| #include "Python.h" |
| #ifdef MS_WINDOWS |
| #include <windows.h> |
| #endif |
| |
| #if defined(__APPLE__) |
| #include <mach/mach_time.h> /* mach_absolute_time(), mach_timebase_info() */ |
| #endif |
| |
| #define _PyTime_check_mul_overflow(a, b) \ |
| (assert(b > 0), \ |
| (_PyTime_t)(a) < _PyTime_MIN / (_PyTime_t)(b) \ |
| || _PyTime_MAX / (_PyTime_t)(b) < (_PyTime_t)(a)) |
| |
| /* To millisecond (10^-3) */ |
| #define SEC_TO_MS 1000 |
| |
| /* To microseconds (10^-6) */ |
| #define MS_TO_US 1000 |
| #define SEC_TO_US (SEC_TO_MS * MS_TO_US) |
| |
| /* To nanoseconds (10^-9) */ |
| #define US_TO_NS 1000 |
| #define MS_TO_NS (MS_TO_US * US_TO_NS) |
| #define SEC_TO_NS (SEC_TO_MS * MS_TO_NS) |
| |
| /* Conversion from nanoseconds */ |
| #define NS_TO_MS (1000 * 1000) |
| #define NS_TO_US (1000) |
| |
| static void |
| error_time_t_overflow(void) |
| { |
| PyErr_SetString(PyExc_OverflowError, |
| "timestamp out of range for platform time_t"); |
| } |
| |
| static void |
| _PyTime_overflow(void) |
| { |
| PyErr_SetString(PyExc_OverflowError, |
| "timestamp too large to convert to C _PyTime_t"); |
| } |
| |
| |
| _PyTime_t |
| _PyTime_MulDiv(_PyTime_t ticks, _PyTime_t mul, _PyTime_t div) |
| { |
| _PyTime_t intpart, remaining; |
| /* Compute (ticks * mul / div) in two parts to prevent integer overflow: |
| compute integer part, and then the remaining part. |
| |
| (ticks * mul) / div == (ticks / div) * mul + (ticks % div) * mul / div |
| |
| The caller must ensure that "(div - 1) * mul" cannot overflow. */ |
| intpart = ticks / div; |
| ticks %= div; |
| remaining = ticks * mul; |
| remaining /= div; |
| return intpart * mul + remaining; |
| } |
| |
| |
| time_t |
| _PyLong_AsTime_t(PyObject *obj) |
| { |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG |
| long long val; |
| val = PyLong_AsLongLong(obj); |
| #else |
| long val; |
| Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long)); |
| val = PyLong_AsLong(obj); |
| #endif |
| if (val == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| error_time_t_overflow(); |
| } |
| return -1; |
| } |
| return (time_t)val; |
| } |
| |
| PyObject * |
| _PyLong_FromTime_t(time_t t) |
| { |
| #if SIZEOF_TIME_T == SIZEOF_LONG_LONG |
| return PyLong_FromLongLong((long long)t); |
| #else |
| Py_BUILD_ASSERT(sizeof(time_t) <= sizeof(long)); |
| return PyLong_FromLong((long)t); |
| #endif |
| } |
| |
| /* Round to nearest with ties going to nearest even integer |
| (_PyTime_ROUND_HALF_EVEN) */ |
| static double |
| _PyTime_RoundHalfEven(double x) |
| { |
| double rounded = round(x); |
| if (fabs(x-rounded) == 0.5) { |
| /* halfway case: round to even */ |
| rounded = 2.0*round(x/2.0); |
| } |
| return rounded; |
| } |
| |
| static double |
| _PyTime_Round(double x, _PyTime_round_t round) |
| { |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double d; |
| |
| d = x; |
| if (round == _PyTime_ROUND_HALF_EVEN) { |
| d = _PyTime_RoundHalfEven(d); |
| } |
| else if (round == _PyTime_ROUND_CEILING) { |
| d = ceil(d); |
| } |
| else if (round == _PyTime_ROUND_FLOOR) { |
| d = floor(d); |
| } |
| else { |
| assert(round == _PyTime_ROUND_UP); |
| d = (d >= 0.0) ? ceil(d) : floor(d); |
| } |
| return d; |
| } |
| |
| static int |
| _PyTime_DoubleToDenominator(double d, time_t *sec, long *numerator, |
