| /**************************************************************** | 
 |  * | 
 |  * The author of this software is David M. Gay. | 
 |  * | 
 |  * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. | 
 |  * | 
 |  * Permission to use, copy, modify, and distribute this software for any | 
 |  * purpose without fee is hereby granted, provided that this entire notice | 
 |  * is included in all copies of any software which is or includes a copy | 
 |  * or modification of this software and in all copies of the supporting | 
 |  * documentation for such software. | 
 |  * | 
 |  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED | 
 |  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY | 
 |  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY | 
 |  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. | 
 |  * | 
 |  ***************************************************************/ | 
 |  | 
 | /**************************************************************** | 
 |  * This is dtoa.c by David M. Gay, downloaded from | 
 |  * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for | 
 |  * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. | 
 |  * | 
 |  * Please remember to check http://www.netlib.org/fp regularly (and especially | 
 |  * before any Python release) for bugfixes and updates. | 
 |  * | 
 |  * The major modifications from Gay's original code are as follows: | 
 |  * | 
 |  *  0. The original code has been specialized to Python's needs by removing | 
 |  *     many of the #ifdef'd sections.  In particular, code to support VAX and | 
 |  *     IBM floating-point formats, hex NaNs, hex floats, locale-aware | 
 |  *     treatment of the decimal point, and setting of the inexact flag have | 
 |  *     been removed. | 
 |  * | 
 |  *  1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. | 
 |  * | 
 |  *  2. The public functions strtod, dtoa and freedtoa all now have | 
 |  *     a _Py_dg_ prefix. | 
 |  * | 
 |  *  3. Instead of assuming that PyMem_Malloc always succeeds, we thread | 
 |  *     PyMem_Malloc failures through the code.  The functions | 
 |  * | 
 |  *       Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b | 
 |  * | 
 |  *     of return type *Bigint all return NULL to indicate a malloc failure. | 
 |  *     Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on | 
 |  *     failure.  bigcomp now has return type int (it used to be void) and | 
 |  *     returns -1 on failure and 0 otherwise.  _Py_dg_dtoa returns NULL | 
 |  *     on failure.  _Py_dg_strtod indicates failure due to malloc failure | 
 |  *     by returning -1.0, setting errno=ENOMEM and *se to s00. | 
 |  * | 
 |  *  4. The static variable dtoa_result has been removed.  Callers of | 
 |  *     _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free | 
 |  *     the memory allocated by _Py_dg_dtoa. | 
 |  * | 
 |  *  5. The code has been reformatted to better fit with Python's | 
 |  *     C style guide (PEP 7). | 
 |  * | 
 |  *  6. A bug in the memory allocation has been fixed: to avoid FREEing memory | 
 |  *     that hasn't been MALLOC'ed, private_mem should only be used when k <= | 
 |  *     Kmax. | 
 |  * | 
 |  *  7. _Py_dg_strtod has been modified so that it doesn't accept strings with | 
 |  *     leading whitespace. | 
 |  * | 
 |  ***************************************************************/ | 
 |  | 
 | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg | 
 |  * at acm dot org, with " at " changed at "@" and " dot " changed to "."). | 
 |  * Please report bugs for this modified version using the Python issue tracker | 
 |  * (http://bugs.python.org). */ | 
 |  | 
 | /* On a machine with IEEE extended-precision registers, it is | 
 |  * necessary to specify double-precision (53-bit) rounding precision | 
 |  * before invoking strtod or dtoa.  If the machine uses (the equivalent | 
 |  * of) Intel 80x87 arithmetic, the call | 
 |  *      _control87(PC_53, MCW_PC); | 
 |  * does this with many compilers.  Whether this or another call is | 
 |  * appropriate depends on the compiler; for this to work, it may be | 
 |  * necessary to #include "float.h" or another system-dependent header | 
 |  * file. | 
 |  */ | 
 |  | 
 | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. | 
 |  * | 
 |  * This strtod returns a nearest machine number to the input decimal | 
 |  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are | 
 |  * broken by the IEEE round-even rule.  Otherwise ties are broken by | 
 |  * biased rounding (add half and chop). | 
 |  * | 
 |  * Inspired loosely by William D. Clinger's paper "How to Read Floating | 
 |  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. | 
 |  * | 
 |  * Modifications: | 
 |  * | 
 |  *      1. We only require IEEE, IBM, or VAX double-precision | 
 |  *              arithmetic (not IEEE double-extended). | 
 |  *      2. We get by with floating-point arithmetic in a case that | 
 |  *              Clinger missed -- when we're computing d * 10^n | 
 |  *              for a small integer d and the integer n is not too | 
 |  *              much larger than 22 (the maximum integer k for which | 
 |  *              we can represent 10^k exactly), we may be able to | 
 |  *              compute (d*10^k) * 10^(e-k) with just one roundoff. | 
 |  *      3. Rather than a bit-at-a-time adjustment of the binary | 
 |  *              result in the hard case, we use floating-point | 
 |  *              arithmetic to determine the adjustment to within | 
 |  *              one bit; only in really hard cases do we need to | 
 |  *              compute a second residual. | 
 |  *      4. Because of 3., we don't need a large table of powers of 10 | 
 |  *              for ten-to-e (just some small tables, e.g. of 10^k | 
 |  *              for 0 <= k <= 22). | 
 |  */ | 
 |  | 
 | /* Linking of Python's #defines to Gay's #defines starts here. */ | 
 |  | 
 | #include "Python.h" | 
 |  | 
 | /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile | 
 |    the following code */ | 
 | #ifndef PY_NO_SHORT_FLOAT_REPR | 
 |  | 
 | #include "float.h" | 
 |  | 
 | #define MALLOC PyMem_Malloc | 
 | #define FREE PyMem_Free | 
 |  | 
 | /* This code should also work for ARM mixed-endian format on little-endian | 
 |    machines, where doubles have byte order 45670123 (in increasing address | 
 |    order, 0 being the least significant byte). */ | 
 | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 | 
 | #  define IEEE_8087 | 
 | #endif | 
 | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) ||  \ | 
 |   defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) | 
 | #  define IEEE_MC68k | 
 | #endif | 
 | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 | 
 | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." | 
 | #endif | 
 |  | 
 | /* The code below assumes that the endianness of integers matches the | 
 |    endianness of the two 32-bit words of a double.  Check this. */ | 
 | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ | 
 |                                  defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) | 
 | #error "doubles and ints have incompatible endianness" | 
 | #endif | 
 |  | 
 | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) | 
 | #error "doubles and ints have incompatible endianness" | 
 | #endif | 
 |  | 
 |  | 
 | #if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T) | 
 | typedef PY_UINT32_T ULong; | 
 | typedef PY_INT32_T Long; | 
 | #else | 
 | #error "Failed to find an exact-width 32-bit integer type" | 
 | #endif | 
 |  | 
 | #if defined(HAVE_UINT64_T) | 
 | #define ULLong PY_UINT64_T | 
 | #else | 
 | #undef ULLong | 
 | #endif | 
 |  | 
 | #undef DEBUG | 
 | #ifdef Py_DEBUG | 
 | #define DEBUG | 
 | #endif | 
 |  | 
 | /* End Python #define linking */ | 
 |  | 
 | #ifdef DEBUG | 
 | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} | 
 | #endif | 
 |  | 
 | #ifndef PRIVATE_MEM | 
 | #define PRIVATE_MEM 2304 | 
 | #endif | 
 | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) | 
 | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | typedef union { double d; ULong L[2]; } U; | 
 |  | 
 | #ifdef IEEE_8087 | 
 | #define word0(x) (x)->L[1] | 
 | #define word1(x) (x)->L[0] | 
 | #else | 
 | #define word0(x) (x)->L[0] | 
 | #define word1(x) (x)->L[1] | 
 | #endif | 
 | #define dval(x) (x)->d | 
 |  | 
 | #ifndef STRTOD_DIGLIM | 
 | #define STRTOD_DIGLIM 40 | 
 | #endif | 
 |  | 
 | /* maximum permitted exponent value for strtod; exponents larger than | 
 |    MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP.  MAX_ABS_EXP | 
 |    should fit into an int. */ | 
 | #ifndef MAX_ABS_EXP | 
 | #define MAX_ABS_EXP 19999U | 
 | #endif | 
 |  | 
 | /* The following definition of Storeinc is appropriate for MIPS processors. | 
 |  * An alternative that might be better on some machines is | 
 |  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) | 
 |  */ | 
 | #if defined(IEEE_8087) | 
 | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b,  \ | 
 |                          ((unsigned short *)a)[0] = (unsigned short)c, a++) | 
 | #else | 
 | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b,  \ | 
 |                          ((unsigned short *)a)[1] = (unsigned short)c, a++) | 
 | #endif | 
 |  | 
 | /* #define P DBL_MANT_DIG */ | 
 | /* Ten_pmax = floor(P*log(2)/log(5)) */ | 
 | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ | 
 | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ | 
 | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ | 
 |  | 
 | #define Exp_shift  20 | 
 | #define Exp_shift1 20 | 
 | #define Exp_msk1    0x100000 | 
 | #define Exp_msk11   0x100000 | 
 | #define Exp_mask  0x7ff00000 | 
 | #define P 53 | 
 | #define Nbits 53 | 
 | #define Bias 1023 | 
 | #define Emax 1023 | 
 | #define Emin (-1022) | 
 | #define Etiny (-1074)  /* smallest denormal is 2**Etiny */ | 
 | #define Exp_1  0x3ff00000 | 
 | #define Exp_11 0x3ff00000 | 
 | #define Ebits 11 | 
 | #define Frac_mask  0xfffff | 
 | #define Frac_mask1 0xfffff | 
 | #define Ten_pmax 22 | 
 | #define Bletch 0x10 | 
 | #define Bndry_mask  0xfffff | 
 | #define Bndry_mask1 0xfffff | 
 | #define Sign_bit 0x80000000 | 
 | #define Log2P 1 | 
 | #define Tiny0 0 | 
 | #define Tiny1 1 | 
 | #define Quick_max 14 | 
 | #define Int_max 14 | 
 |  | 
 | #ifndef Flt_Rounds | 
 | #ifdef FLT_ROUNDS | 
 | #define Flt_Rounds FLT_ROUNDS | 
 | #else | 
 | #define Flt_Rounds 1 | 
 | #endif | 
 | #endif /*Flt_Rounds*/ | 
 |  | 
 | #define Rounding Flt_Rounds | 
 |  | 
 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) | 
 | #define Big1 0xffffffff | 
 |  | 
 | /* Standard NaN used by _Py_dg_stdnan. */ | 
 |  | 
 | #define NAN_WORD0 0x7ff80000 | 
 | #define NAN_WORD1 0 | 
 |  | 
 | /* Bits of the representation of positive infinity. */ | 
 |  | 
 | #define POSINF_WORD0 0x7ff00000 | 
 | #define POSINF_WORD1 0 | 
 |  | 
 | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ | 
 |  | 
 | typedef struct BCinfo BCinfo; | 
 | struct | 
 | BCinfo { | 
 |     int e0, nd, nd0, scale; | 
 | }; | 
 |  | 
 | #define FFFFFFFF 0xffffffffUL | 
 |  | 
 | #define Kmax 7 | 
 |  | 
 | /* struct Bigint is used to represent arbitrary-precision integers.  These | 
 |    integers are stored in sign-magnitude format, with the magnitude stored as | 
 |    an array of base 2**32 digits.  Bigints are always normalized: if x is a | 
 |    Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. | 
 |  | 
 |    The Bigint fields are as follows: | 
 |  | 
 |      - next is a header used by Balloc and Bfree to keep track of lists | 
 |          of freed Bigints;  it's also used for the linked list of | 
 |          powers of 5 of the form 5**2**i used by pow5mult. | 
 |      - k indicates which pool this Bigint was allocated from | 
 |      - maxwds is the maximum number of words space was allocated for | 
 |        (usually maxwds == 2**k) | 
 |      - sign is 1 for negative Bigints, 0 for positive.  The sign is unused | 
 |        (ignored on inputs, set to 0 on outputs) in almost all operations | 
 |        involving Bigints: a notable exception is the diff function, which | 
 |        ignores signs on inputs but sets the sign of the output correctly. | 
 |      - wds is the actual number of significant words | 
 |      - x contains the vector of words (digits) for this Bigint, from least | 
 |        significant (x[0]) to most significant (x[wds-1]). | 
 | */ | 
 |  | 
 | struct | 
 | Bigint { | 
 |     struct Bigint *next; | 
 |     int k, maxwds, sign, wds; | 
 |     ULong x[1]; | 
 | }; | 
 |  | 
 | typedef struct Bigint Bigint; | 
 |  | 
 | #ifndef Py_USING_MEMORY_DEBUGGER | 
 |  | 
 | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools | 
 |    of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == | 
 |    1 << k.  These pools are maintained as linked lists, with freelist[k] | 
 |    pointing to the head of the list for pool k. | 
 |  | 
 |    On allocation, if there's no free slot in the appropriate pool, MALLOC is | 
 |    called to get more memory.  This memory is not returned to the system until | 
 |    Python quits.  There's also a private memory pool that's allocated from | 
 |    in preference to using MALLOC. | 
 |  | 
 |    For Bigints with more than (1 << Kmax) digits (which implies at least 1233 | 
 |    decimal digits), memory is directly allocated using MALLOC, and freed using | 
 |    FREE. | 
 |  | 
 |    XXX: it would be easy to bypass this memory-management system and | 
 |    translate each call to Balloc into a call to PyMem_Malloc, and each | 
 |    Bfree to PyMem_Free.  Investigate whether this has any significant | 
 |    performance on impact. */ | 
 |  | 
 | static Bigint *freelist[Kmax+1]; | 
 |  | 
 | /* Allocate space for a Bigint with up to 1<<k digits */ | 
 |  | 
 | static Bigint * | 
 | Balloc(int k) | 
 | { | 
 |     int x; | 
 |     Bigint *rv; | 
 |     unsigned int len; | 
 |  | 
 |     if (k <= Kmax && (rv = freelist[k])) | 
 |         freelist[k] = rv->next; | 
 |     else { | 
 |         x = 1 << k; | 
 |         len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) | 
 |             /sizeof(double); | 
 |         if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { | 
 |             rv = (Bigint*)pmem_next; | 
 |             pmem_next += len; | 
 |         } | 
 |         else { | 
 |             rv = (Bigint*)MALLOC(len*sizeof(double)); | 
 |             if (rv == NULL) | 
 |                 return NULL; | 
 |         } | 
 |         rv->k = k; | 
 |         rv->maxwds = x; | 
 |     } | 
 |     rv->sign = rv->wds = 0; | 
 |     return rv; | 
 | } | 
 |  | 
 | /* Free a Bigint allocated with Balloc */ | 
 |  | 
 | static void | 
 | Bfree(Bigint *v) | 
 | { | 
 |     if (v) { | 
 |         if (v->k > Kmax) | 
 |             FREE((void*)v); | 
 |         else { | 
 |             v->next = freelist[v->k]; | 
 |             freelist[v->k] = v; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* Alternative versions of Balloc and Bfree that use PyMem_Malloc and | 
 |    PyMem_Free directly in place of the custom memory allocation scheme above. | 
 |    These are provided for the benefit of memory debugging tools like | 
 |    Valgrind. */ | 
 |  | 
 | /* Allocate space for a Bigint with up to 1<<k digits */ | 
 |  | 
 | static Bigint * | 
 | Balloc(int k) | 
 | { | 
 |     int x; | 
 |     Bigint *rv; | 
 |     unsigned int len; | 
 |  | 
 |     x = 1 << k; | 
 |     len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) | 
 |         /sizeof(double); | 
 |  | 
 |     rv = (Bigint*)MALLOC(len*sizeof(double)); | 
 |     if (rv == NULL) | 
 |         return NULL; | 
 |  | 
 |     rv->k = k; | 
 |     rv->maxwds = x; | 
 |     rv->sign = rv->wds = 0; | 
 |     return rv; | 
 | } | 
 |  | 
 | /* Free a Bigint allocated with Balloc */ | 
 |  | 
 | static void | 
 | Bfree(Bigint *v) | 
 | { | 
 |     if (v) { | 
 |         FREE((void*)v); | 
 |     } | 
 | } | 
 |  | 
 | #endif /* Py_USING_MEMORY_DEBUGGER */ | 
 |  | 
 | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign,   \ | 
 |                           y->wds*sizeof(Long) + 2*sizeof(int)) | 
 |  | 
 | /* Multiply a Bigint b by m and add a.  Either modifies b in place and returns | 
 |    a pointer to the modified b, or Bfrees b and returns a pointer to a copy. | 
 |    On failure, return NULL.  In this case, b will have been already freed. */ | 
 |  | 
 | static Bigint * | 
 | multadd(Bigint *b, int m, int a)       /* multiply by m and add a */ | 
 | { | 
 |     int i, wds; | 
 | #ifdef ULLong | 
 |     ULong *x; | 
 |     ULLong carry, y; | 
 | #else | 
 |     ULong carry, *x, y; | 
 |     ULong xi, z; | 
 | #endif | 
 |     Bigint *b1; | 
 |  | 
 |     wds = b->wds; | 
 |     x = b->x; | 
 |     i = 0; | 
 |     carry = a; | 
 |     do { | 
 | #ifdef ULLong | 
 |         y = *x * (ULLong)m + carry; | 
 |         carry = y >> 32; | 
 |         *x++ = (ULong)(y & FFFFFFFF); | 
 | #else | 
 |         xi = *x; | 
 |         y = (xi & 0xffff) * m + carry; | 
 |         z = (xi >> 16) * m + (y >> 16); | 
 |         carry = z >> 16; | 
 |         *x++ = (z << 16) + (y & 0xffff); | 
 | #endif | 
 |     } | 
 |     while(++i < wds); | 
 |     if (carry) { | 
 |         if (wds >= b->maxwds) { | 
 |             b1 = Balloc(b->k+1); | 
 |             if (b1 == NULL){ | 
 |                 Bfree(b); | 
 |                 return NULL; | 
 |             } | 
 |             Bcopy(b1, b); | 
 |             Bfree(b); | 
 |             b = b1; | 
 |         } | 
 |         b->x[wds++] = (ULong)carry; | 
 |         b->wds = wds; | 
 |     } | 
 |     return b; | 
 | } | 
 |  | 
 | /* convert a string s containing nd decimal digits (possibly containing a | 
 |    decimal separator at position nd0, which is ignored) to a Bigint.  This | 
 |    function carries on where the parsing code in _Py_dg_strtod leaves off: on | 
 |    entry, y9 contains the result of converting the first 9 digits.  Returns | 
 |    NULL on failure. */ | 
 |  | 
 | static Bigint * | 
 | s2b(const char *s, int nd0, int nd, ULong y9) | 
 | { | 
 |     Bigint *b; | 
 |     int i, k; | 
 |     Long x, y; | 
 |  | 
 |     x = (nd + 8) / 9; | 
 |     for(k = 0, y = 1; x > y; y <<= 1, k++) ; | 
 |     b = Balloc(k); | 
 |     if (b == NULL) | 
 |         return NULL; | 
 |     b->x[0] = y9; | 
 |     b->wds = 1; | 
 |  | 
 |     if (nd <= 9) | 
 |       return b; | 
 |  | 
 |     s += 9; | 
 |     for (i = 9; i < nd0; i++) { | 
 |         b = multadd(b, 10, *s++ - '0'); | 
 |         if (b == NULL) | 
 |             return NULL; | 
 |     } | 
 |     s++; | 
 |     for(; i < nd; i++) { | 
 |         b = multadd(b, 10, *s++ - '0'); | 
 |         if (b == NULL) | 
 |             return NULL; | 
 |     } | 
 |     return b; | 
 | } | 
 |  | 
 | /* count leading 0 bits in the 32-bit integer x. */ | 
 |  | 
 | static int | 
 | hi0bits(ULong x) | 
 | { | 
 |     int k = 0; | 
 |  | 
 |     if (!(x & 0xffff0000)) { | 
 |         k = 16; | 
 |         x <<= 16; | 
 |     } | 
 |     if (!(x & 0xff000000)) { | 
 |         k += 8; | 
 |         x <<= 8; | 
 |     } | 
 |     if (!(x & 0xf0000000)) { | 
 |         k += 4; | 
 |         x <<= 4; | 
 |     } | 
 |     if (!(x & 0xc0000000)) { | 
 |         k += 2; | 
 |         x <<= 2; | 
 |     } | 
 |     if (!(x & 0x80000000)) { | 
 |         k++; | 
 |         if (!(x & 0x40000000)) | 
 |             return 32; | 
 |     } | 
 |     return k; | 
 | } | 
 |  | 
 | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that | 
 |    number of bits. */ | 
 |  | 
 | static int | 
 | lo0bits(ULong *y) | 
 | { | 
 |     int k; | 
 |     ULong x = *y; | 
 |  | 
 |     if (x & 7) { | 
 |         if (x & 1) | 
 |             return 0; | 
 |         if (x & 2) { | 
 |             *y = x >> 1; | 
 |             return 1; | 
 |         } | 
 |         *y = x >> 2; | 
 |         return 2; | 
 |     } | 
 |     k = 0; | 
 |     if (!(x & 0xffff)) { | 
 |         k = 16; | 
 |         x >>= 16; | 
 |     } | 
 |     if (!(x & 0xff)) { | 
 |         k += 8; | 
 |         x >>= 8; | 
 |     } | 
 |     if (!(x & 0xf)) { | 
 |         k += 4; | 
 |         x >>= 4; | 
 |     } | 
 |     if (!(x & 0x3)) { | 
 |         k += 2; | 
 |         x >>= 2; | 
 |     } | 
 |     if (!(x & 1)) { | 
 |         k++; | 
 |         x >>= 1; | 
 |         if (!x) | 
 |             return 32; | 
 |     } | 
 |     *y = x; | 
 |     return k; | 
 | } | 
 |  | 
 | /* convert a small nonnegative integer to a Bigint */ | 
 |  | 
 | static Bigint * | 
 | i2b(int i) | 
 | { | 
 |     Bigint *b; | 
 |  | 
 |     b = Balloc(1); | 
 |     if (b == NULL) | 
 |         return NULL; | 
 |     b->x[0] = i; | 
 |     b->wds = 1; | 
 |     return b; | 
 | } | 
 |  | 
 | /* multiply two Bigints.  Returns a new Bigint, or NULL on failure.  Ignores | 
 |    the signs of a and b. */ | 
 |  | 
 | static Bigint * | 
 | mult(Bigint *a, Bigint *b) | 
 | { | 
 |     Bigint *c; | 
 |     int k, wa, wb, wc; | 
 |     ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; | 
 |     ULong y; | 
 | #ifdef ULLong | 
 |     ULLong carry, z; | 
 | #else | 
 |     ULong carry, z; | 
 |     ULong z2; | 
 | #endif | 
 |  | 
 |     if ((!a->x[0] && a->wds == 1) || (!b->x[0] && b->wds == 1)) { | 
 |         c = Balloc(0); | 
 |         if (c == NULL) | 
 |             return NULL; | 
 |         c->wds = 1; | 
 |         c->x[0] = 0; | 
 |         return c; | 
 |     } | 
 |  | 
 |     if (a->wds < b->wds) { | 
 |         c = a; | 
 |         a = b; | 
 |         b = c; | 
 |     } | 
 |     k = a->k; | 
 |     wa = a->wds; | 
 |     wb = b->wds; | 
 |     wc = wa + wb; | 
 |     if (wc > a->maxwds) | 
 |         k++; | 
 |     c = Balloc(k); | 
 |     if (c == NULL) | 
 |         return NULL; | 
 |     for(x = c->x, xa = x + wc; x < xa; x++) | 
 |         *x = 0; | 
