blob: 280ffc3e46c3c70ed59a1d07508f764ac8c255f1 [file] [log] [blame]
/* New getargs implementation */
#include "Python.h"
#include <ctype.h>
int PyArg_Parse(PyObject *, char *, ...);
int PyArg_ParseTuple(PyObject *, char *, ...);
int PyArg_VaParse(PyObject *, char *, va_list);
int PyArg_ParseTupleAndKeywords(PyObject *, PyObject *,
char *, char **, ...);
/* Forward */
static int vgetargs1(PyObject *, char *, va_list *, int);
static void seterror(int, char *, int *, char *, char *);
static char *convertitem(PyObject *, char **, va_list *, int *, char *,
size_t);
static char *converttuple(PyObject *, char **, va_list *,
int *, char *, size_t, int);
static char *convertsimple(PyObject *, char **, va_list *, char *, size_t);
static int convertbuffer(PyObject *, void **p, char **);
static int vgetargskeywords(PyObject *, PyObject *,
char *, char **, va_list *);
static char *skipitem(char **, va_list *);
int
PyArg_Parse(PyObject *args, char *format, ...)
{
int retval;
va_list va;
va_start(va, format);
retval = vgetargs1(args, format, &va, 1);
va_end(va);
return retval;
}
int
PyArg_ParseTuple(PyObject *args, char *format, ...)
{
int retval;
va_list va;
va_start(va, format);
retval = vgetargs1(args, format, &va, 0);
va_end(va);
return retval;
}
int
PyArg_VaParse(PyObject *args, char *format, va_list va)
{
va_list lva;
#ifdef VA_LIST_IS_ARRAY
memcpy(lva, va, sizeof(va_list));
#else
lva = va;
#endif
return vgetargs1(args, format, &lva, 0);
}
static int
vgetargs1(PyObject *args, char *format, va_list *p_va, int compat)
{
char msgbuf[256];
int levels[32];
char *fname = NULL;
char *message = NULL;
int min = -1;
int max = 0;
int level = 0;
int endfmt = 0;
char *formatsave = format;
int i, len;
char *msg;
assert(compat || (args != (PyObject*)NULL));
while (endfmt == 0) {
int c = *format++;
switch (c) {
case '(':
if (level == 0)
max++;
level++;
break;
case ')':
if (level == 0)
Py_FatalError("excess ')' in getargs format");
else
level--;
break;
case '\0':
endfmt = 1;
break;
case ':':
fname = format;
endfmt = 1;
break;
case ';':
message = format;
endfmt = 1;
break;
default:
if (level == 0) {
if (c == 'O')
max++;
else if (isalpha(c)) {
if (c != 'e') /* skip encoded */
max++;
} else if (c == '|')
min = max;
}
break;
}
}
if (level != 0)
Py_FatalError(/* '(' */ "missing ')' in getargs format");
if (min < 0)
min = max;
format = formatsave;
if (compat) {
if (max == 0) {
if (args == NULL)
return 1;
PyOS_snprintf(msgbuf, sizeof(msgbuf),
"%.200s%s takes no arguments",
fname==NULL ? "function" : fname,
fname==NULL ? "" : "()");
PyErr_SetString(PyExc_TypeError, msgbuf);
return 0;
}
else if (min == 1 && max == 1) {
if (args == NULL) {
PyOS_snprintf(msgbuf, sizeof(msgbuf),
"%.200s%s takes at least one argument",
fname==NULL ? "function" : fname,
fname==NULL ? "" : "()");
PyErr_SetString(PyExc_TypeError, msgbuf);
return 0;
}
msg = convertitem(args, &format, p_va, levels, msgbuf,
sizeof(msgbuf));
if (msg == NULL)
return 1;
seterror(levels[0], msg, levels+1, fname, message);
return 0;
}
else {
PyErr_SetString(PyExc_SystemError,
"old style getargs format uses new features");
return 0;
}
}
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_SystemError,
"new style getargs format but argument is not a tuple");
return 0;
}
len = PyTuple_GET_SIZE(args);
if (len < min || max < len) {
if (message == NULL) {
PyOS_snprintf(msgbuf, sizeof(msgbuf),
"%.150s%s takes %s %d argument%s "
"(%d given)",
fname==NULL ? "function" : fname,
fname==NULL ? "" : "()",
min==max ? "exactly"
: len < min ? "at least" : "at most",
len < min ? min : max,
(len < min ? min : max) == 1 ? "" : "s",
len);
message = msgbuf;
}
PyErr_SetString(PyExc_TypeError, message);
return 0;
}
for (i = 0; i < len; i++) {
if (*format == '|')
format++;
msg = convertitem(PyTuple_GET_ITEM(args, i), &format, p_va,
levels, msgbuf, sizeof(msgbuf));
if (msg) {
seterror(i+1, msg, levels, fname, message);
