near(b, context=self) |
| |
| def same_quantum(self, a, b): |
| """Returns True if the two operands have the same exponent. |
| |
| The result is never affected by either the sign or the coefficient of |
| either operand. |
| |
| >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001')) |
| False |
| >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01')) |
| True |
| >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1')) |
| False |
| >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf')) |
| True |
| """ |
| return a.same_quantum(b) |
| |
| def sqrt(self, a): |
| """Returns the square root of a non-negative number to context precision. |
| |
| If the result must be inexact, it is rounded using the round-half-even |
| algorithm. |
| |
| >>> ExtendedContext.sqrt(Decimal('0')) |
| Decimal("0") |
| >>> ExtendedContext.sqrt(Decimal('-0')) |
| Decimal("-0") |
| >>> ExtendedContext.sqrt(Decimal('0.39')) |
| Decimal("0.624499800") |
| >>> ExtendedContext.sqrt(Decimal('100')) |
| Decimal("10") |
| >>> ExtendedContext.sqrt(Decimal('1')) |
| Decimal("1") |
| >>> ExtendedContext.sqrt(Decimal('1.0')) |
| Decimal("1.0") |
| >>> ExtendedContext.sqrt(Decimal('1.00')) |
| Decimal("1.0") |
| >>> ExtendedContext.sqrt(Decimal('7')) |
| Decimal("2.64575131") |
| >>> ExtendedContext.sqrt(Decimal('10')) |
| Decimal("3.16227766") |
| >>> ExtendedContext.prec |
| 9 |
| """ |
| return a.sqrt(context=self) |
| |
| def subtract(self, a, b): |
| """Return the difference between the two operands. |
| |
| >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07')) |
| Decimal("0.23") |
| >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30')) |
| Decimal("0.00") |
| >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07')) |
| Decimal("-0.77") |
| """ |
| return a.__sub__(b, context=self) |
| |
| def to_eng_string(self, a): |
| """Converts a number to a string, using scientific notation. |
| |
| The operation is not affected by the context. |
| """ |
| return a.to_eng_string(context=self) |
| |
| def to_sci_string(self, a): |
| """Converts a number to a string, using scientific notation. |
| |
| The operation is not affected by the context. |
| """ |
| return a.__str__(context=self) |
| |
| def to_integral(self, a): |
| """Rounds to an integer. |
| |
| When the operand has a negative exponent, the result is the same |
| as using the quantize() operation using the given operand as the |
| left-hand-operand, 1E+0 as the right-hand-operand, and the precision |
| of the operand as the precision setting, except that no flags will |
| be set. The rounding mode is taken from the context. |
| |
| >>> ExtendedContext.to_integral(Decimal('2.1')) |
| Decimal("2") |
| >>> ExtendedContext.to_integral(Decimal('100')) |
| Decimal("100") |
| >>> ExtendedContext.to_integral(Decimal('100.0')) |
| Decimal("100") |
| >>> ExtendedContext.to_integral(Decimal('101.5')) |
| Decimal("102") |
| >>> ExtendedContext.to_integral(Decimal('-101.5')) |
| Decimal("-102") |
| >>> ExtendedContext.to_integral(Decimal('10E+5')) |
| Decimal("1.0E+6") |
| >>> ExtendedContext.to_integral(Decimal('7.89E+77')) |
| Decimal("7.89E+77") |
| >>> ExtendedContext.to_integral(Decimal('-Inf')) |
| Decimal("-Infinity") |
| """ |
| return a.to_integral(context=self) |
| |
| class _WorkRep(object): |
| __slots__ = ('sign','int','exp') |
| # sign: 0 or 1 |