| long idenominator, _PyTime_round_t round) |
| { |
| double denominator = (double)idenominator; |
| double intpart; |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double floatpart; |
| |
| floatpart = modf(d, &intpart); |
| |
| floatpart *= denominator; |
| floatpart = _PyTime_Round(floatpart, round); |
| if (floatpart >= denominator) { |
| floatpart -= denominator; |
| intpart += 1.0; |
| } |
| else if (floatpart < 0) { |
| floatpart += denominator; |
| intpart -= 1.0; |
| } |
| assert(0.0 <= floatpart && floatpart < denominator); |
| |
| if (!_Py_InIntegralTypeRange(time_t, intpart)) { |
| error_time_t_overflow(); |
| return -1; |
| } |
| *sec = (time_t)intpart; |
| *numerator = (long)floatpart; |
| assert(0 <= *numerator && *numerator < idenominator); |
| return 0; |
| } |
| |
| static int |
| _PyTime_ObjectToDenominator(PyObject *obj, time_t *sec, long *numerator, |
| long denominator, _PyTime_round_t round) |
| { |
| assert(denominator >= 1); |
| |
| if (PyFloat_Check(obj)) { |
| double d = PyFloat_AsDouble(obj); |
| if (Py_IS_NAN(d)) { |
| *numerator = 0; |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); |
| return -1; |
| } |
| return _PyTime_DoubleToDenominator(d, sec, numerator, |
| denominator, round); |
| } |
| else { |
| *sec = _PyLong_AsTime_t(obj); |
| *numerator = 0; |
| if (*sec == (time_t)-1 && PyErr_Occurred()) { |
| return -1; |
| } |
| return 0; |
| } |
| } |
| |
| int |
| _PyTime_ObjectToTime_t(PyObject *obj, time_t *sec, _PyTime_round_t round) |
| { |
| if (PyFloat_Check(obj)) { |
| double intpart; |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double d; |
| |
| d = PyFloat_AsDouble(obj); |
| if (Py_IS_NAN(d)) { |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); |
| return -1; |
| } |
| |
| d = _PyTime_Round(d, round); |
| (void)modf(d, &intpart); |
| |
| if (!_Py_InIntegralTypeRange(time_t, intpart)) { |
| error_time_t_overflow(); |
| return -1; |
| } |
| *sec = (time_t)intpart; |
| return 0; |
| } |
| else { |
| *sec = _PyLong_AsTime_t(obj); |
| if (*sec == (time_t)-1 && PyErr_Occurred()) { |
| return -1; |
| } |
| return 0; |
| } |
| } |
| |
| int |
| _PyTime_ObjectToTimespec(PyObject *obj, time_t *sec, long *nsec, |
| _PyTime_round_t round) |
| { |
| return _PyTime_ObjectToDenominator(obj, sec, nsec, SEC_TO_NS, round); |
| } |
| |
| int |
| _PyTime_ObjectToTimeval(PyObject *obj, time_t *sec, long *usec, |
| _PyTime_round_t round) |
| { |
| return _PyTime_ObjectToDenominator(obj, sec, usec, SEC_TO_US, round); |
| } |
| |
| _PyTime_t |
| _PyTime_FromSeconds(int seconds) |
| { |
| _PyTime_t t; |
| /* ensure that integer overflow cannot happen, int type should have 32 |
| bits, whereas _PyTime_t type has at least 64 bits (SEC_TO_MS takes 30 |
| bits). */ |
| Py_BUILD_ASSERT(INT_MAX <= _PyTime_MAX / SEC_TO_NS); |
| Py_BUILD_ASSERT(INT_MIN >= _PyTime_MIN / SEC_TO_NS); |
| |
| t = (_PyTime_t)seconds; |
| assert((t >= 0 && t <= _PyTime_MAX / SEC_TO_NS) |
| || (t < 0 && t >= _PyTime_MIN / SEC_TO_NS)); |
| t *= SEC_TO_NS; |
| return t; |
| } |
| |
| _PyTime_t |
| _PyTime_FromNanoseconds(_PyTime_t ns) |
| { |
| /* _PyTime_t already uses nanosecond resolution, no conversion needed */ |
| return ns; |
| } |
| |
| int |
| _PyTime_FromNanosecondsObject(_PyTime_t *tp, PyObject *obj) |