return 0;
}
}
if (*format != '\0' && !isalpha((int)(*format)) &&
*format != '(' &&
*format != '|' && *format != ':' && *format != ';') {
PyErr_Format(PyExc_SystemError,
"bad format string: %.200s", formatsave);
return 0;
}
return 1;
}
static void
seterror(int iarg, char *msg, int *levels, char *fname, char *message)
{
char buf[512];
int i;
char *p = buf;
if (PyErr_Occurred())
return;
else if (message == NULL) {
if (fname != NULL) {
PyOS_snprintf(p, sizeof(buf), "%.200s() ", fname);
p += strlen(p);
}
if (iarg != 0) {
PyOS_snprintf(p, sizeof(buf) - (p - buf),
"argument %d", iarg);
i = 0;
p += strlen(p);
while (levels[i] > 0 && (int)(p-buf) < 220) {
PyOS_snprintf(p, sizeof(buf) - (buf - p),
", item %d", levels[i]-1);
p += strlen(p);
i++;
}
}
else {
PyOS_snprintf(p, sizeof(buf) - (p - buf), "argument");
p += strlen(p);
}
PyOS_snprintf(p, sizeof(buf) - (p - buf), " %.256s", msg);
message = buf;
}
PyErr_SetString(PyExc_TypeError, message);
}
/* Convert a tuple argument.
On entry, *p_format points to the character _after_ the opening '('.
On successful exit, *p_format points to the closing ')'.
If successful:
*p_format and *p_va are updated,
*levels and *msgbuf are untouched,
and NULL is returned.
If the argument is invalid:
*p_format is unchanged,
*p_va is undefined,
*levels is a 0-terminated list of item numbers,
*msgbuf contains an error message, whose format is:
"must be <typename1>, not <typename2>", where:
<typename1> is the name of the expected type, and
<typename2> is the name of the actual type,
and msgbuf is returned.
*/
static char *
converttuple(PyObject *arg, char **p_format, va_list *p_va, int *levels,
char *msgbuf, size_t bufsize, int toplevel)
{
int level = 0;
int n = 0;
char *format = *p_format;
int i;
for (;;) {
int c = *format++;
if (c == '(') {
if (level == 0)
n++;
level++;
}
else if (c == ')') {
if (level == 0)
break;
level--;
}
else if (c == ':' || c == ';' || c == '\0')
break;
else if (level == 0 && isalpha(c))
n++;
}
if (!PySequence_Check(arg) || PyString_Check(arg)) {
levels[0] = 0;
PyOS_snprintf(msgbuf, bufsize,
toplevel ? "expected %d arguments, not %.50s" :
"must be %d-item sequence, not %.50s",
n,
arg == Py_None ? "None" : arg->ob_type->tp_name);
return msgbuf;
}
if ((i = PySequence_Size(arg)) != n) {
levels[0] = 0;
PyOS_snprintf(msgbuf, bufsize,
toplevel ? "expected %d arguments, not %d" :
"must be sequence of length %d, not %d",
n, i);
return msgbuf;
}
format = *p_format;
for (i = 0; i < n; i++) {
char *msg;
PyObject *item;
item = PySequence_GetItem(arg, i);
msg = convertitem(item, &format, p_va, levels+1, msgbuf,
bufsize);
/* PySequence_GetItem calls tp->sq_item, which INCREFs */
Py_XDECREF(item);
if (msg != NULL) {
levels[0] = i+1;
return msg;
}
}
*p_format = format;
return NULL;
}
/* Convert a single item. */
static char *
convertitem(PyObject *arg, char **p_format, va_list *p_va, int *levels,
char *msgbuf, size_t bufsize)
{
char *msg;
char *format = *p_format;
if (*format == '(' /* ')' */) {
format++;
msg = converttuple(arg, &format, p_va, levels, msgbuf,
bufsize, 0);
if (msg == NULL)
format++;
}
else {
msg = convertsimple(arg, &format, p_va, msgbuf, bufsize);
if (msg != NULL)
levels[0] = 0;
}
if (msg == NULL)
*p_format = format;
return msg;
}
#define UNICODE_DEFAULT_ENCODING(arg) \
_PyUnicode_AsDefaultEncodedString(arg, NULL)
/* Format an error message generated by convertsimple(). */
static char *
converterr(char *expected, PyObject *arg, char *msgbuf, size_t bufsize)
{
assert(expected != NULL);
assert(arg != NULL);
PyOS_snprintf(msgbuf, bufsize,
"must be %.50s, not %.50s", expected,
arg == Py_None ? "None" : arg->ob_type->tp_name);
return msgbuf;
}
#define CONV_UNICODE "(unicode conversion error)"
/* Convert a non-tuple argument. Return NULL if conversion went OK,
or a string with a message describing the failure. The message is
formatted as "must be <desired type>, not <actual type>".