| # int: int or long |
| # exp: None, int, or string |
| |
| def __init__(self, value=None): |
| if value is None: |
| self.sign = None |
| self.int = 0 |
| self.exp = None |
| elif isinstance(value, Decimal): |
| self.sign = value._sign |
| cum = 0 |
| for digit in value._int: |
| cum = cum * 10 + digit |
| self.int = cum |
| self.exp = value._exp |
| else: |
| # assert isinstance(value, tuple) |
| self.sign = value[0] |
| self.int = value[1] |
| self.exp = value[2] |
| |
| def __repr__(self): |
| return "(%r, %r, %r)" % (self.sign, self.int, self.exp) |
| |
| __str__ = __repr__ |
| |
| |
| |
| def _normalize(op1, op2, shouldround = 0, prec = 0): |
| """Normalizes op1, op2 to have the same exp and length of coefficient. |
| |
| Done during addition. |
| """ |
| # Yes, the exponent is a long, but the difference between exponents |
| # must be an int-- otherwise you'd get a big memory problem. |
| numdigits = int(op1.exp - op2.exp) |
| if numdigits < 0: |
| numdigits = -numdigits |
| tmp = op2 |
| other = op1 |
| else: |
| tmp = op1 |
| other = op2 |
| |
| |
| if shouldround and numdigits > prec + 1: |
| # Big difference in exponents - check the adjusted exponents |
| tmp_len = len(str(tmp.int)) |
| other_len = len(str(other.int)) |
| if numdigits > (other_len + prec + 1 - tmp_len): |
| # If the difference in adjusted exps is > prec+1, we know |
| # other is insignificant, so might as well put a 1 after the precision. |
| # (since this is only for addition.) Also stops use of massive longs. |
| |
| extend = prec + 2 - tmp_len |
| if extend <= 0: |
| extend = 1 |
| tmp.int *= 10 ** extend |
| tmp.exp -= extend |
| other.int = 1 |
| other.exp = tmp.exp |
| return op1, op2 |
| |
| tmp.int *= 10 ** numdigits |
| tmp.exp -= numdigits |
| return op1, op2 |
| |
| def _adjust_coefficients(op1, op2): |
| """Adjust op1, op2 so that op2.int * 10 > op1.int >= op2.int. |
| |
| Returns the adjusted op1, op2 as well as the change in op1.exp-op2.exp. |
| |
| Used on _WorkRep instances during division. |
| """ |
| adjust = 0 |
| #If op1 is smaller, make it larger |
| while op2.int > op1.int: |
| op1.int *= 10 |
| op1.exp -= 1 |
| adjust += 1 |
| |
| #If op2 is too small, make it larger |
| while op1.int >= (10 * op2.int): |
| op2.int *= 10 |
| op2.exp -= 1 |
| adjust -= 1 |
| |
| return op1, op2, adjust |
| |
| ##### Helper Functions ######################################## |
| |
| def _convert_other(other): |
| """Convert other to Decimal. |
| |
| Verifies that it's ok to use in an implicit construction. |
| """ |
| if isinstance(other, Decimal): |
| return other |
| if isinstance(other, (int, long)): |
| return Decimal(other) |
| return NotImplemented |
| |
| _infinity_map = { |
| 'inf' : 1, |
| 'infinity' : 1, |
| '+inf' : 1, |
| '+infinity' : 1, |
| '-inf' : -1, |
| '-infinity' : -1 |
| } |
| |
| def _isinfinity(num): |
| """Determines whether a string or float is infinity. |
| |
| +1 for negative infinity; 0 for finite ; +1 for positive infinity |
| """ |
| num = str(num).lower() |
| return _infinity_map.get(num, 0) |
| |
| def _isnan(num): |
| """Determines whether a string or float is NaN |
| |
| (1, sign, diagnostic info as string) => NaN |
| (2, sign, diagnostic info as string) => sNaN |
| 0 => not a NaN |
| """ |
| num = str(num).lower() |
| if not num: |
| return 0 |
| |