| { |
| long long nsec; |
| _PyTime_t t; |
| |
| if (!PyLong_Check(obj)) { |
| PyErr_Format(PyExc_TypeError, "expect int, got %s", |
| Py_TYPE(obj)->tp_name); |
| return -1; |
| } |
| |
| Py_BUILD_ASSERT(sizeof(long long) == sizeof(_PyTime_t)); |
| nsec = PyLong_AsLongLong(obj); |
| if (nsec == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| _PyTime_overflow(); |
| } |
| return -1; |
| } |
| |
| /* _PyTime_t already uses nanosecond resolution, no conversion needed */ |
| t = (_PyTime_t)nsec; |
| *tp = t; |
| return 0; |
| } |
| |
| #ifdef HAVE_CLOCK_GETTIME |
| static int |
| pytime_fromtimespec(_PyTime_t *tp, struct timespec *ts, int raise) |
| { |
| _PyTime_t t, nsec; |
| int res = 0; |
| |
| Py_BUILD_ASSERT(sizeof(ts->tv_sec) <= sizeof(_PyTime_t)); |
| t = (_PyTime_t)ts->tv_sec; |
| |
| if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) { |
| if (raise) { |
| _PyTime_overflow(); |
| } |
| res = -1; |
| t = (t > 0) ? _PyTime_MAX : _PyTime_MIN; |
| } |
| else { |
| t = t * SEC_TO_NS; |
| } |
| |
| nsec = ts->tv_nsec; |
| /* The following test is written for positive only nsec */ |
| assert(nsec >= 0); |
| if (t > _PyTime_MAX - nsec) { |
| if (raise) { |
| _PyTime_overflow(); |
| } |
| res = -1; |
| t = _PyTime_MAX; |
| } |
| else { |
| t += nsec; |
| } |
| |
| *tp = t; |
| return res; |
| } |
| |
| int |
| _PyTime_FromTimespec(_PyTime_t *tp, struct timespec *ts) |
| { |
| return pytime_fromtimespec(tp, ts, 1); |
| } |
| #endif |
| |
| #if !defined(MS_WINDOWS) |
| static int |
| pytime_fromtimeval(_PyTime_t *tp, struct timeval *tv, int raise) |
| { |
| _PyTime_t t, usec; |
| int res = 0; |
| |
| Py_BUILD_ASSERT(sizeof(tv->tv_sec) <= sizeof(_PyTime_t)); |
| t = (_PyTime_t)tv->tv_sec; |
| |
| if (_PyTime_check_mul_overflow(t, SEC_TO_NS)) { |
| if (raise) { |
| _PyTime_overflow(); |
| } |
| res = -1; |
| t = (t > 0) ? _PyTime_MAX : _PyTime_MIN; |
| } |
| else { |
| t = t * SEC_TO_NS; |
| } |
| |
| usec = (_PyTime_t)tv->tv_usec * US_TO_NS; |
| /* The following test is written for positive only usec */ |
| assert(usec >= 0); |
| if (t > _PyTime_MAX - usec) { |
| if (raise) { |
| _PyTime_overflow(); |
| } |
| res = -1; |
| t = _PyTime_MAX; |
| } |
| else { |
| t += usec; |
| } |
| |
| *tp = t; |
| return res; |
| } |
| |
| int |
| _PyTime_FromTimeval(_PyTime_t *tp, struct timeval *tv) |
| { |
| return pytime_fromtimeval(tp, tv, 1); |
| } |
| #endif |
| |
| static int |
| _PyTime_FromDouble(_PyTime_t *t, double value, _PyTime_round_t round, |
| long unit_to_ns) |
| { |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double d; |
| |
| /* convert to a number of nanoseconds */ |
| d = value; |
| d *= (double)unit_to_ns; |
| d = _PyTime_Round(d, round); |
| |
| if (!_Py_InIntegralTypeRange(_PyTime_t, d)) { |
| _PyTime_overflow(); |
| return -1; |
| } |
| *t = (_PyTime_t)d; |
| return 0; |
| } |
| |
| static int |
| _PyTime_FromObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round, |
| long unit_to_ns) |
| { |
| if (PyFloat_Check(obj)) { |
| double d; |
| d = PyFloat_AsDouble(obj); |
| if (Py_IS_NAN(d)) { |
| PyErr_SetString(PyExc_ValueError, "Invalid value NaN (not a number)"); |
| return -1; |
| } |
| return _PyTime_FromDouble(t, d, round, unit_to_ns); |
| } |
| else { |
| long long sec; |