When failing, an exception may or may not have been raised.
Don't call if a tuple is expected.
*/
static char *
convertsimple(PyObject *arg, char **p_format, va_list *p_va, char *msgbuf,
size_t bufsize)
{
char *format = *p_format;
char c = *format++;
PyObject *uarg;
switch (c) {
case 'b': { /* unsigned byte -- very short int */
char *p = va_arg(*p_va, char *);
long ival = PyInt_AsLong(arg);
if (ival == -1 && PyErr_Occurred())
return converterr("integer<b>", arg, msgbuf, bufsize);
else if (ival < 0) {
PyErr_SetString(PyExc_OverflowError,
"unsigned byte integer is less than minimum");
return converterr("integer<b>", arg, msgbuf, bufsize);
}
else if (ival > UCHAR_MAX) {
PyErr_SetString(PyExc_OverflowError,
"unsigned byte integer is greater than maximum");
return converterr("integer<b>", arg, msgbuf, bufsize);
}
else
*p = (unsigned char) ival;
break;
}
case 'B': {/* byte sized bitfield - both signed and unsigned
values allowed */
char *p = va_arg(*p_va, char *);
long ival = PyInt_AsLong(arg);
if (ival == -1 && PyErr_Occurred())
return converterr("integer<b>", arg, msgbuf, bufsize);
else if (ival < SCHAR_MIN) {
PyErr_SetString(PyExc_OverflowError,
"byte-sized integer bitfield is less than minimum");
return converterr("integer<B>", arg, msgbuf, bufsize);
}
else if (ival > (int)UCHAR_MAX) {
PyErr_SetString(PyExc_OverflowError,
"byte-sized integer bitfield is greater than maximum");
return converterr("integer<B>", arg, msgbuf, bufsize);
}
else
*p = (unsigned char) ival;
break;
}
case 'h': {/* signed short int */
short *p = va_arg(*p_va, short *);
long ival = PyInt_AsLong(arg);
if (ival == -1 && PyErr_Occurred())
return converterr("integer<h>", arg, msgbuf, bufsize);
else if (ival < SHRT_MIN) {
PyErr_SetString(PyExc_OverflowError,
"signed short integer is less than minimum");
return converterr("integer<h>", arg, msgbuf, bufsize);
}
else if (ival > SHRT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"signed short integer is greater than maximum");
return converterr("integer<h>", arg, msgbuf, bufsize);
}
else
*p = (short) ival;
break;
}
case 'H': { /* short int sized bitfield, both signed and
unsigned allowed */
unsigned short *p = va_arg(*p_va, unsigned short *);
long ival = PyInt_AsLong(arg);
if (ival == -1 && PyErr_Occurred())
return converterr("integer<H>", arg, msgbuf, bufsize);
else if (ival < SHRT_MIN) {
PyErr_SetString(PyExc_OverflowError,
"short integer bitfield is less than minimum");
return converterr("integer<H>", arg, msgbuf, bufsize);
}
else if (ival > USHRT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"short integer bitfield is greater than maximum");
return converterr("integer<H>", arg, msgbuf, bufsize);
}
else
*p = (unsigned short) ival;
break;
}
case 'i': {/* signed int */
int *p = va_arg(*p_va, int *);
long ival = PyInt_AsLong(arg);
if (ival == -1 && PyErr_Occurred())
return converterr("integer<i>", arg, msgbuf, bufsize);
else if (ival > INT_MAX) {
PyErr_SetString(PyExc_OverflowError,
"signed integer is greater than maximum");
return converterr("integer<i>", arg, msgbuf, bufsize);
}
else if (ival < INT_MIN) {
PyErr_SetString(PyExc_OverflowError,
"signed integer is less than minimum");
return converterr("integer<i>", arg, msgbuf, bufsize);
}
else
*p = ival;
break;
}
case 'l': {/* long int */
long *p = va_arg(*p_va, long *);
long ival = PyInt_AsLong(arg);
if (ival == -1 && PyErr_Occurred())
return converterr("integer<l>", arg, msgbuf, bufsize);
else
*p = ival;
break;
}
#ifdef HAVE_LONG_LONG
case 'L': {/* LONG_LONG */
LONG_LONG *p = va_arg( *p_va, LONG_LONG * );
LONG_LONG ival = PyLong_AsLongLong( arg );