 |     xa = a->x; | 
 |     xae = xa + wa; | 
 |     xb = b->x; | 
 |     xbe = xb + wb; | 
 |     xc0 = c->x; | 
 | #ifdef ULLong | 
 |     for(; xb < xbe; xc0++) { | 
 |         if ((y = *xb++)) { | 
 |             x = xa; | 
 |             xc = xc0; | 
 |             carry = 0; | 
 |             do { | 
 |                 z = *x++ * (ULLong)y + *xc + carry; | 
 |                 carry = z >> 32; | 
 |                 *xc++ = (ULong)(z & FFFFFFFF); | 
 |             } | 
 |             while(x < xae); | 
 |             *xc = (ULong)carry; | 
 |         } | 
 |     } | 
 | #else | 
 |     for(; xb < xbe; xb++, xc0++) { | 
 |         if (y = *xb & 0xffff) { | 
 |             x = xa; | 
 |             xc = xc0; | 
 |             carry = 0; | 
 |             do { | 
 |                 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; | 
 |                 carry = z >> 16; | 
 |                 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; | 
 |                 carry = z2 >> 16; | 
 |                 Storeinc(xc, z2, z); | 
 |             } | 
 |             while(x < xae); | 
 |             *xc = carry; | 
 |         } | 
 |         if (y = *xb >> 16) { | 
 |             x = xa; | 
 |             xc = xc0; | 
 |             carry = 0; | 
 |             z2 = *xc; | 
 |             do { | 
 |                 z = (*x & 0xffff) * y + (*xc >> 16) + carry; | 
 |                 carry = z >> 16; | 
 |                 Storeinc(xc, z, z2); | 
 |                 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; | 
 |                 carry = z2 >> 16; | 
 |             } | 
 |             while(x < xae); | 
 |             *xc = z2; | 
 |         } | 
 |     } | 
 | #endif | 
 |     for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; | 
 |     c->wds = wc; | 
 |     return c; | 
 | } | 
 |  | 
 | #ifndef Py_USING_MEMORY_DEBUGGER | 
 |  | 
 | /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ | 
 |  | 
 | static Bigint *p5s; | 
 |  | 
 | /* multiply the Bigint b by 5**k.  Returns a pointer to the result, or NULL on | 
 |    failure; if the returned pointer is distinct from b then the original | 
 |    Bigint b will have been Bfree'd.   Ignores the sign of b. */ | 
 |  | 
 | static Bigint * | 
 | pow5mult(Bigint *b, int k) | 
 | { | 
 |     Bigint *b1, *p5, *p51; | 
 |     int i; | 
 |     static int p05[3] = { 5, 25, 125 }; | 
 |  | 
 |     if ((i = k & 3)) { | 
 |         b = multadd(b, p05[i-1], 0); | 
 |         if (b == NULL) | 
 |             return NULL; | 
 |     } | 
 |  | 
 |     if (!(k >>= 2)) | 
 |         return b; | 
 |     p5 = p5s; | 
 |     if (!p5) { | 
 |         /* first time */ | 
 |         p5 = i2b(625); | 
 |         if (p5 == NULL) { | 
 |             Bfree(b); | 
 |             return NULL; | 
 |         } | 
 |         p5s = p5; | 
 |         p5->next = 0; | 
 |     } | 
 |     for(;;) { | 
 |         if (k & 1) { | 
 |             b1 = mult(b, p5); | 
 |             Bfree(b); | 
 |             b = b1; | 
 |             if (b == NULL) | 
 |                 return NULL; | 
 |         } | 
 |         if (!(k >>= 1)) | 
 |             break; | 
 |         p51 = p5->next; | 
 |         if (!p51) { | 
 |             p51 = mult(p5,p5); | 
 |             if (p51 == NULL) { | 
 |                 Bfree(b); | 
 |                 return NULL; | 
 |             } | 
 |             p51->next = 0; | 
 |             p5->next = p51; | 
 |         } | 
 |         p5 = p51; | 
 |     } | 
 |     return b; | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* Version of pow5mult that doesn't cache powers of 5. Provided for | 
 |    the benefit of memory debugging tools like Valgrind. */ | 
 |  | 
 | static Bigint * | 
 | pow5mult(Bigint *b, int k) | 
 | { | 
 |     Bigint *b1, *p5, *p51; | 
 |     int i; | 
 |     static int p05[3] = { 5, 25, 125 }; | 
 |  | 
 |     if ((i = k & 3)) { | 
 |         b = multadd(b, p05[i-1], 0); | 
 |         if (b == NULL) | 
 |             return NULL; | 
 |     } | 
 |  | 
 |     if (!(k >>= 2)) | 
 |         return b; | 
 |     p5 = i2b(625); | 
 |     if (p5 == NULL) { | 
 |         Bfree(b); | 
 |         return NULL; | 
 |     } | 
 |  | 
 |     for(;;) { | 
 |         if (k & 1) { | 
 |             b1 = mult(b, p5); | 
 |             Bfree(b); | 
 |             b = b1; | 
 |             if (b == NULL) { | 
 |                 Bfree(p5); | 
 |                 return NULL; | 
 |             } | 
 |         } | 
 |         if (!(k >>= 1)) | 
 |             break; | 
 |         p51 = mult(p5, p5); | 
 |         Bfree(p5); | 
 |         p5 = p51; | 
 |         if (p5 == NULL) { | 
 |             Bfree(b); | 
 |             return NULL; | 
 |         } | 
 |     } | 
 |     Bfree(p5); | 
 |     return b; | 
 | } | 
 |  | 
 | #endif /* Py_USING_MEMORY_DEBUGGER */ | 
 |  | 
 | /* shift a Bigint b left by k bits.  Return a pointer to the shifted result, | 
 |    or NULL on failure.  If the returned pointer is distinct from b then the | 
 |    original b will have been Bfree'd.   Ignores the sign of b. */ | 
 |  | 
 | static Bigint * | 
 | lshift(Bigint *b, int k) | 
 | { | 
 |     int i, k1, n, n1; | 
 |     Bigint *b1; | 
 |     ULong *x, *x1, *xe, z; | 
 |  | 
 |     if (!k || (!b->x[0] && b->wds == 1)) | 
 |         return b; | 
 |  | 
 |     n = k >> 5; | 
 |     k1 = b->k; | 
 |     n1 = n + b->wds + 1; | 
 |     for(i = b->maxwds; n1 > i; i <<= 1) | 
 |         k1++; | 
 |     b1 = Balloc(k1); | 
 |     if (b1 == NULL) { | 
 |         Bfree(b); | 
 |         return NULL; | 
 |     } | 
 |     x1 = b1->x; | 
 |     for(i = 0; i < n; i++) | 
 |         *x1++ = 0; | 
 |     x = b->x; | 
 |     xe = x + b->wds; | 
 |     if (k &= 0x1f) { | 
 |         k1 = 32 - k; | 
 |         z = 0; | 
 |         do { | 
 |             *x1++ = *x << k | z; | 
 |             z = *x++ >> k1; | 
 |         } | 
 |         while(x < xe); | 
 |         if ((*x1 = z)) | 
 |             ++n1; | 
 |     } | 
 |     else do | 
 |              *x1++ = *x++; | 
 |         while(x < xe); | 
 |     b1->wds = n1 - 1; | 
 |     Bfree(b); | 
 |     return b1; | 
 | } | 
 |  | 
 | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and | 
 |    1 if a > b.  Ignores signs of a and b. */ | 
 |  | 
 | static int | 
 | cmp(Bigint *a, Bigint *b) | 
 | { | 
 |     ULong *xa, *xa0, *xb, *xb0; | 
 |     int i, j; | 
 |  | 
 |     i = a->wds; | 
 |     j = b->wds; | 
 | #ifdef DEBUG | 
 |     if (i > 1 && !a->x[i-1]) | 
 |         Bug("cmp called with a->x[a->wds-1] == 0"); | 
 |     if (j > 1 && !b->x[j-1]) | 
 |         Bug("cmp called with b->x[b->wds-1] == 0"); | 
 | #endif | 
 |     if (i -= j) | 
 |         return i; | 
 |     xa0 = a->x; | 
 |     xa = xa0 + j; | 
 |     xb0 = b->x; | 
 |     xb = xb0 + j; | 
 |     for(;;) { | 
 |         if (*--xa != *--xb) | 
 |             return *xa < *xb ? -1 : 1; | 
 |         if (xa <= xa0) | 
 |             break; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Take the difference of Bigints a and b, returning a new Bigint.  Returns | 
 |    NULL on failure.  The signs of a and b are ignored, but the sign of the | 
 |    result is set appropriately. */ | 
 |  | 
 | static Bigint * | 
 | diff(Bigint *a, Bigint *b) | 
 | { | 
 |     Bigint *c; | 
 |     int i, wa, wb; | 
 |     ULong *xa, *xae, *xb, *xbe, *xc; | 
 | #ifdef ULLong | 
 |     ULLong borrow, y; | 
 | #else | 
 |     ULong borrow, y; | 
 |     ULong z; | 
 | #endif | 
 |  | 
 |     i = cmp(a,b); | 
 |     if (!i) { | 
 |         c = Balloc(0); | 
 |         if (c == NULL) | 
 |             return NULL; | 
 |         c->wds = 1; | 
 |         c->x[0] = 0; | 
 |         return c; | 
 |     } | 
 |     if (i < 0) { | 
 |         c = a; | 
 |         a = b; | 
 |         b = c; | 
 |         i = 1; | 
 |     } | 
 |     else | 
 |         i = 0; | 
 |     c = Balloc(a->k); | 
 |     if (c == NULL) | 
 |         return NULL; | 
 |     c->sign = i; | 
 |     wa = a->wds; | 
 |     xa = a->x; | 
 |     xae = xa + wa; | 
 |     wb = b->wds; | 
 |     xb = b->x; | 
 |     xbe = xb + wb; | 
 |     xc = c->x; | 
 |     borrow = 0; | 
 | #ifdef ULLong | 
 |     do { | 
 |         y = (ULLong)*xa++ - *xb++ - borrow; | 
 |         borrow = y >> 32 & (ULong)1; | 
 |         *xc++ = (ULong)(y & FFFFFFFF); | 
 |     } | 
 |     while(xb < xbe); | 
 |     while(xa < xae) { | 
 |         y = *xa++ - borrow; | 
 |         borrow = y >> 32 & (ULong)1; | 
 |         *xc++ = (ULong)(y & FFFFFFFF); | 
 |     } | 
 | #else | 
 |     do { | 
 |         y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; | 
 |         borrow = (y & 0x10000) >> 16; | 
 |         z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; | 
 |         borrow = (z & 0x10000) >> 16; | 
 |         Storeinc(xc, z, y); | 
 |     } | 
 |     while(xb < xbe); | 
 |     while(xa < xae) { | 
 |         y = (*xa & 0xffff) - borrow; | 
 |         borrow = (y & 0x10000) >> 16; | 
 |         z = (*xa++ >> 16) - borrow; | 
 |         borrow = (z & 0x10000) >> 16; | 
 |         Storeinc(xc, z, y); | 
 |     } | 
 | #endif | 
 |     while(!*--xc) | 
 |         wa--; | 
 |     c->wds = wa; | 
 |     return c; | 
 | } | 
 |  | 
 | /* Given a positive normal double x, return the difference between x and the | 
 |    next double up.  Doesn't give correct results for subnormals. */ | 
 |  | 
 | static double | 
 | ulp(U *x) | 
 | { | 
 |     Long L; | 
 |     U u; | 
 |  | 
 |     L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; | 
 |     word0(&u) = L; | 
 |     word1(&u) = 0; | 
 |     return dval(&u); | 
 | } | 
 |  | 
 | /* Convert a Bigint to a double plus an exponent */ | 
 |  | 
 | static double | 
 | b2d(Bigint *a, int *e) | 
 | { | 
 |     ULong *xa, *xa0, w, y, z; | 
 |     int k; | 
 |     U d; | 
 |  | 
 |     xa0 = a->x; | 
 |     xa = xa0 + a->wds; | 
 |     y = *--xa; | 
 | #ifdef DEBUG | 
 |     if (!y) Bug("zero y in b2d"); | 
 | #endif | 
 |     k = hi0bits(y); | 
 |     *e = 32 - k; | 
 |     if (k < Ebits) { | 
 |         word0(&d) = Exp_1 | y >> (Ebits - k); | 
 |         w = xa > xa0 ? *--xa : 0; | 
 |         word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); | 
 |         goto ret_d; | 
 |     } | 
 |     z = xa > xa0 ? *--xa : 0; | 
 |     if (k -= Ebits) { | 
 |         word0(&d) = Exp_1 | y << k | z >> (32 - k); | 
 |         y = xa > xa0 ? *--xa : 0; | 
 |         word1(&d) = z << k | y >> (32 - k); | 
 |     } | 
 |     else { | 
 |         word0(&d) = Exp_1 | y; | 
 |         word1(&d) = z; | 
 |     } | 
 |   ret_d: | 
 |     return dval(&d); | 
 | } | 
 |  | 
 | /* Convert a scaled double to a Bigint plus an exponent.  Similar to d2b, | 
 |    except that it accepts the scale parameter used in _Py_dg_strtod (which | 
 |    should be either 0 or 2*P), and the normalization for the return value is | 
 |    different (see below).  On input, d should be finite and nonnegative, and d | 
 |    / 2**scale should be exactly representable as an IEEE 754 double. | 