| Py_BUILD_ASSERT(sizeof(long long) <= sizeof(_PyTime_t)); |
| |
| sec = PyLong_AsLongLong(obj); |
| if (sec == -1 && PyErr_Occurred()) { |
| if (PyErr_ExceptionMatches(PyExc_OverflowError)) { |
| _PyTime_overflow(); |
| } |
| return -1; |
| } |
| |
| if (_PyTime_check_mul_overflow(sec, unit_to_ns)) { |
| _PyTime_overflow(); |
| return -1; |
| } |
| *t = sec * unit_to_ns; |
| return 0; |
| } |
| } |
| |
| int |
| _PyTime_FromSecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) |
| { |
| return _PyTime_FromObject(t, obj, round, SEC_TO_NS); |
| } |
| |
| int |
| _PyTime_FromMillisecondsObject(_PyTime_t *t, PyObject *obj, _PyTime_round_t round) |
| { |
| return _PyTime_FromObject(t, obj, round, MS_TO_NS); |
| } |
| |
| double |
| _PyTime_AsSecondsDouble(_PyTime_t t) |
| { |
| /* volatile avoids optimization changing how numbers are rounded */ |
| volatile double d; |
| |
| if (t % SEC_TO_NS == 0) { |
| _PyTime_t secs; |
| /* Divide using integers to avoid rounding issues on the integer part. |
| 1e-9 cannot be stored exactly in IEEE 64-bit. */ |
| secs = t / SEC_TO_NS; |
| d = (double)secs; |
| } |
| else { |
| d = (double)t; |
| d /= 1e9; |
| } |
| return d; |
| } |
| |
| PyObject * |
| _PyTime_AsNanosecondsObject(_PyTime_t t) |
| { |
| Py_BUILD_ASSERT(sizeof(long long) >= sizeof(_PyTime_t)); |
| return PyLong_FromLongLong((long long)t); |
| } |
| |
| static _PyTime_t |
| _PyTime_Divide(const _PyTime_t t, const _PyTime_t k, |
| const _PyTime_round_t round) |
| { |
| assert(k > 1); |
| if (round == _PyTime_ROUND_HALF_EVEN) { |
| _PyTime_t x, r, abs_r; |
| x = t / k; |
| r = t % k; |
| abs_r = Py_ABS(r); |
| if (abs_r > k / 2 || (abs_r == k / 2 && (Py_ABS(x) & 1))) { |
| if (t >= 0) { |
| x++; |
| } |
| else { |
| x--; |
| } |
| } |
| return x; |
| } |
| else if (round == _PyTime_ROUND_CEILING) { |
| if (t >= 0) { |
| return (t + k - 1) / k; |
| } |
| else { |
| return t / k; |
| } |
| } |
| else if (round == _PyTime_ROUND_FLOOR){ |
| if (t >= 0) { |
| return t / k; |
| } |
| else { |
| return (t - (k - 1)) / k; |
| } |
| } |
| else { |
| assert(round == _PyTime_ROUND_UP); |
| if (t >= 0) { |
| return (t + k - 1) / k; |
| } |
| else { |
| return (t - (k - 1)) / k; |
| } |
| } |
| } |
| |
| _PyTime_t |
| _PyTime_AsMilliseconds(_PyTime_t t, _PyTime_round_t round) |
| { |
| return _PyTime_Divide(t, NS_TO_MS, round); |
| } |
| |
| _PyTime_t |
| _PyTime_AsMicroseconds(_PyTime_t t, _PyTime_round_t round) |
| { |
| return _PyTime_Divide(t, NS_TO_US, round); |
| } |
| |
| static int |
| _PyTime_AsTimeval_impl(_PyTime_t t, _PyTime_t *p_secs, int *p_us, |
| _PyTime_round_t round) |
| { |
| _PyTime_t secs, ns; |
| int usec; |
| int res = 0; |
| |
| secs = t / SEC_TO_NS; |
| ns = t % SEC_TO_NS; |
| |
| usec = (int)_PyTime_Divide(ns, US_TO_NS, round); |
| if (usec < 0) { |
| usec += SEC_TO_US; |
| if (secs != _PyTime_MIN) { |
| secs -= 1; |
| } |
| else { |
| res = -1; |
| } |
| } |
| else if (usec >= SEC_TO_US) { |
| usec -= SEC_TO_US; |
| if (secs != _PyTime_MAX) { |
| secs += 1; |
| } |
| else { |
| res = -1; |
| } |
| } |
| assert(0 <= usec && usec < SEC_TO_US); |
| |
| *p_secs = secs; |
| *p_us = usec; |
| |
| return res; |
| } |
| |
| static int |
| _PyTime_AsTimevalStruct_impl(_PyTime_t t, struct timeval *tv, |
| _PyTime_round_t round, int raise) |