if( ival == (LONG_LONG)-1 && PyErr_Occurred() ) {
return converterr("long<L>", arg, msgbuf, bufsize);
} else {
*p = ival;
}
break;
}
#endif
case 'f': {/* float */
float *p = va_arg(*p_va, float *);
double dval = PyFloat_AsDouble(arg);
if (PyErr_Occurred())
return converterr("float<f>", arg, msgbuf, bufsize);
else
*p = (float) dval;
break;
}
case 'd': {/* double */
double *p = va_arg(*p_va, double *);
double dval = PyFloat_AsDouble(arg);
if (PyErr_Occurred())
return converterr("float<d>", arg, msgbuf, bufsize);
else
*p = dval;
break;
}
#ifndef WITHOUT_COMPLEX
case 'D': {/* complex double */
Py_complex *p = va_arg(*p_va, Py_complex *);
Py_complex cval;
cval = PyComplex_AsCComplex(arg);
if (PyErr_Occurred())
return converterr("complex<D>", arg, msgbuf, bufsize);
else
*p = cval;
break;
}
#endif /* WITHOUT_COMPLEX */
case 'c': {/* char */
char *p = va_arg(*p_va, char *);
if (PyString_Check(arg) && PyString_Size(arg) == 1)
*p = PyString_AS_STRING(arg)[0];
else
return converterr("char", arg, msgbuf, bufsize);
break;
}
case 's': {/* string */
if (*format == '#') {
void **p = (void **)va_arg(*p_va, char **);
int *q = va_arg(*p_va, int *);
if (PyString_Check(arg)) {
*p = PyString_AS_STRING(arg);
*q = PyString_GET_SIZE(arg);
}
#ifdef Py_USING_UNICODE
else if (PyUnicode_Check(arg)) {
uarg = UNICODE_DEFAULT_ENCODING(arg);
if (uarg == NULL)
return converterr(CONV_UNICODE,
arg, msgbuf, bufsize);
*p = PyString_AS_STRING(uarg);
*q = PyString_GET_SIZE(uarg);
}
#endif
else { /* any buffer-like object */
char *buf;
int count = convertbuffer(arg, p, &buf);
if (count < 0)
return converterr(buf, arg, msgbuf, bufsize);
*q = count;
}
format++;
} else {
char **p = va_arg(*p_va, char **);
if (PyString_Check(arg))
*p = PyString_AS_STRING(arg);
#ifdef Py_USING_UNICODE
else if (PyUnicode_Check(arg)) {
uarg = UNICODE_DEFAULT_ENCODING(arg);
if (uarg == NULL)
return converterr(CONV_UNICODE,
arg, msgbuf, bufsize);
*p = PyString_AS_STRING(uarg);
}
#endif
else
return converterr("string", arg, msgbuf, bufsize);
if ((int)strlen(*p) != PyString_Size(arg))
return converterr("string without null bytes",
arg, msgbuf, bufsize);
}
break;
}
case 'z': {/* string, may be NULL (None) */
if (*format == '#') { /* any buffer-like object */
void **p = (void **)va_arg(*p_va, char **);
int *q = va_arg(*p_va, int *);
if (arg == Py_None) {
*p = 0;
*q = 0;
}
else if (PyString_Check(arg)) {
*p = PyString_AS_STRING(arg);
*q = PyString_GET_SIZE(arg);
}
#ifdef Py_USING_UNICODE
else if (PyUnicode_Check(arg)) {
uarg = UNICODE_DEFAULT_ENCODING(arg);
if (uarg == NULL)
return converterr(CONV_UNICODE,
arg, msgbuf, bufsize);
*p = PyString_AS_STRING(uarg);
*q = PyString_GET_SIZE(uarg);
}
#endif
else { /* any buffer-like object */
char *buf;
int count = convertbuffer(arg, p, &buf);
if (count < 0)
return converterr(buf, arg, msgbuf, bufsize);
*q = count;
}
format++;
} else {
char **p = va_arg(*p_va, char **);
if (arg == Py_None)
*p = 0;
else if (PyString_Check(arg))
*p = PyString_AS_STRING(arg);
#ifdef Py_USING_UNICODE
else if (PyUnicode_Check(arg)) {
uarg = UNICODE_DEFAULT_ENCODING(arg);
if (uarg == NULL)
return converterr(CONV_UNICODE,
arg, msgbuf, bufsize);
*p = PyString_AS_STRING(uarg);
}
#endif
else
return converterr("string or None",
arg, msgbuf, bufsize);
if (*format == '#') {
int *q = va_arg(*p_va, int *);
if (arg == Py_None)
*q = 0;
else
*q = PyString_Size(arg);
format++;
}
else if (*p != NULL &&
(int)strlen(*p) != PyString_Size(arg))
return converterr(
"string without null bytes or None",
arg, msgbuf, bufsize);
}
break;
}
case 'e': {/* encoded string */
char **buffer;
const char *encoding;
PyObject *s;