 |  | 
 |    Returns a Bigint b and an integer e such that | 
 |  | 
 |      dval(d) / 2**scale = b * 2**e. | 
 |  | 
 |    Unlike d2b, b is not necessarily odd: b and e are normalized so | 
 |    that either 2**(P-1) <= b < 2**P and e >= Etiny, or b < 2**P | 
 |    and e == Etiny.  This applies equally to an input of 0.0: in that | 
 |    case the return values are b = 0 and e = Etiny. | 
 |  | 
 |    The above normalization ensures that for all possible inputs d, | 
 |    2**e gives ulp(d/2**scale). | 
 |  | 
 |    Returns NULL on failure. | 
 | */ | 
 |  | 
 | static Bigint * | 
 | sd2b(U *d, int scale, int *e) | 
 | { | 
 |     Bigint *b; | 
 |  | 
 |     b = Balloc(1); | 
 |     if (b == NULL) | 
 |         return NULL; | 
 |      | 
 |     /* First construct b and e assuming that scale == 0. */ | 
 |     b->wds = 2; | 
 |     b->x[0] = word1(d); | 
 |     b->x[1] = word0(d) & Frac_mask; | 
 |     *e = Etiny - 1 + (int)((word0(d) & Exp_mask) >> Exp_shift); | 
 |     if (*e < Etiny) | 
 |         *e = Etiny; | 
 |     else | 
 |         b->x[1] |= Exp_msk1; | 
 |  | 
 |     /* Now adjust for scale, provided that b != 0. */ | 
 |     if (scale && (b->x[0] || b->x[1])) { | 
 |         *e -= scale; | 
 |         if (*e < Etiny) { | 
 |             scale = Etiny - *e; | 
 |             *e = Etiny; | 
 |             /* We can't shift more than P-1 bits without shifting out a 1. */ | 
 |             assert(0 < scale && scale <= P - 1); | 
 |             if (scale >= 32) { | 
 |                 /* The bits shifted out should all be zero. */ | 
 |                 assert(b->x[0] == 0); | 
 |                 b->x[0] = b->x[1]; | 
 |                 b->x[1] = 0; | 
 |                 scale -= 32; | 
 |             } | 
 |             if (scale) { | 
 |                 /* The bits shifted out should all be zero. */ | 
 |                 assert(b->x[0] << (32 - scale) == 0); | 
 |                 b->x[0] = (b->x[0] >> scale) | (b->x[1] << (32 - scale)); | 
 |                 b->x[1] >>= scale; | 
 |             } | 
 |         } | 
 |     } | 
 |     /* Ensure b is normalized. */ | 
 |     if (!b->x[1]) | 
 |         b->wds = 1; | 
 |  | 
 |     return b; | 
 | } | 
 |  | 
 | /* Convert a double to a Bigint plus an exponent.  Return NULL on failure. | 
 |  | 
 |    Given a finite nonzero double d, return an odd Bigint b and exponent *e | 
 |    such that fabs(d) = b * 2**e.  On return, *bbits gives the number of | 
 |    significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). | 
 |  | 
 |    If d is zero, then b == 0, *e == -1010, *bbits = 0. | 
 |  */ | 
 |  | 
 | static Bigint * | 
 | d2b(U *d, int *e, int *bits) | 
 | { | 
 |     Bigint *b; | 
 |     int de, k; | 
 |     ULong *x, y, z; | 
 |     int i; | 
 |  | 
 |     b = Balloc(1); | 
 |     if (b == NULL) | 
 |         return NULL; | 
 |     x = b->x; | 
 |  | 
 |     z = word0(d) & Frac_mask; | 
 |     word0(d) &= 0x7fffffff;   /* clear sign bit, which we ignore */ | 
 |     if ((de = (int)(word0(d) >> Exp_shift))) | 
 |         z |= Exp_msk1; | 
 |     if ((y = word1(d))) { | 
 |         if ((k = lo0bits(&y))) { | 
 |             x[0] = y | z << (32 - k); | 
 |             z >>= k; | 
 |         } | 
 |         else | 
 |             x[0] = y; | 
 |         i = | 
 |             b->wds = (x[1] = z) ? 2 : 1; | 
 |     } | 
 |     else { | 
 |         k = lo0bits(&z); | 
 |         x[0] = z; | 
 |         i = | 
 |             b->wds = 1; | 
 |         k += 32; | 
 |     } | 
 |     if (de) { | 
 |         *e = de - Bias - (P-1) + k; | 
 |         *bits = P - k; | 
 |     } | 
 |     else { | 
 |         *e = de - Bias - (P-1) + 1 + k; | 
 |         *bits = 32*i - hi0bits(x[i-1]); | 
 |     } | 
 |     return b; | 
 | } | 
 |  | 
 | /* Compute the ratio of two Bigints, as a double.  The result may have an | 
 |    error of up to 2.5 ulps. */ | 
 |  | 
 | static double | 
 | ratio(Bigint *a, Bigint *b) | 
 | { | 
 |     U da, db; | 
 |     int k, ka, kb; | 
 |  | 
 |     dval(&da) = b2d(a, &ka); | 
 |     dval(&db) = b2d(b, &kb); | 
 |     k = ka - kb + 32*(a->wds - b->wds); | 
 |     if (k > 0) | 
 |         word0(&da) += k*Exp_msk1; | 
 |     else { | 
 |         k = -k; | 
 |         word0(&db) += k*Exp_msk1; | 
 |     } | 
 |     return dval(&da) / dval(&db); | 
 | } | 
 |  | 
 | static const double | 
 | tens[] = { | 
 |     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, | 
 |     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, | 
 |     1e20, 1e21, 1e22 | 
 | }; | 
 |  | 
 | static const double | 
 | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; | 
 | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, | 
 |                                    9007199254740992.*9007199254740992.e-256 | 
 |                                    /* = 2^106 * 1e-256 */ | 
 | }; | 
 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ | 
 | /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */ | 
 | #define Scale_Bit 0x10 | 
 | #define n_bigtens 5 | 
 |  | 
 | #define ULbits 32 | 
 | #define kshift 5 | 
 | #define kmask 31 | 
 |  | 
 |  | 
 | static int | 
 | dshift(Bigint *b, int p2) | 
 | { | 
 |     int rv = hi0bits(b->x[b->wds-1]) - 4; | 
 |     if (p2 > 0) | 
 |         rv -= p2; | 
 |     return rv & kmask; | 
 | } | 
 |  | 
 | /* special case of Bigint division.  The quotient is always in the range 0 <= | 
 |    quotient < 10, and on entry the divisor S is normalized so that its top 4 | 
 |    bits (28--31) are zero and bit 27 is set. */ | 
 |  | 
 | static int | 
 | quorem(Bigint *b, Bigint *S) | 
 | { | 
 |     int n; | 
 |     ULong *bx, *bxe, q, *sx, *sxe; | 
 | #ifdef ULLong | 
 |     ULLong borrow, carry, y, ys; | 
 | #else | 
 |     ULong borrow, carry, y, ys; | 
 |     ULong si, z, zs; | 
 | #endif | 
 |  | 
 |     n = S->wds; | 
 | #ifdef DEBUG | 
 |     /*debug*/ if (b->wds > n) | 
 |         /*debug*/       Bug("oversize b in quorem"); | 
 | #endif | 
 |     if (b->wds < n) | 
 |         return 0; | 
 |     sx = S->x; | 
 |     sxe = sx + --n; | 
 |     bx = b->x; | 
 |     bxe = bx + n; | 
 |     q = *bxe / (*sxe + 1);      /* ensure q <= true quotient */ | 
 | #ifdef DEBUG | 
 |     /*debug*/ if (q > 9) | 
 |         /*debug*/       Bug("oversized quotient in quorem"); | 
 | #endif | 
 |     if (q) { | 
 |         borrow = 0; | 
 |         carry = 0; | 
 |         do { | 
 | #ifdef ULLong | 
 |             ys = *sx++ * (ULLong)q + carry; | 
 |             carry = ys >> 32; | 
 |             y = *bx - (ys & FFFFFFFF) - borrow; | 
 |             borrow = y >> 32 & (ULong)1; | 
 |             *bx++ = (ULong)(y & FFFFFFFF); | 
 | #else | 
 |             si = *sx++; | 
 |             ys = (si & 0xffff) * q + carry; | 
 |             zs = (si >> 16) * q + (ys >> 16); | 
 |             carry = zs >> 16; | 
 |             y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | 
 |             borrow = (y & 0x10000) >> 16; | 
 |             z = (*bx >> 16) - (zs & 0xffff) - borrow; | 
 |             borrow = (z & 0x10000) >> 16; | 
 |             Storeinc(bx, z, y); | 
 | #endif | 
 |         } | 
 |         while(sx <= sxe); | 
 |         if (!*bxe) { | 
 |             bx = b->x; | 
 |             while(--bxe > bx && !*bxe) | 
 |                 --n; | 
 |             b->wds = n; | 
 |         } | 
 |     } | 
 |     if (cmp(b, S) >= 0) { | 
 |         q++; | 
 |         borrow = 0; | 
 |         carry = 0; | 
 |         bx = b->x; | 
 |         sx = S->x; | 
 |         do { | 
 | #ifdef ULLong | 
 |             ys = *sx++ + carry; | 
 |             carry = ys >> 32; | 
 |             y = *bx - (ys & FFFFFFFF) - borrow; | 
 |             borrow = y >> 32 & (ULong)1; | 
 |             *bx++ = (ULong)(y & FFFFFFFF); | 
 | #else | 
 |             si = *sx++; | 
 |             ys = (si & 0xffff) + carry; | 
 |             zs = (si >> 16) + (ys >> 16); | 
 |             carry = zs >> 16; | 
 |             y = (*bx & 0xffff) - (ys & 0xffff) - borrow; | 
 |             borrow = (y & 0x10000) >> 16; | 
 |             z = (*bx >> 16) - (zs & 0xffff) - borrow; | 
 |             borrow = (z & 0x10000) >> 16; | 
 |             Storeinc(bx, z, y); | 
 | #endif | 
 |         } | 
 |         while(sx <= sxe); | 
 |         bx = b->x; | 
 |         bxe = bx + n; | 
 |         if (!*bxe) { | 
 |             while(--bxe > bx && !*bxe) | 
 |                 --n; | 
 |             b->wds = n; | 
 |         } | 
 |     } | 
 |     return q; | 
 | } | 
 |  | 
 | /* sulp(x) is a version of ulp(x) that takes bc.scale into account. | 
 |  | 
 |    Assuming that x is finite and nonnegative (positive zero is fine | 
 |    here) and x / 2^bc.scale is exactly representable as a double, | 
 |    sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ | 
 |  | 
 | static double | 
 | sulp(U *x, BCinfo *bc) | 
 | { | 
 |     U u; | 
 |  | 
 |     if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { | 
 |         /* rv/2^bc->scale is subnormal */ | 
 |         word0(&u) = (P+2)*Exp_msk1; | 
 |         word1(&u) = 0; | 
 |         return u.d; | 
 |     } | 
 |     else { | 
 |         assert(word0(x) || word1(x)); /* x != 0.0 */ | 
 |         return ulp(x); | 
 |     } | 
 | } | 
 |  | 
 | /* The bigcomp function handles some hard cases for strtod, for inputs | 
 |    with more than STRTOD_DIGLIM digits.  It's called once an initial | 
 |    estimate for the double corresponding to the input string has | 
 |    already been obtained by the code in _Py_dg_strtod. | 
 |  | 
 |    The bigcomp function is only called after _Py_dg_strtod has found a | 
 |    double value rv such that either rv or rv + 1ulp represents the | 
 |    correctly rounded value corresponding to the original string.  It | 
 |    determines which of these two values is the correct one by | 
 |    computing the decimal digits of rv + 0.5ulp and comparing them with | 
 |    the corresponding digits of s0. | 
 |  | 
 |    In the following, write dv for the absolute value of the number represented | 
 |    by the input string. | 
 |  | 
 |    Inputs: | 
 |  | 
 |      s0 points to the first significant digit of the input string. | 
 |  | 
 |      rv is a (possibly scaled) estimate for the closest double value to the | 
 |         value represented by the original input to _Py_dg_strtod.  If | 
 |         bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to | 
 |         the input value. | 
 |  | 
 |      bc is a struct containing information gathered during the parsing and | 
 |         estimation steps of _Py_dg_strtod.  Description of fields follows: | 
 |  | 
 |         bc->e0 gives the exponent of the input value, such that dv = (integer | 
 |            given by the bd->nd digits of s0) * 10**e0 | 
 |  | 
 |         bc->nd gives the total number of significant digits of s0.  It will | 
 |            be at least 1. | 
 |  | 
 |         bc->nd0 gives the number of significant digits of s0 before the | 