| { |
| _PyTime_t secs, secs2; |
| int us; |
| int res; |
| |
| res = _PyTime_AsTimeval_impl(t, &secs, &us, round); |
| |
| #ifdef MS_WINDOWS |
| tv->tv_sec = (long)secs; |
| #else |
| tv->tv_sec = secs; |
| #endif |
| tv->tv_usec = us; |
| |
| secs2 = (_PyTime_t)tv->tv_sec; |
| if (res < 0 || secs2 != secs) { |
| if (raise) { |
| error_time_t_overflow(); |
| } |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| _PyTime_AsTimeval(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) |
| { |
| return _PyTime_AsTimevalStruct_impl(t, tv, round, 1); |
| } |
| |
| int |
| _PyTime_AsTimeval_noraise(_PyTime_t t, struct timeval *tv, _PyTime_round_t round) |
| { |
| return _PyTime_AsTimevalStruct_impl(t, tv, round, 0); |
| } |
| |
| int |
| _PyTime_AsTimevalTime_t(_PyTime_t t, time_t *p_secs, int *us, |
| _PyTime_round_t round) |
| { |
| _PyTime_t secs; |
| int res; |
| |
| res = _PyTime_AsTimeval_impl(t, &secs, us, round); |
| |
| *p_secs = secs; |
| |
| if (res < 0 || (_PyTime_t)*p_secs != secs) { |
| error_time_t_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| |
| #if defined(HAVE_CLOCK_GETTIME) || defined(HAVE_KQUEUE) |
| int |
| _PyTime_AsTimespec(_PyTime_t t, struct timespec *ts) |
| { |
| _PyTime_t secs, nsec; |
| |
| secs = t / SEC_TO_NS; |
| nsec = t % SEC_TO_NS; |
| if (nsec < 0) { |
| nsec += SEC_TO_NS; |
| secs -= 1; |
| } |
| ts->tv_sec = (time_t)secs; |
| assert(0 <= nsec && nsec < SEC_TO_NS); |
| ts->tv_nsec = nsec; |
| |
| if ((_PyTime_t)ts->tv_sec != secs) { |
| error_time_t_overflow(); |
| return -1; |
| } |
| return 0; |
| } |
| #endif |
| |
| static int |
| pygettimeofday(_PyTime_t *tp, _Py_clock_info_t *info, int raise) |
| { |
| #ifdef MS_WINDOWS |
| FILETIME system_time; |
| ULARGE_INTEGER large; |
| |
| assert(info == NULL || raise); |
| |
| GetSystemTimeAsFileTime(&system_time); |
| large.u.LowPart = system_time.dwLowDateTime; |
| large.u.HighPart = system_time.dwHighDateTime; |
| /* 11,644,473,600,000,000,000: number of nanoseconds between |
| the 1st january 1601 and the 1st january 1970 (369 years + 89 leap |
| days). */ |
| *tp = large.QuadPart * 100 - 11644473600000000000; |
| if (info) { |
| DWORD timeAdjustment, timeIncrement; |
| BOOL isTimeAdjustmentDisabled, ok; |
| |
| info->implementation = "GetSystemTimeAsFileTime()"; |
| info->monotonic = 0; |
| ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, |
| &isTimeAdjustmentDisabled); |
| if (!ok) { |
| PyErr_SetFromWindowsErr(0); |
| return -1; |
| } |
| info->resolution = timeIncrement * 1e-7; |
| info->adjustable = 1; |
| } |
| |
| #else /* MS_WINDOWS */ |
| int err; |
| #ifdef HAVE_CLOCK_GETTIME |
| struct timespec ts; |
| #else |
| struct timeval tv; |
| #endif |
| |
| assert(info == NULL || raise); |
| |
| #ifdef HAVE_CLOCK_GETTIME |
| err = clock_gettime(CLOCK_REALTIME, &ts); |
| if (err) { |
| if (raise) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| } |
| return -1; |
| } |
| if (pytime_fromtimespec(tp, &ts, raise) < 0) { |
| return -1; |
| } |
| |
| if (info) { |
| struct timespec res; |
| info->implementation = "clock_gettime(CLOCK_REALTIME)"; |
| info->monotonic = 0; |
| info->adjustable = 1; |
| if (clock_getres(CLOCK_REALTIME, &res) == 0) { |
| info->resolution = res.tv_sec + res.tv_nsec * 1e-9; |
| } |