| #get the sign, get rid of trailing [+-] |
| sign = 0 |
| if num[0] == '+': |
| num = num[1:] |
| elif num[0] == '-': #elif avoids '+-nan' |
| num = num[1:] |
| sign = 1 |
| |
| if num.startswith('nan'): |
| if len(num) > 3 and not num[3:].isdigit(): #diagnostic info |
| return 0 |
| return (1, sign, num[3:].lstrip('0')) |
| if num.startswith('snan'): |
| if len(num) > 4 and not num[4:].isdigit(): |
| return 0 |
| return (2, sign, num[4:].lstrip('0')) |
| return 0 |
| |
| |
| ##### Setup Specific Contexts ################################ |
| |
| # The default context prototype used by Context() |
| # Is mutable, so that new contexts can have different default values |
| |
| DefaultContext = Context( |
| prec=28, rounding=ROUND_HALF_EVEN, |
| traps=[DivisionByZero, Overflow, InvalidOperation], |
| flags=[], |
| _rounding_decision=ALWAYS_ROUND, |
| Emax=999999999, |
| Emin=-999999999, |
| capitals=1 |
| ) |
| |
| # Pre-made alternate contexts offered by the specification |
| # Don't change these; the user should be able to select these |
| # contexts and be able to reproduce results from other implementations |
| # of the spec. |
| |
| BasicContext = Context( |
| prec=9, rounding=ROUND_HALF_UP, |
| traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow], |
| flags=[], |
| ) |
| |
| ExtendedContext = Context( |
| prec=9, rounding=ROUND_HALF_EVEN, |
| traps=[], |
| flags=[], |
| ) |
| |
| |
| ##### Useful Constants (internal use only) #################### |
| |
| #Reusable defaults |
| Inf = Decimal('Inf') |
| negInf = Decimal('-Inf') |
| |
| #Infsign[sign] is infinity w/ that sign |
| Infsign = (Inf, negInf) |
| |
| NaN = Decimal('NaN') |
| |
| |
| ##### crud for parsing strings ################################# |
| import re |
| |
| # There's an optional sign at the start, and an optional exponent |
| # at the end. The exponent has an optional sign and at least one |
| # digit. In between, must have either at least one digit followed |
| # by an optional fraction, or a decimal point followed by at least |
| # one digit. Yuck. |
| |
| _parser = re.compile(r""" |
| # \s* |
| (?P<sign>[-+])? |
| ( |
| (?P<int>\d+) (\. (?P<frac>\d*))? |
| | |
| \. (?P<onlyfrac>\d+) |
| ) |
| ([eE](?P<exp>[-+]? \d+))? |
| # \s* |
| $ |
| """, re.VERBOSE).match #Uncomment the \s* to allow leading or trailing spaces. |
| |
| del re |
| |
| # return sign, n, p s.t. float string value == -1**sign * n * 10**p exactly |
| |
| def _string2exact(s): |
| m = _parser(s) |
| if m is None: |
| raise ValueError("invalid literal for Decimal: %r" % s) |
| |
| if m.group('sign') == "-": |
| sign = 1 |
| else: |
| sign = 0 |
| |
| exp = m.group('exp') |
| if exp is None: |
| exp = 0 |
| else: |
| exp = int(exp) |
| |
| intpart = m.group('int') |
| if intpart is None: |
| intpart = "" |
| fracpart = m.group('onlyfrac') |
| else: |
| fracpart = m.group('frac') |
| if fracpart is None: |
| fracpart = "" |
| |
| exp -= len(fracpart) |
| |
| mantissa = intpart + fracpart |
| tmp = map(int, mantissa) |
| backup = tmp |
| while tmp and tmp[0] == 0: |
| del tmp[0] |
| |
| # It's a zero |
| if not tmp: |
| if backup: |
| return (sign, tuple(backup), exp) |
| return (sign, (0,), exp) |
| mantissa = tuple(tmp) |
| |
| return (sign, mantissa, exp) |
| |
| |
| if __name__ == '__main__': |
| import doctest, sys |
| doctest.testmod(sys.modules[__name__]) |