 |            decimal separator.  If there's no decimal separator, bc->nd0 == | 
 |            bc->nd. | 
 |  | 
 |         bc->scale is the value used to scale rv to avoid doing arithmetic with | 
 |            subnormal values.  It's either 0 or 2*P (=106). | 
 |  | 
 |    Outputs: | 
 |  | 
 |      On successful exit, rv/2^(bc->scale) is the closest double to dv. | 
 |  | 
 |      Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ | 
 |  | 
 | static int | 
 | bigcomp(U *rv, const char *s0, BCinfo *bc) | 
 | { | 
 |     Bigint *b, *d; | 
 |     int b2, d2, dd, i, nd, nd0, odd, p2, p5; | 
 |  | 
 |     nd = bc->nd; | 
 |     nd0 = bc->nd0; | 
 |     p5 = nd + bc->e0; | 
 |     b = sd2b(rv, bc->scale, &p2); | 
 |     if (b == NULL) | 
 |         return -1; | 
 |  | 
 |     /* record whether the lsb of rv/2^(bc->scale) is odd:  in the exact halfway | 
 |        case, this is used for round to even. */ | 
 |     odd = b->x[0] & 1; | 
 |  | 
 |     /* left shift b by 1 bit and or a 1 into the least significant bit; | 
 |        this gives us b * 2**p2 = rv/2^(bc->scale) + 0.5 ulp. */ | 
 |     b = lshift(b, 1); | 
 |     if (b == NULL) | 
 |         return -1; | 
 |     b->x[0] |= 1; | 
 |     p2--; | 
 |  | 
 |     p2 -= p5; | 
 |     d = i2b(1); | 
 |     if (d == NULL) { | 
 |         Bfree(b); | 
 |         return -1; | 
 |     } | 
 |     /* Arrange for convenient computation of quotients: | 
 |      * shift left if necessary so divisor has 4 leading 0 bits. | 
 |      */ | 
 |     if (p5 > 0) { | 
 |         d = pow5mult(d, p5); | 
 |         if (d == NULL) { | 
 |             Bfree(b); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |     else if (p5 < 0) { | 
 |         b = pow5mult(b, -p5); | 
 |         if (b == NULL) { | 
 |             Bfree(d); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |     if (p2 > 0) { | 
 |         b2 = p2; | 
 |         d2 = 0; | 
 |     } | 
 |     else { | 
 |         b2 = 0; | 
 |         d2 = -p2; | 
 |     } | 
 |     i = dshift(d, d2); | 
 |     if ((b2 += i) > 0) { | 
 |         b = lshift(b, b2); | 
 |         if (b == NULL) { | 
 |             Bfree(d); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |     if ((d2 += i) > 0) { | 
 |         d = lshift(d, d2); | 
 |         if (d == NULL) { | 
 |             Bfree(b); | 
 |             return -1; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 == | 
 |      * b/d, or s0 > b/d.  Here the digits of s0 are thought of as representing | 
 |      * a number in the range [0.1, 1). */ | 
 |     if (cmp(b, d) >= 0) | 
 |         /* b/d >= 1 */ | 
 |         dd = -1; | 
 |     else { | 
 |         i = 0; | 
 |         for(;;) { | 
 |             b = multadd(b, 10, 0); | 
 |             if (b == NULL) { | 
 |                 Bfree(d); | 
 |                 return -1; | 
 |             } | 
 |             dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d); | 
 |             i++; | 
 |  | 
 |             if (dd) | 
 |                 break; | 
 |             if (!b->x[0] && b->wds == 1) { | 
 |                 /* b/d == 0 */ | 
 |                 dd = i < nd; | 
 |                 break; | 
 |             } | 
 |             if (!(i < nd)) { | 
 |                 /* b/d != 0, but digits of s0 exhausted */ | 
 |                 dd = -1; | 
 |                 break; | 
 |             } | 
 |         } | 
 |     } | 
 |     Bfree(b); | 
 |     Bfree(d); | 
 |     if (dd > 0 || (dd == 0 && odd)) | 
 |         dval(rv) += sulp(rv, bc); | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Return a 'standard' NaN value. | 
 |  | 
 |    There are exactly two quiet NaNs that don't arise by 'quieting' signaling | 
 |    NaNs (see IEEE 754-2008, section 6.2.1).  If sign == 0, return the one whose | 
 |    sign bit is cleared.  Otherwise, return the one whose sign bit is set. | 
 | */ | 
 |  | 
 | double | 
 | _Py_dg_stdnan(int sign) | 
 | { | 
 |     U rv; | 
 |     word0(&rv) = NAN_WORD0; | 
 |     word1(&rv) = NAN_WORD1; | 
 |     if (sign) | 
 |         word0(&rv) |= Sign_bit; | 
 |     return dval(&rv); | 
 | } | 
 |  | 
 | /* Return positive or negative infinity, according to the given sign (0 for | 
 |  * positive infinity, 1 for negative infinity). */ | 
 |  | 
 | double | 
 | _Py_dg_infinity(int sign) | 
 | { | 
 |     U rv; | 
 |     word0(&rv) = POSINF_WORD0; | 
 |     word1(&rv) = POSINF_WORD1; | 
 |     return sign ? -dval(&rv) : dval(&rv); | 
 | } | 
 |  | 
 | double | 
 | _Py_dg_strtod(const char *s00, char **se) | 
 | { | 
 |     int bb2, bb5, bbe, bd2, bd5, bs2, c, dsign, e, e1, error; | 
 |     int esign, i, j, k, lz, nd, nd0, odd, sign; | 
 |     const char *s, *s0, *s1; | 
 |     double aadj, aadj1; | 
 |     U aadj2, adj, rv, rv0; | 
 |     ULong y, z, abs_exp; | 
 |     Long L; | 
 |     BCinfo bc; | 
 |     Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; | 
 |  | 
 |     dval(&rv) = 0.; | 
 |  | 
 |     /* Start parsing. */ | 
 |     c = *(s = s00); | 
 |  | 
 |     /* Parse optional sign, if present. */ | 
 |     sign = 0; | 
 |     switch (c) { | 
 |     case '-': | 
 |         sign = 1; | 
 |         /* no break */ | 
 |     case '+': | 
 |         c = *++s; | 
 |     } | 
 |  | 
 |     /* Skip leading zeros: lz is true iff there were leading zeros. */ | 
 |     s1 = s; | 
 |     while (c == '0') | 
 |         c = *++s; | 
 |     lz = s != s1; | 
 |  | 
 |     /* Point s0 at the first nonzero digit (if any).  nd0 will be the position | 
 |        of the point relative to s0.  nd will be the total number of digits | 
 |        ignoring leading zeros. */ | 
 |     s0 = s1 = s; | 
 |     while ('0' <= c && c <= '9') | 
 |         c = *++s; | 
 |     nd0 = nd = s - s1; | 
 |  | 
 |     /* Parse decimal point and following digits. */ | 
 |     if (c == '.') { | 
 |         c = *++s; | 
 |         if (!nd) { | 
 |             s1 = s; | 
 |             while (c == '0') | 
 |                 c = *++s; | 
 |             lz = lz || s != s1; | 
 |             nd0 -= s - s1; | 
 |             s0 = s; | 
 |         } | 
 |         s1 = s; | 
 |         while ('0' <= c && c <= '9') | 
 |             c = *++s; | 
 |         nd += s - s1; | 
 |     } | 
 |  | 
 |     /* Now lz is true if and only if there were leading zero digits, and nd | 
 |        gives the total number of digits ignoring leading zeros.  A valid input | 
 |        must have at least one digit. */ | 
 |     if (!nd && !lz) { | 
 |         if (se) | 
 |             *se = (char *)s00; | 
 |         goto parse_error; | 
 |     } | 
 |  | 
 |     /* Parse exponent. */ | 
 |     e = 0; | 
 |     if (c == 'e' || c == 'E') { | 
 |         s00 = s; | 
 |         c = *++s; | 
 |  | 
 |         /* Exponent sign. */ | 
 |         esign = 0; | 
 |         switch (c) { | 
 |         case '-': | 
 |             esign = 1; | 
 |             /* no break */ | 
 |         case '+': | 
 |             c = *++s; | 
 |         } | 
 |  | 
 |         /* Skip zeros.  lz is true iff there are leading zeros. */ | 
 |         s1 = s; | 
 |         while (c == '0') | 
 |             c = *++s; | 
 |         lz = s != s1; | 
 |  | 
 |         /* Get absolute value of the exponent. */ | 
 |         s1 = s; | 
 |         abs_exp = 0; | 
 |         while ('0' <= c && c <= '9') { | 
 |             abs_exp = 10*abs_exp + (c - '0'); | 
 |             c = *++s; | 
 |         } | 
 |  | 
 |         /* abs_exp will be correct modulo 2**32.  But 10**9 < 2**32, so if | 
 |            there are at most 9 significant exponent digits then overflow is | 
 |            impossible. */ | 
 |         if (s - s1 > 9 || abs_exp > MAX_ABS_EXP) | 
 |             e = (int)MAX_ABS_EXP; | 
 |         else | 
 |             e = (int)abs_exp; | 
 |         if (esign) | 
 |             e = -e; | 
 |  | 
 |         /* A valid exponent must have at least one digit. */ | 
 |         if (s == s1 && !lz) | 
 |             s = s00; | 
 |     } | 
 |  | 
 |     /* Adjust exponent to take into account position of the point. */ | 
 |     e -= nd - nd0; | 
 |     if (nd0 <= 0) | 
 |         nd0 = nd; | 
 |  | 
 |     /* Finished parsing.  Set se to indicate how far we parsed */ | 
 |     if (se) | 
 |         *se = (char *)s; | 
 |  | 
 |     /* If all digits were zero, exit with return value +-0.0.  Otherwise, | 
 |        strip trailing zeros: scan back until we hit a nonzero digit. */ | 
 |     if (!nd) | 
 |         goto ret; | 
 |     for (i = nd; i > 0; ) { | 
 |         --i; | 
 |         if (s0[i < nd0 ? i : i+1] != '0') { | 
 |             ++i; | 
 |             break; | 
 |         } | 
 |     } | 
 |     e += nd - i; | 
 |     nd = i; | 
 |     if (nd0 > nd) | 
 |         nd0 = nd; | 
 |  | 
 |     /* Summary of parsing results.  After parsing, and dealing with zero | 
 |      * inputs, we have values s0, nd0, nd, e, sign, where: | 
 |      * | 
 |      *  - s0 points to the first significant digit of the input string | 
 |      * | 
 |      *  - nd is the total number of significant digits (here, and | 
 |      *    below, 'significant digits' means the set of digits of the | 
 |      *    significand of the input that remain after ignoring leading | 
 |      *    and trailing zeros). | 
 |      * | 
 |      *  - nd0 indicates the position of the decimal point, if present; it | 
 |      *    satisfies 1 <= nd0 <= nd.  The nd significant digits are in | 
 |      *    s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice | 
 |      *    notation.  (If nd0 < nd, then s0[nd0] contains a '.'  character; if | 
 |      *    nd0 == nd, then s0[nd0] could be any non-digit character.) | 
 |      * | 
 |      *  - e is the adjusted exponent: the absolute value of the number | 
 |      *    represented by the original input string is n * 10**e, where | 
 |      *    n is the integer represented by the concatenation of | 
 |      *    s0[0:nd0] and s0[nd0+1:nd+1] | 
 |      * | 
 |      *  - sign gives the sign of the input:  1 for negative, 0 for positive | 
 |      * | 
 |      *  - the first and last significant digits are nonzero | 
 |      */ | 
 |  | 
 |     /* put first DBL_DIG+1 digits into integer y and z. | 
 |      * | 
 |      *  - y contains the value represented by the first min(9, nd) | 
 |      *    significant digits | 
 |      * | 
 |      *  - if nd > 9, z contains the value represented by significant digits | 
 |      *    with indices in [9, min(16, nd)).  So y * 10**(min(16, nd) - 9) + z | 
 |      *    gives the value represented by the first min(16, nd) sig. digits. | 
 |      */ | 
 |  | 
 |     bc.e0 = e1 = e; | 
 |     y = z = 0; | 
 |     for (i = 0; i < nd; i++) { | 
 |         if (i < 9) | 
 |             y = 10*y + s0[i < nd0 ? i : i+1] - '0'; | 
 |         else if (i < DBL_DIG+1) | 
 |             z = 10*z + s0[i < nd0 ? i : i+1] - '0'; | 
 |         else | 
 |             break; | 
 |     } | 
 |  | 
 |     k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; | 
 |     dval(&rv) = y; | 