| else { |
| info->resolution = 1e-9; |
| } |
| } |
| #else /* HAVE_CLOCK_GETTIME */ |
| |
| /* test gettimeofday() */ |
| #ifdef GETTIMEOFDAY_NO_TZ |
| err = gettimeofday(&tv); |
| #else |
| err = gettimeofday(&tv, (struct timezone *)NULL); |
| #endif |
| if (err) { |
| if (raise) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| } |
| return -1; |
| } |
| if (pytime_fromtimeval(tp, &tv, raise) < 0) { |
| return -1; |
| } |
| |
| if (info) { |
| info->implementation = "gettimeofday()"; |
| info->resolution = 1e-6; |
| info->monotonic = 0; |
| info->adjustable = 1; |
| } |
| #endif /* !HAVE_CLOCK_GETTIME */ |
| #endif /* !MS_WINDOWS */ |
| return 0; |
| } |
| |
| _PyTime_t |
| _PyTime_GetSystemClock(void) |
| { |
| _PyTime_t t; |
| if (pygettimeofday(&t, NULL, 0) < 0) { |
| /* should not happen, _PyTime_Init() checked the clock at startup */ |
| Py_UNREACHABLE(); |
| } |
| return t; |
| } |
| |
| int |
| _PyTime_GetSystemClockWithInfo(_PyTime_t *t, _Py_clock_info_t *info) |
| { |
| return pygettimeofday(t, info, 1); |
| } |
| |
| static int |
| pymonotonic(_PyTime_t *tp, _Py_clock_info_t *info, int raise) |
| { |
| #if defined(MS_WINDOWS) |
| ULONGLONG ticks; |
| _PyTime_t t; |
| |
| assert(info == NULL || raise); |
| |
| ticks = GetTickCount64(); |
| Py_BUILD_ASSERT(sizeof(ticks) <= sizeof(_PyTime_t)); |
| t = (_PyTime_t)ticks; |
| |
| if (_PyTime_check_mul_overflow(t, MS_TO_NS)) { |
| if (raise) { |
| _PyTime_overflow(); |
| return -1; |
| } |
| /* Hello, time traveler! */ |
| Py_UNREACHABLE(); |
| } |
| *tp = t * MS_TO_NS; |
| |
| if (info) { |
| DWORD timeAdjustment, timeIncrement; |
| BOOL isTimeAdjustmentDisabled, ok; |
| info->implementation = "GetTickCount64()"; |
| info->monotonic = 1; |
| ok = GetSystemTimeAdjustment(&timeAdjustment, &timeIncrement, |
| &isTimeAdjustmentDisabled); |
| if (!ok) { |
| PyErr_SetFromWindowsErr(0); |
| return -1; |
| } |
| info->resolution = timeIncrement * 1e-7; |
| info->adjustable = 0; |
| } |
| |
| #elif defined(__APPLE__) |
| static mach_timebase_info_data_t timebase; |
| static uint64_t t0 = 0; |
| uint64_t ticks; |
| |
| if (timebase.denom == 0) { |
| /* According to the Technical Q&A QA1398, mach_timebase_info() cannot |
| fail: https://developer.apple.com/library/mac/#qa/qa1398/ */ |
| (void)mach_timebase_info(&timebase); |
| |
| /* Sanity check: should never occur in practice */ |
| if (timebase.numer < 1 || timebase.denom < 1) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "invalid mach_timebase_info"); |
| return -1; |
| } |
| |
| /* Check that timebase.numer and timebase.denom can be casted to |
| _PyTime_t. In practice, timebase uses uint32_t, so casting cannot |
| overflow. At the end, only make sure that the type is uint32_t |
| (_PyTime_t is 64-bit long). */ |
| assert(sizeof(timebase.numer) < sizeof(_PyTime_t)); |
| assert(sizeof(timebase.denom) < sizeof(_PyTime_t)); |
| |
| /* Make sure that (ticks * timebase.numer) cannot overflow in |
| _PyTime_MulDiv(), with ticks < timebase.denom. |
| |
| Known time bases: |
| |
| * always (1, 1) on Intel |
| * (1000000000, 33333335) or (1000000000, 25000000) on PowerPC |
| |
| None of these time bases can overflow with 64-bit _PyTime_t, but |
| check for overflow, just in case. */ |
| if ((_PyTime_t)timebase.numer > _PyTime_MAX / (_PyTime_t)timebase.denom) { |