int size, recode_strings;
/* Get 'e' parameter: the encoding name */
encoding = (const char *)va_arg(*p_va, const char *);
#ifdef Py_USING_UNICODE
if (encoding == NULL)
encoding = PyUnicode_GetDefaultEncoding();
#endif
/* Get output buffer parameter:
's' (recode all objects via Unicode) or
't' (only recode non-string objects)
*/
if (*format == 's')
recode_strings = 1;
else if (*format == 't')
recode_strings = 0;
else
return converterr(
"(unknown parser marker combination)",
arg, msgbuf, bufsize);
buffer = (char **)va_arg(*p_va, char **);
format++;
if (buffer == NULL)
return converterr("(buffer is NULL)",
arg, msgbuf, bufsize);
/* Encode object */
if (!recode_strings && PyString_Check(arg)) {
s = arg;
Py_INCREF(s);
}
else {
#ifdef Py_USING_UNICODE
PyObject *u;
/* Convert object to Unicode */
u = PyUnicode_FromObject(arg);
if (u == NULL)
return converterr(
"string or unicode or text buffer",
arg, msgbuf, bufsize);
/* Encode object; use default error handling */
s = PyUnicode_AsEncodedString(u,
encoding,
NULL);
Py_DECREF(u);
if (s == NULL)
return converterr("(encoding failed)",
arg, msgbuf, bufsize);
if (!PyString_Check(s)) {
Py_DECREF(s);
return converterr(
"(encoder failed to return a string)",
arg, msgbuf, bufsize);
}
#else
return converterr("string<e>", arg, msgbuf, bufsize);
#endif
}
size = PyString_GET_SIZE(s);
/* Write output; output is guaranteed to be 0-terminated */
if (*format == '#') {
/* Using buffer length parameter '#':
- if *buffer is NULL, a new buffer of the
needed size is allocated and the data
copied into it; *buffer is updated to point
to the new buffer; the caller is
responsible for PyMem_Free()ing it after
usage
- if *buffer is not NULL, the data is
copied to *buffer; *buffer_len has to be
set to the size of the buffer on input;
buffer overflow is signalled with an error;
buffer has to provide enough room for the
encoded string plus the trailing 0-byte
- in both cases, *buffer_len is updated to
the size of the buffer /excluding/ the
trailing 0-byte
*/
int *buffer_len = va_arg(*p_va, int *);
format++;
if (buffer_len == NULL)
return converterr(
"(buffer_len is NULL)",
arg, msgbuf, bufsize);
if (*buffer == NULL) {
*buffer = PyMem_NEW(char, size + 1);
if (*buffer == NULL) {
Py_DECREF(s);
return converterr(
"(memory error)",
arg, msgbuf, bufsize);
}
} else {
if (size + 1 > *buffer_len) {
Py_DECREF(s);
return converterr(
"(buffer overflow)",
arg, msgbuf, bufsize);
}
}
memcpy(*buffer,
PyString_AS_STRING(s),
size + 1);
*buffer_len = size;
} else {
/* Using a 0-terminated buffer:
- the encoded string has to be 0-terminated
for this variant to work; if it is not, an
error raised
- a new buffer of the needed size is
allocated and the data copied into it;
*buffer is updated to point to the new
buffer; the caller is responsible for
PyMem_Free()ing it after usage
*/
if ((int)strlen(PyString_AS_STRING(s)) != size)
return converterr(
"(encoded string without NULL bytes)",
arg, msgbuf, bufsize);
*buffer = PyMem_NEW(char, size + 1);
if (*buffer == NULL) {
Py_DECREF(s);
return converterr("(memory error)",
arg, msgbuf, bufsize);
}
memcpy(*buffer,
PyString_AS_STRING(s),
size + 1);
}
Py_DECREF(s);
break;
}
#ifdef Py_USING_UNICODE
case 'u': {/* raw unicode buffer (Py_UNICODE *) */
if (*format == '#') { /* any buffer-like object */
void **p = (void **)va_arg(*p_va, char **);
int *q = va_arg(*p_va, int *);
if (PyUnicode_Check(arg)) {
*p = PyUnicode_AS_UNICODE(arg);
*q = PyUnicode_GET_SIZE(arg);
}
else {
char *buf;
int count = convertbuffer(arg, p, &buf);
if (count < 0)
return converterr(buf, arg, msgbuf, bufsize);
*q = count/(sizeof(Py_UNICODE));