 |     if (k > 9) { | 
 |         dval(&rv) = tens[k - 9] * dval(&rv) + z; | 
 |     } | 
 |     bd0 = 0; | 
 |     if (nd <= DBL_DIG | 
 |         && Flt_Rounds == 1 | 
 |         ) { | 
 |         if (!e) | 
 |             goto ret; | 
 |         if (e > 0) { | 
 |             if (e <= Ten_pmax) { | 
 |                 dval(&rv) *= tens[e]; | 
 |                 goto ret; | 
 |             } | 
 |             i = DBL_DIG - nd; | 
 |             if (e <= Ten_pmax + i) { | 
 |                 /* A fancier test would sometimes let us do | 
 |                  * this for larger i values. | 
 |                  */ | 
 |                 e -= i; | 
 |                 dval(&rv) *= tens[i]; | 
 |                 dval(&rv) *= tens[e]; | 
 |                 goto ret; | 
 |             } | 
 |         } | 
 |         else if (e >= -Ten_pmax) { | 
 |             dval(&rv) /= tens[-e]; | 
 |             goto ret; | 
 |         } | 
 |     } | 
 |     e1 += nd - k; | 
 |  | 
 |     bc.scale = 0; | 
 |  | 
 |     /* Get starting approximation = rv * 10**e1 */ | 
 |  | 
 |     if (e1 > 0) { | 
 |         if ((i = e1 & 15)) | 
 |             dval(&rv) *= tens[i]; | 
 |         if (e1 &= ~15) { | 
 |             if (e1 > DBL_MAX_10_EXP) | 
 |                 goto ovfl; | 
 |             e1 >>= 4; | 
 |             for(j = 0; e1 > 1; j++, e1 >>= 1) | 
 |                 if (e1 & 1) | 
 |                     dval(&rv) *= bigtens[j]; | 
 |             /* The last multiplication could overflow. */ | 
 |             word0(&rv) -= P*Exp_msk1; | 
 |             dval(&rv) *= bigtens[j]; | 
 |             if ((z = word0(&rv) & Exp_mask) | 
 |                 > Exp_msk1*(DBL_MAX_EXP+Bias-P)) | 
 |                 goto ovfl; | 
 |             if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { | 
 |                 /* set to largest number */ | 
 |                 /* (Can't trust DBL_MAX) */ | 
 |                 word0(&rv) = Big0; | 
 |                 word1(&rv) = Big1; | 
 |             } | 
 |             else | 
 |                 word0(&rv) += P*Exp_msk1; | 
 |         } | 
 |     } | 
 |     else if (e1 < 0) { | 
 |         /* The input decimal value lies in [10**e1, 10**(e1+16)). | 
 |  | 
 |            If e1 <= -512, underflow immediately. | 
 |            If e1 <= -256, set bc.scale to 2*P. | 
 |  | 
 |            So for input value < 1e-256, bc.scale is always set; | 
 |            for input value >= 1e-240, bc.scale is never set. | 
 |            For input values in [1e-256, 1e-240), bc.scale may or may | 
 |            not be set. */ | 
 |  | 
 |         e1 = -e1; | 
 |         if ((i = e1 & 15)) | 
 |             dval(&rv) /= tens[i]; | 
 |         if (e1 >>= 4) { | 
 |             if (e1 >= 1 << n_bigtens) | 
 |                 goto undfl; | 
 |             if (e1 & Scale_Bit) | 
 |                 bc.scale = 2*P; | 
 |             for(j = 0; e1 > 0; j++, e1 >>= 1) | 
 |                 if (e1 & 1) | 
 |                     dval(&rv) *= tinytens[j]; | 
 |             if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) | 
 |                                             >> Exp_shift)) > 0) { | 
 |                 /* scaled rv is denormal; clear j low bits */ | 
 |                 if (j >= 32) { | 
 |                     word1(&rv) = 0; | 
 |                     if (j >= 53) | 
 |                         word0(&rv) = (P+2)*Exp_msk1; | 
 |                     else | 
 |                         word0(&rv) &= 0xffffffff << (j-32); | 
 |                 } | 
 |                 else | 
 |                     word1(&rv) &= 0xffffffff << j; | 
 |             } | 
 |             if (!dval(&rv)) | 
 |                 goto undfl; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Now the hard part -- adjusting rv to the correct value.*/ | 
 |  | 
 |     /* Put digits into bd: true value = bd * 10^e */ | 
 |  | 
 |     bc.nd = nd; | 
 |     bc.nd0 = nd0;       /* Only needed if nd > STRTOD_DIGLIM, but done here */ | 
 |                         /* to silence an erroneous warning about bc.nd0 */ | 
 |                         /* possibly not being initialized. */ | 
 |     if (nd > STRTOD_DIGLIM) { | 
 |         /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ | 
 |         /* minimum number of decimal digits to distinguish double values */ | 
 |         /* in IEEE arithmetic. */ | 
 |  | 
 |         /* Truncate input to 18 significant digits, then discard any trailing | 
 |            zeros on the result by updating nd, nd0, e and y suitably. (There's | 
 |            no need to update z; it's not reused beyond this point.) */ | 
 |         for (i = 18; i > 0; ) { | 
 |             /* scan back until we hit a nonzero digit.  significant digit 'i' | 
 |             is s0[i] if i < nd0, s0[i+1] if i >= nd0. */ | 
 |             --i; | 
 |             if (s0[i < nd0 ? i : i+1] != '0') { | 
 |                 ++i; | 
 |                 break; | 
 |             } | 
 |         } | 
 |         e += nd - i; | 
 |         nd = i; | 
 |         if (nd0 > nd) | 
 |             nd0 = nd; | 
 |         if (nd < 9) { /* must recompute y */ | 
 |             y = 0; | 
 |             for(i = 0; i < nd0; ++i) | 
 |                 y = 10*y + s0[i] - '0'; | 
 |             for(; i < nd; ++i) | 
 |                 y = 10*y + s0[i+1] - '0'; | 
 |         } | 
 |     } | 
 |     bd0 = s2b(s0, nd0, nd, y); | 
 |     if (bd0 == NULL) | 
 |         goto failed_malloc; | 
 |  | 
 |     /* Notation for the comments below.  Write: | 
 |  | 
 |          - dv for the absolute value of the number represented by the original | 
 |            decimal input string. | 
 |  | 
 |          - if we've truncated dv, write tdv for the truncated value. | 
 |            Otherwise, set tdv == dv. | 
 |  | 
 |          - srv for the quantity rv/2^bc.scale; so srv is the current binary | 
 |            approximation to tdv (and dv).  It should be exactly representable | 
 |            in an IEEE 754 double. | 
 |     */ | 
 |  | 
 |     for(;;) { | 
 |  | 
 |         /* This is the main correction loop for _Py_dg_strtod. | 
 |  | 
 |            We've got a decimal value tdv, and a floating-point approximation | 
 |            srv=rv/2^bc.scale to tdv.  The aim is to determine whether srv is | 
 |            close enough (i.e., within 0.5 ulps) to tdv, and to compute a new | 
 |            approximation if not. | 
 |  | 
 |            To determine whether srv is close enough to tdv, compute integers | 
 |            bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv) | 
 |            respectively, and then use integer arithmetic to determine whether | 
 |            |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv). | 
 |         */ | 
 |  | 
 |         bd = Balloc(bd0->k); | 
 |         if (bd == NULL) { | 
 |             Bfree(bd0); | 
 |             goto failed_malloc; | 
 |         } | 
 |         Bcopy(bd, bd0); | 
 |         bb = sd2b(&rv, bc.scale, &bbe);   /* srv = bb * 2^bbe */ | 
 |         if (bb == NULL) { | 
 |             Bfree(bd); | 
 |             Bfree(bd0); | 
 |             goto failed_malloc; | 
 |         } | 
 |         /* Record whether lsb of bb is odd, in case we need this | 
 |            for the round-to-even step later. */ | 
 |         odd = bb->x[0] & 1; | 
 |  | 
 |         /* tdv = bd * 10**e;  srv = bb * 2**bbe */ | 
 |         bs = i2b(1); | 
 |         if (bs == NULL) { | 
 |             Bfree(bb); | 
 |             Bfree(bd); | 
 |             Bfree(bd0); | 
 |             goto failed_malloc; | 
 |         } | 
 |  | 
 |         if (e >= 0) { | 
 |             bb2 = bb5 = 0; | 
 |             bd2 = bd5 = e; | 
 |         } | 
 |         else { | 
 |             bb2 = bb5 = -e; | 
 |             bd2 = bd5 = 0; | 
 |         } | 
 |         if (bbe >= 0) | 
 |             bb2 += bbe; | 
 |         else | 
 |             bd2 -= bbe; | 
 |         bs2 = bb2; | 
 |         bb2++; | 
 |         bd2++; | 
 |  | 
 |         /* At this stage bd5 - bb5 == e == bd2 - bb2 + bbe, bb2 - bs2 == 1, | 
 |            and bs == 1, so: | 
 |  | 
 |               tdv == bd * 10**e = bd * 2**(bbe - bb2 + bd2) * 5**(bd5 - bb5) | 
 |               srv == bb * 2**bbe = bb * 2**(bbe - bb2 + bb2) | 
 |               0.5 ulp(srv) == 2**(bbe-1) = bs * 2**(bbe - bb2 + bs2) | 
 |  | 
 |            It follows that: | 
 |  | 
 |               M * tdv = bd * 2**bd2 * 5**bd5 | 
 |               M * srv = bb * 2**bb2 * 5**bb5 | 
 |               M * 0.5 ulp(srv) = bs * 2**bs2 * 5**bb5 | 
 |  | 
 |            for some constant M.  (Actually, M == 2**(bb2 - bbe) * 5**bb5, but | 
 |            this fact is not needed below.) | 
 |         */ | 
 |  | 
 |         /* Remove factor of 2**i, where i = min(bb2, bd2, bs2). */ | 
 |         i = bb2 < bd2 ? bb2 : bd2; | 
 |         if (i > bs2) | 
 |             i = bs2; | 
 |         if (i > 0) { | 
 |             bb2 -= i; | 
 |             bd2 -= i; | 
 |             bs2 -= i; | 
 |         } | 
 |  | 
 |         /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */ | 
 |         if (bb5 > 0) { | 
 |             bs = pow5mult(bs, bb5); | 
 |             if (bs == NULL) { | 
 |                 Bfree(bb); | 
 |                 Bfree(bd); | 
 |                 Bfree(bd0); | 
 |                 goto failed_malloc; | 
 |             } | 
 |             bb1 = mult(bs, bb); | 
 |             Bfree(bb); | 
 |             bb = bb1; | 
 |             if (bb == NULL) { | 
 |                 Bfree(bs); | 
 |                 Bfree(bd); | 
 |                 Bfree(bd0); | 
 |                 goto failed_malloc; | 
 |             } | 
 |         } | 
 |         if (bb2 > 0) { | 
 |             bb = lshift(bb, bb2); | 
 |             if (bb == NULL) { | 
 |                 Bfree(bs); | 
 |                 Bfree(bd); | 
 |                 Bfree(bd0); | 
 |                 goto failed_malloc; | 
 |             } | 
 |         } | 
 |         if (bd5 > 0) { | 
 |             bd = pow5mult(bd, bd5); | 
 |             if (bd == NULL) { | 
 |                 Bfree(bb); | 
 |                 Bfree(bs); | 
 |                 Bfree(bd0); | 
 |                 goto failed_malloc; | 
 |             } | 
 |         } | 
 |         if (bd2 > 0) { | 
 |             bd = lshift(bd, bd2); | 
 |             if (bd == NULL) { | 
 |                 Bfree(bb); | 
 |                 Bfree(bs); | 
 |                 Bfree(bd0); | 
 |                 goto failed_malloc; | 
 |             } | 
 |         } | 
 |         if (bs2 > 0) { | 
 |             bs = lshift(bs, bs2); | 
 |             if (bs == NULL) { | 
 |                 Bfree(bb); | 
 |                 Bfree(bd); | 
 |                 Bfree(bd0); | 
 |                 goto failed_malloc; | 
 |             } | 
 |         } | 
 |  | 
 |         /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv), | 
 |            respectively.  Compute the difference |tdv - srv|, and compare | 
 |            with 0.5 ulp(srv). */ | 
 |  | 