| PyErr_SetString(PyExc_OverflowError, |
| "mach_timebase_info is too large"); |
| return -1; |
| } |
| |
| t0 = mach_absolute_time(); |
| } |
| |
| if (info) { |
| info->implementation = "mach_absolute_time()"; |
| info->resolution = (double)timebase.numer / (double)timebase.denom * 1e-9; |
| info->monotonic = 1; |
| info->adjustable = 0; |
| } |
| |
| ticks = mach_absolute_time(); |
| /* Use a "time zero" to reduce precision loss when converting time |
| to floatting point number, as in time.monotonic(). */ |
| ticks -= t0; |
| *tp = _PyTime_MulDiv(ticks, |
| (_PyTime_t)timebase.numer, |
| (_PyTime_t)timebase.denom); |
| |
| #elif defined(__hpux) |
| hrtime_t time; |
| |
| time = gethrtime(); |
| if (time == -1) { |
| if (raise) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| } |
| return -1; |
| } |
| |
| *tp = time; |
| |
| if (info) { |
| info->implementation = "gethrtime()"; |
| info->resolution = 1e-9; |
| info->monotonic = 1; |
| info->adjustable = 0; |
| } |
| |
| #else |
| struct timespec ts; |
| #ifdef CLOCK_HIGHRES |
| const clockid_t clk_id = CLOCK_HIGHRES; |
| const char *implementation = "clock_gettime(CLOCK_HIGHRES)"; |
| #else |
| const clockid_t clk_id = CLOCK_MONOTONIC; |
| const char *implementation = "clock_gettime(CLOCK_MONOTONIC)"; |
| #endif |
| |
| assert(info == NULL || raise); |
| |
| if (clock_gettime(clk_id, &ts) != 0) { |
| if (raise) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return -1; |
| } |
| |
| if (info) { |
| struct timespec res; |
| info->monotonic = 1; |
| info->implementation = implementation; |
| info->adjustable = 0; |
| if (clock_getres(clk_id, &res) != 0) { |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| info->resolution = res.tv_sec + res.tv_nsec * 1e-9; |
| } |
| if (pytime_fromtimespec(tp, &ts, raise) < 0) { |
| return -1; |
| } |
| #endif |
| return 0; |
| } |
| |
| _PyTime_t |
| _PyTime_GetMonotonicClock(void) |
| { |
| _PyTime_t t; |
| if (pymonotonic(&t, NULL, 0) < 0) { |
| /* should not happen, _PyTime_Init() checked that monotonic clock at |
| startup */ |
| Py_UNREACHABLE(); |
| } |
| return t; |
| } |
| |
| int |
| _PyTime_GetMonotonicClockWithInfo(_PyTime_t *tp, _Py_clock_info_t *info) |
| { |
| return pymonotonic(tp, info, 1); |
| } |
| |
| |
| #ifdef MS_WINDOWS |
| static int |
| win_perf_counter(_PyTime_t *tp, _Py_clock_info_t *info) |
| { |
| static LONGLONG frequency = 0; |
| static LONGLONG t0 = 0; |
| LARGE_INTEGER now; |
| LONGLONG ticksll; |
| _PyTime_t ticks; |
| |
| if (frequency == 0) { |
| LARGE_INTEGER freq; |
| if (!QueryPerformanceFrequency(&freq)) { |
| PyErr_SetFromWindowsErr(0); |
| return -1; |
| } |
| frequency = freq.QuadPart; |
| |
| /* Sanity check: should never occur in practice */ |
| if (frequency < 1) { |
| PyErr_SetString(PyExc_RuntimeError, |
| "invalid QueryPerformanceFrequency"); |
| return -1; |
| } |
| |
| /* Check that frequency can be casted to _PyTime_t. |
| |
| Make also sure that (ticks * SEC_TO_NS) cannot overflow in |
| _PyTime_MulDiv(), with ticks < frequency. |
| |
| Known QueryPerformanceFrequency() values: |
| |
| * 10,000,000 (10 MHz): 100 ns resolution |
| * 3,579,545 Hz (3.6 MHz): 279 ns resolution |
| |
| None of these frequencies can overflow with 64-bit _PyTime_t, but |