}
format++;
} else {
Py_UNICODE **p = va_arg(*p_va, Py_UNICODE **);
if (PyUnicode_Check(arg))
*p = PyUnicode_AS_UNICODE(arg);
else
return converterr("unicode", arg, msgbuf, bufsize);
}
break;
}
#endif
case 'S': { /* string object */
PyObject **p = va_arg(*p_va, PyObject **);
if (PyString_Check(arg))
*p = arg;
else
return converterr("string", arg, msgbuf, bufsize);
break;
}
#ifdef Py_USING_UNICODE
case 'U': { /* Unicode object */
PyObject **p = va_arg(*p_va, PyObject **);
if (PyUnicode_Check(arg))
*p = arg;
else
return converterr("unicode", arg, msgbuf, bufsize);
break;
}
#endif
case 'O': { /* object */
PyTypeObject *type;
PyObject **p;
if (*format == '!') {
type = va_arg(*p_va, PyTypeObject*);
p = va_arg(*p_va, PyObject **);
format++;
if (PyType_IsSubtype(arg->ob_type, type))
*p = arg;
else
return converterr(type->tp_name, arg, msgbuf, bufsize);
}
else if (*format == '?') {
inquiry pred = va_arg(*p_va, inquiry);
p = va_arg(*p_va, PyObject **);
format++;
if ((*pred)(arg))
*p = arg;
else
return converterr("(unspecified)",
arg, msgbuf, bufsize);
}
else if (*format == '&') {
typedef int (*converter)(PyObject *, void *);
converter convert = va_arg(*p_va, converter);
void *addr = va_arg(*p_va, void *);
format++;
if (! (*convert)(arg, addr))
return converterr("(unspecified)",
arg, msgbuf, bufsize);
}
else {
p = va_arg(*p_va, PyObject **);
*p = arg;
}
break;
}
case 'w': { /* memory buffer, read-write access */
void **p = va_arg(*p_va, void **);
PyBufferProcs *pb = arg->ob_type->tp_as_buffer;
int count;
if (pb == NULL ||
pb->bf_getwritebuffer == NULL ||
pb->bf_getsegcount == NULL)
return converterr("read-write buffer", arg, msgbuf, bufsize);
if ((*pb->bf_getsegcount)(arg, NULL) != 1)
return converterr("single-segment read-write buffer",
arg, msgbuf, bufsize);
if ((count = pb->bf_getwritebuffer(arg, 0, p)) < 0)
return converterr("(unspecified)", arg, msgbuf, bufsize);
if (*format == '#') {
int *q = va_arg(*p_va, int *);
*q = count;
format++;
}
break;
}
case 't': { /* 8-bit character buffer, read-only access */
const char **p = va_arg(*p_va, const char **);
PyBufferProcs *pb = arg->ob_type->tp_as_buffer;
int count;
if (*format++ != '#')
return converterr(
"invalid use of 't' format character",
arg, msgbuf, bufsize);
if (!PyType_HasFeature(arg->ob_type,
Py_TPFLAGS_HAVE_GETCHARBUFFER) ||
pb == NULL || pb->bf_getcharbuffer == NULL ||
pb->bf_getsegcount == NULL)
return converterr(
"string or read-only character buffer",
arg, msgbuf, bufsize);
if (pb->bf_getsegcount(arg, NULL) != 1)
return converterr(
"string or single-segment read-only buffer",
arg, msgbuf, bufsize);
count = pb->bf_getcharbuffer(arg, 0, p);
if (count < 0)
return converterr("(unspecified)", arg, msgbuf, bufsize);
*va_arg(*p_va, int *) = count;
break;
}
default:
return converterr("impossible<bad format char>", arg, msgbuf, bufsize);
}
*p_format = format;
return NULL;
}
static int
convertbuffer(PyObject *arg, void **p, char **errmsg)
{
PyBufferProcs *pb = arg->ob_type->tp_as_buffer;
int count;
if (pb == NULL ||
pb->bf_getreadbuffer == NULL ||
pb->bf_getsegcount == NULL) {
*errmsg = "string or read-only buffer";
return -1;
}
if ((*pb->bf_getsegcount)(arg, NULL) != 1) {
*errmsg = "string or single-segment read-only buffer";
return -1;
}
if ((count = (*pb->bf_getreadbuffer)(arg, 0, p)) < 0) {
*errmsg = "(unspecified)";
}
return count;
}
/* Support for keyword arguments donated by
Geoff Philbrick <philbric@delphi.hks.com> */
/* Return false (0) for error, else true. */
int
PyArg_ParseTupleAndKeywords(PyObject *args,
PyObject *keywords,
char *format,
char **kwlist, ...)