 |         delta = diff(bb, bd); | 
 |         if (delta == NULL) { | 
 |             Bfree(bb); | 
 |             Bfree(bs); | 
 |             Bfree(bd); | 
 |             Bfree(bd0); | 
 |             goto failed_malloc; | 
 |         } | 
 |         dsign = delta->sign; | 
 |         delta->sign = 0; | 
 |         i = cmp(delta, bs); | 
 |         if (bc.nd > nd && i <= 0) { | 
 |             if (dsign) | 
 |                 break;  /* Must use bigcomp(). */ | 
 |  | 
 |             /* Here rv overestimates the truncated decimal value by at most | 
 |                0.5 ulp(rv).  Hence rv either overestimates the true decimal | 
 |                value by <= 0.5 ulp(rv), or underestimates it by some small | 
 |                amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of | 
 |                the true decimal value, so it's possible to exit. | 
 |  | 
 |                Exception: if scaled rv is a normal exact power of 2, but not | 
 |                DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the | 
 |                next double, so the correctly rounded result is either rv - 0.5 | 
 |                ulp(rv) or rv; in this case, use bigcomp to distinguish. */ | 
 |  | 
 |             if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { | 
 |                 /* rv can't be 0, since it's an overestimate for some | 
 |                    nonzero value.  So rv is a normal power of 2. */ | 
 |                 j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; | 
 |                 /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if | 
 |                    rv / 2^bc.scale >= 2^-1021. */ | 
 |                 if (j - bc.scale >= 2) { | 
 |                     dval(&rv) -= 0.5 * sulp(&rv, &bc); | 
 |                     break; /* Use bigcomp. */ | 
 |                 } | 
 |             } | 
 |  | 
 |             { | 
 |                 bc.nd = nd; | 
 |                 i = -1; /* Discarded digits make delta smaller. */ | 
 |             } | 
 |         } | 
 |  | 
 |         if (i < 0) { | 
 |             /* Error is less than half an ulp -- check for | 
 |              * special case of mantissa a power of two. | 
 |              */ | 
 |             if (dsign || word1(&rv) || word0(&rv) & Bndry_mask | 
 |                 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 | 
 |                 ) { | 
 |                 break; | 
 |             } | 
 |             if (!delta->x[0] && delta->wds <= 1) { | 
 |                 /* exact result */ | 
 |                 break; | 
 |             } | 
 |             delta = lshift(delta,Log2P); | 
 |             if (delta == NULL) { | 
 |                 Bfree(bb); | 
 |                 Bfree(bs); | 
 |                 Bfree(bd); | 
 |                 Bfree(bd0); | 
 |                 goto failed_malloc; | 
 |             } | 
 |             if (cmp(delta, bs) > 0) | 
 |                 goto drop_down; | 
 |             break; | 
 |         } | 
 |         if (i == 0) { | 
 |             /* exactly half-way between */ | 
 |             if (dsign) { | 
 |                 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 | 
 |                     &&  word1(&rv) == ( | 
 |                         (bc.scale && | 
 |                          (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? | 
 |                         (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : | 
 |                         0xffffffff)) { | 
 |                     /*boundary case -- increment exponent*/ | 
 |                     word0(&rv) = (word0(&rv) & Exp_mask) | 
 |                         + Exp_msk1 | 
 |                         ; | 
 |                     word1(&rv) = 0; | 
 |                     /* dsign = 0; */ | 
 |                     break; | 
 |                 } | 
 |             } | 
 |             else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { | 
 |               drop_down: | 
 |                 /* boundary case -- decrement exponent */ | 
 |                 if (bc.scale) { | 
 |                     L = word0(&rv) & Exp_mask; | 
 |                     if (L <= (2*P+1)*Exp_msk1) { | 
 |                         if (L > (P+2)*Exp_msk1) | 
 |                             /* round even ==> */ | 
 |                             /* accept rv */ | 
 |                             break; | 
 |                         /* rv = smallest denormal */ | 
 |                         if (bc.nd > nd) | 
 |                             break; | 
 |                         goto undfl; | 
 |                     } | 
 |                 } | 
 |                 L = (word0(&rv) & Exp_mask) - Exp_msk1; | 
 |                 word0(&rv) = L | Bndry_mask1; | 
 |                 word1(&rv) = 0xffffffff; | 
 |                 break; | 
 |             } | 
 |             if (!odd) | 
 |                 break; | 
 |             if (dsign) | 
 |                 dval(&rv) += sulp(&rv, &bc); | 
 |             else { | 
 |                 dval(&rv) -= sulp(&rv, &bc); | 
 |                 if (!dval(&rv)) { | 
 |                     if (bc.nd >nd) | 
 |                         break; | 
 |                     goto undfl; | 
 |                 } | 
 |             } | 
 |             /* dsign = 1 - dsign; */ | 
 |             break; | 
 |         } | 
 |         if ((aadj = ratio(delta, bs)) <= 2.) { | 
 |             if (dsign) | 
 |                 aadj = aadj1 = 1.; | 
 |             else if (word1(&rv) || word0(&rv) & Bndry_mask) { | 
 |                 if (word1(&rv) == Tiny1 && !word0(&rv)) { | 
 |                     if (bc.nd >nd) | 
 |                         break; | 
 |                     goto undfl; | 
 |                 } | 
 |                 aadj = 1.; | 
 |                 aadj1 = -1.; | 
 |             } | 
 |             else { | 
 |                 /* special case -- power of FLT_RADIX to be */ | 
 |                 /* rounded down... */ | 
 |  | 
 |                 if (aadj < 2./FLT_RADIX) | 
 |                     aadj = 1./FLT_RADIX; | 
 |                 else | 
 |                     aadj *= 0.5; | 
 |                 aadj1 = -aadj; | 
 |             } | 
 |         } | 
 |         else { | 
 |             aadj *= 0.5; | 
 |             aadj1 = dsign ? aadj : -aadj; | 
 |             if (Flt_Rounds == 0) | 
 |                 aadj1 += 0.5; | 
 |         } | 
 |         y = word0(&rv) & Exp_mask; | 
 |  | 
 |         /* Check for overflow */ | 
 |  | 
 |         if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { | 
 |             dval(&rv0) = dval(&rv); | 
 |             word0(&rv) -= P*Exp_msk1; | 
 |             adj.d = aadj1 * ulp(&rv); | 
 |             dval(&rv) += adj.d; | 
 |             if ((word0(&rv) & Exp_mask) >= | 
 |                 Exp_msk1*(DBL_MAX_EXP+Bias-P)) { | 
 |                 if (word0(&rv0) == Big0 && word1(&rv0) == Big1) { | 
 |                     Bfree(bb); | 
 |                     Bfree(bd); | 
 |                     Bfree(bs); | 
 |                     Bfree(bd0); | 
 |                     Bfree(delta); | 
 |                     goto ovfl; | 
 |                 } | 
 |                 word0(&rv) = Big0; | 
 |                 word1(&rv) = Big1; | 
 |                 goto cont; | 
 |             } | 
 |             else | 
 |                 word0(&rv) += P*Exp_msk1; | 
 |         } | 
 |         else { | 
 |             if (bc.scale && y <= 2*P*Exp_msk1) { | 
 |                 if (aadj <= 0x7fffffff) { | 
 |                     if ((z = (ULong)aadj) <= 0) | 
 |                         z = 1; | 
 |                     aadj = z; | 
 |                     aadj1 = dsign ? aadj : -aadj; | 
 |                 } | 
 |                 dval(&aadj2) = aadj1; | 
 |                 word0(&aadj2) += (2*P+1)*Exp_msk1 - y; | 
 |                 aadj1 = dval(&aadj2); | 
 |             } | 
 |             adj.d = aadj1 * ulp(&rv); | 
 |             dval(&rv) += adj.d; | 
 |         } | 
 |         z = word0(&rv) & Exp_mask; | 
 |         if (bc.nd == nd) { | 
 |             if (!bc.scale) | 
 |                 if (y == z) { | 
 |                     /* Can we stop now? */ | 
 |                     L = (Long)aadj; | 
 |                     aadj -= L; | 
 |                     /* The tolerances below are conservative. */ | 
 |                     if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) { | 
 |                         if (aadj < .4999999 || aadj > .5000001) | 
 |                             break; | 
 |                     } | 
 |                     else if (aadj < .4999999/FLT_RADIX) | 
 |                         break; | 
 |                 } | 
 |         } | 
 |       cont: | 
 |         Bfree(bb); | 
 |         Bfree(bd); | 
 |         Bfree(bs); | 
 |         Bfree(delta); | 
 |     } | 
 |     Bfree(bb); | 
 |     Bfree(bd); | 
 |     Bfree(bs); | 
 |     Bfree(bd0); | 
 |     Bfree(delta); | 
 |     if (bc.nd > nd) { | 
 |         error = bigcomp(&rv, s0, &bc); | 
 |         if (error) | 
 |             goto failed_malloc; | 
 |     } | 
 |  | 
 |     if (bc.scale) { | 
 |         word0(&rv0) = Exp_1 - 2*P*Exp_msk1; | 
 |         word1(&rv0) = 0; | 
 |         dval(&rv) *= dval(&rv0); | 
 |     } | 
 |  | 
 |   ret: | 
 |     return sign ? -dval(&rv) : dval(&rv); | 
 |  | 
 |   parse_error: | 
 |     return 0.0; | 
 |  | 
 |   failed_malloc: | 
 |     errno = ENOMEM; | 
 |     return -1.0; | 
 |  | 
 |   undfl: | 
 |     return sign ? -0.0 : 0.0; | 
 |  | 
 |   ovfl: | 
 |     errno = ERANGE; | 
 |     /* Can't trust HUGE_VAL */ | 
 |     word0(&rv) = Exp_mask; | 
 |     word1(&rv) = 0; | 
 |     return sign ? -dval(&rv) : dval(&rv); | 
 |  | 
 | } | 
 |  | 
 | static char * | 
 | rv_alloc(int i) | 
 | { | 
 |     int j, k, *r; | 
 |  | 
 |     j = sizeof(ULong); | 
 |     for(k = 0; | 
 |         sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; | 
 |         j <<= 1) | 
 |         k++; | 
 |     r = (int*)Balloc(k); | 
 |     if (r == NULL) | 
 |         return NULL; | 
 |     *r = k; | 
 |     return (char *)(r+1); | 
 | } | 
 |  | 
 | static char * | 
 | nrv_alloc(char *s, char **rve, int n) | 
 | { | 
 |     char *rv, *t; | 
 |  | 
 |     rv = rv_alloc(n); | 
 |     if (rv == NULL) | 
 |         return NULL; | 
 |     t = rv; | 
 |     while((*t = *s++)) t++; | 
 |     if (rve) | 
 |         *rve = t; | 
 |     return rv; | 
 | } | 
 |  | 
 | /* freedtoa(s) must be used to free values s returned by dtoa | 
 |  * when MULTIPLE_THREADS is #defined.  It should be used in all cases, | 
 |  * but for consistency with earlier versions of dtoa, it is optional | 
 |  * when MULTIPLE_THREADS is not defined. | 
 |  */ | 
 |  | 
 | void | 
 | _Py_dg_freedtoa(char *s) | 
 | { | 
 |     Bigint *b = (Bigint *)((int *)s - 1); | 
 |     b->maxwds = 1 << (b->k = *(int*)b); | 
 |     Bfree(b); | 
 | } | 
 |  | 
 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. | 
 |  * | 
 |  * Inspired by "How to Print Floating-Point Numbers Accurately" by | 