| check for overflow, just in case. */ |
| if (frequency > _PyTime_MAX |
| || frequency > (LONGLONG)_PyTime_MAX / (LONGLONG)SEC_TO_NS) { |
| PyErr_SetString(PyExc_OverflowError, |
| "QueryPerformanceFrequency is too large"); |
| return -1; |
| } |
| |
| QueryPerformanceCounter(&now); |
| t0 = now.QuadPart; |
| } |
| |
| if (info) { |
| info->implementation = "QueryPerformanceCounter()"; |
| info->resolution = 1.0 / (double)frequency; |
| info->monotonic = 1; |
| info->adjustable = 0; |
| } |
| |
| QueryPerformanceCounter(&now); |
| ticksll = now.QuadPart; |
| |
| /* Use a "time zero" to reduce precision loss when converting time |
| to floatting point number, as in time.perf_counter(). */ |
| ticksll -= t0; |
| |
| /* Make sure that casting LONGLONG to _PyTime_t cannot overflow, |
| both types are signed */ |
| Py_BUILD_ASSERT(sizeof(ticksll) <= sizeof(ticks)); |
| ticks = (_PyTime_t)ticksll; |
| |
| *tp = _PyTime_MulDiv(ticks, SEC_TO_NS, (_PyTime_t)frequency); |
| return 0; |
| } |
| #endif |
| |
| |
| int |
| _PyTime_GetPerfCounterWithInfo(_PyTime_t *t, _Py_clock_info_t *info) |
| { |
| #ifdef MS_WINDOWS |
| return win_perf_counter(t, info); |
| #else |
| return _PyTime_GetMonotonicClockWithInfo(t, info); |
| #endif |
| } |
| |
| |
| _PyTime_t |
| _PyTime_GetPerfCounter(void) |
| { |
| _PyTime_t t; |
| if (_PyTime_GetPerfCounterWithInfo(&t, NULL)) { |
| Py_UNREACHABLE(); |
| } |
| return t; |
| } |
| |
| |
| int |
| _PyTime_Init(void) |
| { |
| /* check that time.time(), time.monotonic() and time.perf_counter() clocks |
| are working properly to not have to check for exceptions at runtime. If |
| a clock works once, it cannot fail in next calls. */ |
| _PyTime_t t; |
| if (_PyTime_GetSystemClockWithInfo(&t, NULL) < 0) { |
| return -1; |
| } |
| if (_PyTime_GetMonotonicClockWithInfo(&t, NULL) < 0) { |
| return -1; |
| } |
| if (_PyTime_GetPerfCounterWithInfo(&t, NULL) < 0) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| int |
| _PyTime_localtime(time_t t, struct tm *tm) |
| { |
| #ifdef MS_WINDOWS |
| int error; |
| |
| error = localtime_s(tm, &t); |
| if (error != 0) { |
| errno = error; |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return 0; |
| #else /* !MS_WINDOWS */ |
| #ifdef _AIX |
| /* AIX does not return NULL on an error |
| so test ranges - asif! |
| (1902-01-01, -2145916800.0) |
| (2038-01-01, 2145916800.0) */ |
| if (abs(t) > (time_t) 2145916800) { |
| #ifdef EINVAL |
| errno = EINVAL; |
| #endif |
| PyErr_SetString(PyExc_OverflowError, |
| "ctime argument out of range"); |
| return -1; |
| } |
| #endif |
| if (localtime_r(&t, tm) == NULL) { |
| #ifdef EINVAL |
| if (errno == 0) { |
| errno = EINVAL; |
| } |
| #endif |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return 0; |
| #endif /* MS_WINDOWS */ |
| } |
| |
| int |
| _PyTime_gmtime(time_t t, struct tm *tm) |
| { |
| #ifdef MS_WINDOWS |
| int error; |
| |
| error = gmtime_s(tm, &t); |
| if (error != 0) { |
| errno = error; |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return 0; |
| #else /* !MS_WINDOWS */ |
| if (gmtime_r(&t, tm) == NULL) { |
| #ifdef EINVAL |
| if (errno == 0) { |
| errno = EINVAL; |
| } |
| #endif |
| PyErr_SetFromErrno(PyExc_OSError); |
| return -1; |
| } |
| return 0; |
| #endif /* MS_WINDOWS */ |
| } |