{
int retval;
va_list va;
if ((args == NULL || !PyTuple_Check(args)) ||
(keywords != NULL && !PyDict_Check(keywords)) ||
format == NULL ||
kwlist == NULL)
{
PyErr_BadInternalCall();
return 0;
}
va_start(va, kwlist);
retval = vgetargskeywords(args, keywords, format, kwlist, &va);
va_end(va);
return retval;
}
static int
vgetargskeywords(PyObject *args, PyObject *keywords, char *format,
char **kwlist, va_list *p_va)
{
char msgbuf[512];
int levels[32];
char *fname, *message;
int min, max;
char *formatsave;
int i, len, nargs, nkeywords;
char *msg, **p;
assert(args != NULL && PyTuple_Check(args));
assert(keywords == NULL || PyDict_Check(keywords));
assert(format != NULL);
assert(kwlist != NULL);
assert(p_va != NULL);
/* Search the format:
message <- error msg, if any (else NULL).
fname <- routine name, if any (else NULL).
min <- # of required arguments, or -1 if all are required.
max <- most arguments (required + optional).
Check that kwlist has a non-NULL entry for each arg.
Raise error if a tuple arg spec is found.
*/
fname = message = NULL;
formatsave = format;
p = kwlist;
min = -1;
max = 0;
while ((i = *format++) != '\0') {
if (isalpha(i) && i != 'e') {
max++;
if (*p == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"more argument specifiers than "
"keyword list entries");
return 0;
}
p++;
}
else if (i == '|')
min = max;
else if (i == ':') {
fname = format;
break;
}
else if (i == ';') {
message = format;
break;
}
else if (i == '(') {
PyErr_SetString(PyExc_RuntimeError,
"tuple found in format when using keyword "
"arguments");
return 0;
}
}
format = formatsave;
if (*p != NULL) {
PyErr_SetString(PyExc_RuntimeError,
"more keyword list entries than "
"argument specifiers");
return 0;
}
if (min < 0) {
/* All arguments are required. */
min = max;
}
nargs = PyTuple_GET_SIZE(args);
nkeywords = keywords == NULL ? 0 : PyDict_Size(keywords);
/* make sure there are no duplicate values for an argument;
its not clear when to use the term "keyword argument vs.
keyword parameter in messages */
if (nkeywords > 0) {
for (i = 0; i < nargs; i++) {
char *thiskw = kwlist[i];
if (thiskw == NULL)
break;
if (PyDict_GetItemString(keywords, thiskw)) {
PyErr_Format(PyExc_TypeError,
"keyword parameter '%s' was given "
"by position and by name",
thiskw);
return 0;
}
else if (PyErr_Occurred())
return 0;
}
}
/* required arguments missing from args can be supplied by keyword
arguments; set len to the number of posiitional arguments, and,
if that's less than the minimum required, add in the number of
required arguments that are supplied by keywords */
len = nargs;
if (nkeywords > 0 && nargs < min) {
for (i = nargs; i < min; i++) {
if (PyDict_GetItemString(keywords, kwlist[i]))
len++;
else if (PyErr_Occurred())
return 0;
}
}
/* make sure we got an acceptable number of arguments; the message
is a little confusing with keywords since keyword arguments
which are supplied, but don't match the required arguments
are not included in the "%d given" part of the message */
if (len < min || max < len) {
if (message == NULL) {
PyOS_snprintf(msgbuf, sizeof(msgbuf),
"%.200s%s takes %s %d argument%s "
"(%d given)",
fname==NULL ? "function" : fname,
fname==NULL ? "" : "()",
min==max ? "exactly"
: len < min ? "at least" : "at most",
len < min ? min : max,
(len < min ? min : max) == 1 ? "" : "s",
len);
message = msgbuf;
}
PyErr_SetString(PyExc_TypeError, message);
return 0;
}
/* convert the positional arguments */
for (i = 0; i < nargs; i++) {
if (*format == '|')
format++;
msg = convertitem(PyTuple_GET_ITEM(args, i), &format, p_va,
levels, msgbuf, sizeof(msgbuf));
if (msg) {
seterror(i+1, msg, levels, fname, message);
return 0;
}
}
/* handle no keyword parameters in call */
if (nkeywords == 0)
return 1;
/* convert the keyword arguments; this uses the format
string where it was left after processing args */
for (i = nargs; i < max; i++) {
PyObject *item;
if (*format == '|')
format++;
item = PyDict_GetItemString(keywords, kwlist[i]);
if (item != NULL) {
Py_INCREF(item);
msg = convertitem(item, &format, p_va, levels, msgbuf,
sizeof(msgbuf));
Py_DECREF(item);
if (msg) {
seterror(i+1, msg, levels, fname, message);
return 0;
}
--nkeywords;
if (nkeywords == 0)
break;
}
else if (PyErr_Occurred())
return 0;
else {
msg = skipitem(&format, p_va);
if (msg) {
seterror(i+1, msg, levels, fname, message);
return 0;
}
}
}
/* make sure there are no extraneous keyword arguments */
if (nkeywords > 0) {
PyObject *key, *value;
int pos = 0;
while (PyDict_Next(keywords, &pos, &key, &value)) {
int match = 0;
char *ks;
if (!PyString_Check(key)) {
PyErr_SetString(PyExc_TypeError,
"keywords must be strings");
return 0;
}
ks = PyString_AsString(key);
for (i = 0; i < max; i++) {
if (!strcmp(ks, kwlist[i])) {
match = 1;
break;
}
}
if (!match) {
PyErr_Format(PyExc_TypeError,
"'%s' is an invalid keyword "
"argument for this function",
ks);
return 0;
}
}
}
return 1;
}
static char *
skipitem(char **p_format, va_list *p_va)
{
char *format = *p_format;
char c = *format++;
switch (c) {
case 'b': /* byte -- very short int */
case 'B': /* byte as bitfield */
{
(void) va_arg(*p_va, char *);
break;
}
case 'h': /* short int */
{
(void) va_arg(*p_va, short *);
break;
}
case 'H': /* short int as bitfield */
{
(void) va_arg(*p_va, unsigned short *);
break;
}
case 'i': /* int */
{
(void) va_arg(*p_va, int *);
break;
}
case 'l': /* long int */
{
(void) va_arg(*p_va, long *);
break;
}
#ifdef HAVE_LONG_LONG
case 'L': /* LONG_LONG int */
{
(void) va_arg(*p_va, LONG_LONG *);
break;
}
#endif
case 'f': /* float */
{
(void) va_arg(*p_va, float *);
break;
}
case 'd': /* double */
{
(void) va_arg(*p_va, double *);
break;
}
#ifndef WITHOUT_COMPLEX
case 'D': /* complex double */
{
(void) va_arg(*p_va, Py_complex *);
break;
}
#endif /* WITHOUT_COMPLEX */
case 'c': /* char */
{
(void) va_arg(*p_va, char *);
break;
}
case 's': /* string */
{
(void) va_arg(*p_va, char **);
if (*format == '#') {
(void) va_arg(*p_va, int *);
format++;
}
break;
}
case 'z': /* string */
{
(void) va_arg(*p_va, char **);
if (*format == '#') {
(void) va_arg(*p_va, int *);
format++;
}
break;
}
case 'S': /* string object */
{
(void) va_arg(*p_va, PyObject **);
break;
}
case 'O': /* object */
{
if (*format == '!') {
format++;
(void) va_arg(*p_va, PyTypeObject*);
(void) va_arg(*p_va, PyObject **);
}
#if 0
/* I don't know what this is for */
else if (*format == '?') {
inquiry pred = va_arg(*p_va, inquiry);
format++;
if ((*pred)(arg)) {
(void) va_arg(*p_va, PyObject **);
}
}
#endif
else if (*format == '&') {
typedef int (*converter)(PyObject *, void *);
(void) va_arg(*p_va, converter);
(void) va_arg(*p_va, void *);
format++;
}
else {
(void) va_arg(*p_va, PyObject **);
}
break;
}
default:
return "impossible<bad format char>";
}
*p_format = format;
return NULL;
}
int
PyArg_UnpackTuple(PyObject *args, char *name, int min, int max, ...)
{
int i, l;
PyObject **o;
va_list vargs;
#ifdef HAVE_STDARG_PROTOTYPES
va_start(vargs, max);
#else
va_start(vargs);
#endif
assert(min >= 0);
assert(min <= max);
if (!PyTuple_Check(args)) {
PyErr_SetString(PyExc_SystemError,
"PyArg_UnpackTuple() argument list is not a tuple");
return 0;
}
l = PyTuple_GET_SIZE(args);
if (l < min) {
if (name != NULL)
PyErr_Format(
PyExc_TypeError,
"%s expected %s%d arguments, got %d",
name, (min == max ? "" : "at least "), min, l);
else
PyErr_Format(
PyExc_TypeError,
"unpacked tuple should have %s%d elements,"
" but has %d",
(min == max ? "" : "at least "), min, l);
va_end(vargs);
return 0;
}
if (l > max) {
if (name != NULL)
PyErr_Format(
PyExc_TypeError,
"%s expected %s%d arguments, got %d",
name, (min == max ? "" : "at most "), max, l);
else
PyErr_Format(
PyExc_TypeError,
"unpacked tuple should have %s%d elements,"
" but has %d",
(min == max ? "" : "at most "), max, l);
va_end(vargs);
return 0;
}
for (i = 0; i < l; i++) {
o = va_arg(vargs, PyObject **);
*o = PyTuple_GET_ITEM(args, i);
}
va_end(vargs);
return 1;
}