 |  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. | 
 |  * | 
 |  * Modifications: | 
 |  *      1. Rather than iterating, we use a simple numeric overestimate | 
 |  *         to determine k = floor(log10(d)).  We scale relevant | 
 |  *         quantities using O(log2(k)) rather than O(k) multiplications. | 
 |  *      2. For some modes > 2 (corresponding to ecvt and fcvt), we don't | 
 |  *         try to generate digits strictly left to right.  Instead, we | 
 |  *         compute with fewer bits and propagate the carry if necessary | 
 |  *         when rounding the final digit up.  This is often faster. | 
 |  *      3. Under the assumption that input will be rounded nearest, | 
 |  *         mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. | 
 |  *         That is, we allow equality in stopping tests when the | 
 |  *         round-nearest rule will give the same floating-point value | 
 |  *         as would satisfaction of the stopping test with strict | 
 |  *         inequality. | 
 |  *      4. We remove common factors of powers of 2 from relevant | 
 |  *         quantities. | 
 |  *      5. When converting floating-point integers less than 1e16, | 
 |  *         we use floating-point arithmetic rather than resorting | 
 |  *         to multiple-precision integers. | 
 |  *      6. When asked to produce fewer than 15 digits, we first try | 
 |  *         to get by with floating-point arithmetic; we resort to | 
 |  *         multiple-precision integer arithmetic only if we cannot | 
 |  *         guarantee that the floating-point calculation has given | 
 |  *         the correctly rounded result.  For k requested digits and | 
 |  *         "uniformly" distributed input, the probability is | 
 |  *         something like 10^(k-15) that we must resort to the Long | 
 |  *         calculation. | 
 |  */ | 
 |  | 
 | /* Additional notes (METD): (1) returns NULL on failure.  (2) to avoid memory | 
 |    leakage, a successful call to _Py_dg_dtoa should always be matched by a | 
 |    call to _Py_dg_freedtoa. */ | 
 |  | 
 | char * | 
 | _Py_dg_dtoa(double dd, int mode, int ndigits, | 
 |             int *decpt, int *sign, char **rve) | 
 | { | 
 |     /*  Arguments ndigits, decpt, sign are similar to those | 
 |         of ecvt and fcvt; trailing zeros are suppressed from | 
 |         the returned string.  If not null, *rve is set to point | 
 |         to the end of the return value.  If d is +-Infinity or NaN, | 
 |         then *decpt is set to 9999. | 
 |  | 
 |         mode: | 
 |         0 ==> shortest string that yields d when read in | 
 |         and rounded to nearest. | 
 |         1 ==> like 0, but with Steele & White stopping rule; | 
 |         e.g. with IEEE P754 arithmetic , mode 0 gives | 
 |         1e23 whereas mode 1 gives 9.999999999999999e22. | 
 |         2 ==> max(1,ndigits) significant digits.  This gives a | 
 |         return value similar to that of ecvt, except | 
 |         that trailing zeros are suppressed. | 
 |         3 ==> through ndigits past the decimal point.  This | 
 |         gives a return value similar to that from fcvt, | 
 |         except that trailing zeros are suppressed, and | 
 |         ndigits can be negative. | 
 |         4,5 ==> similar to 2 and 3, respectively, but (in | 
 |         round-nearest mode) with the tests of mode 0 to | 
 |         possibly return a shorter string that rounds to d. | 
 |         With IEEE arithmetic and compilation with | 
 |         -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same | 
 |         as modes 2 and 3 when FLT_ROUNDS != 1. | 
 |         6-9 ==> Debugging modes similar to mode - 4:  don't try | 
 |         fast floating-point estimate (if applicable). | 
 |  | 
 |         Values of mode other than 0-9 are treated as mode 0. | 
 |  | 
 |         Sufficient space is allocated to the return value | 
 |         to hold the suppressed trailing zeros. | 
 |     */ | 
 |  | 
 |     int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, | 
 |         j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, | 
 |         spec_case, try_quick; | 
 |     Long L; | 
 |     int denorm; | 
 |     ULong x; | 
 |     Bigint *b, *b1, *delta, *mlo, *mhi, *S; | 
 |     U d2, eps, u; | 
 |     double ds; | 
 |     char *s, *s0; | 
 |  | 
 |     /* set pointers to NULL, to silence gcc compiler warnings and make | 
 |        cleanup easier on error */ | 
 |     mlo = mhi = S = 0; | 
 |     s0 = 0; | 
 |  | 
 |     u.d = dd; | 
 |     if (word0(&u) & Sign_bit) { | 
 |         /* set sign for everything, including 0's and NaNs */ | 
 |         *sign = 1; | 
 |         word0(&u) &= ~Sign_bit; /* clear sign bit */ | 
 |     } | 
 |     else | 
 |         *sign = 0; | 
 |  | 
 |     /* quick return for Infinities, NaNs and zeros */ | 
 |     if ((word0(&u) & Exp_mask) == Exp_mask) | 
 |     { | 
 |         /* Infinity or NaN */ | 
 |         *decpt = 9999; | 
 |         if (!word1(&u) && !(word0(&u) & 0xfffff)) | 
 |             return nrv_alloc("Infinity", rve, 8); | 
 |         return nrv_alloc("NaN", rve, 3); | 
 |     } | 
 |     if (!dval(&u)) { | 
 |         *decpt = 1; | 
 |         return nrv_alloc("0", rve, 1); | 
 |     } | 
 |  | 
 |     /* compute k = floor(log10(d)).  The computation may leave k | 
 |        one too large, but should never leave k too small. */ | 
 |     b = d2b(&u, &be, &bbits); | 
 |     if (b == NULL) | 
 |         goto failed_malloc; | 
 |     if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { | 
 |         dval(&d2) = dval(&u); | 
 |         word0(&d2) &= Frac_mask1; | 
 |         word0(&d2) |= Exp_11; | 
 |  | 
 |         /* log(x)       ~=~ log(1.5) + (x-1.5)/1.5 | 
 |          * log10(x)      =  log(x) / log(10) | 
 |          *              ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) | 
 |          * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) | 
 |          * | 
 |          * This suggests computing an approximation k to log10(d) by | 
 |          * | 
 |          * k = (i - Bias)*0.301029995663981 | 
 |          *      + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); | 
 |          * | 
 |          * We want k to be too large rather than too small. | 
 |          * The error in the first-order Taylor series approximation | 
 |          * is in our favor, so we just round up the constant enough | 
 |          * to compensate for any error in the multiplication of | 
 |          * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, | 
 |          * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, | 
 |          * adding 1e-13 to the constant term more than suffices. | 
 |          * Hence we adjust the constant term to 0.1760912590558. | 
 |          * (We could get a more accurate k by invoking log10, | 
 |          *  but this is probably not worthwhile.) | 
 |          */ | 
 |  | 
 |         i -= Bias; | 
 |         denorm = 0; | 
 |     } | 
 |     else { | 
 |         /* d is denormalized */ | 
 |  | 
 |         i = bbits + be + (Bias + (P-1) - 1); | 
 |         x = i > 32  ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) | 
 |             : word1(&u) << (32 - i); | 
 |         dval(&d2) = x; | 
 |         word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ | 
 |         i -= (Bias + (P-1) - 1) + 1; | 
 |         denorm = 1; | 
 |     } | 
 |     ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + | 
 |         i*0.301029995663981; | 
 |     k = (int)ds; | 
 |     if (ds < 0. && ds != k) | 
 |         k--;    /* want k = floor(ds) */ | 
 |     k_check = 1; | 
 |     if (k >= 0 && k <= Ten_pmax) { | 
 |         if (dval(&u) < tens[k]) | 
 |             k--; | 
 |         k_check = 0; | 
 |     } | 
 |     j = bbits - i - 1; | 
 |     if (j >= 0) { | 
 |         b2 = 0; | 
 |         s2 = j; | 
 |     } | 
 |     else { | 
 |         b2 = -j; | 
 |         s2 = 0; | 
 |     } | 
 |     if (k >= 0) { | 
 |         b5 = 0; | 
 |         s5 = k; | 
 |         s2 += k; | 
 |     } | 
 |     else { | 
 |         b2 -= k; | 
 |         b5 = -k; | 
 |         s5 = 0; | 
 |     } | 
 |     if (mode < 0 || mode > 9) | 
 |         mode = 0; | 
 |  | 
 |     try_quick = 1; | 
 |  | 
 |     if (mode > 5) { | 
 |         mode -= 4; | 
 |         try_quick = 0; | 
 |     } | 
 |     leftright = 1; | 
 |     ilim = ilim1 = -1;  /* Values for cases 0 and 1; done here to */ | 
 |     /* silence erroneous "gcc -Wall" warning. */ | 
 |     switch(mode) { | 
 |     case 0: | 
 |     case 1: | 
 |         i = 18; | 
 |         ndigits = 0; | 
 |         break; | 
 |     case 2: | 
 |         leftright = 0; | 
 |         /* no break */ | 
 |     case 4: | 
 |         if (ndigits <= 0) | 
 |             ndigits = 1; | 
 |         ilim = ilim1 = i = ndigits; | 
 |         break; | 
 |     case 3: | 
 |         leftright = 0; | 
 |         /* no break */ | 
 |     case 5: | 
 |         i = ndigits + k + 1; | 
 |         ilim = i; | 
 |         ilim1 = i - 1; | 
 |         if (i <= 0) | 
 |             i = 1; | 
 |     } | 
 |     s0 = rv_alloc(i); | 
 |     if (s0 == NULL) | 
 |         goto failed_malloc; | 
 |     s = s0; | 
 |  | 
 |  | 
 |     if (ilim >= 0 && ilim <= Quick_max && try_quick) { | 
 |  | 
 |         /* Try to get by with floating-point arithmetic. */ | 
 |  | 
 |         i = 0; | 
 |         dval(&d2) = dval(&u); | 
 |         k0 = k; | 
 |         ilim0 = ilim; | 
 |         ieps = 2; /* conservative */ | 
 |         if (k > 0) { | 
 |             ds = tens[k&0xf]; | 
 |             j = k >> 4; | 
 |             if (j & Bletch) { | 
 |                 /* prevent overflows */ | 
 |                 j &= Bletch - 1; | 
 |                 dval(&u) /= bigtens[n_bigtens-1]; | 
 |                 ieps++; | 
 |             } | 
 |             for(; j; j >>= 1, i++) | 
 |                 if (j & 1) { | 
 |                     ieps++; | 
 |                     ds *= bigtens[i]; | 
 |                 } | 
 |             dval(&u) /= ds; | 
 |         } | 
 |         else if ((j1 = -k)) { | 
 |             dval(&u) *= tens[j1 & 0xf]; | 
 |             for(j = j1 >> 4; j; j >>= 1, i++) | 
 |                 if (j & 1) { | 
 |                     ieps++; | 
 |                     dval(&u) *= bigtens[i]; | 
 |                 } | 
 |         } | 
 |         if (k_check && dval(&u) < 1. && ilim > 0) { | 
 |             if (ilim1 <= 0) | 
 |                 goto fast_failed; | 
 |             ilim = ilim1; | 
 |             k--; | 
 |             dval(&u) *= 10.; | 
 |             ieps++; | 
 |         } | 
 |         dval(&eps) = ieps*dval(&u) + 7.; | 
 |         word0(&eps) -= (P-1)*Exp_msk1; | 
 |         if (ilim == 0) { | 
 |             S = mhi = 0; | 
 |             dval(&u) -= 5.; | 
 |             if (dval(&u) > dval(&eps)) | 
 |                 goto one_digit; | 
 |             if (dval(&u) < -dval(&eps)) | 
 |                 goto no_digits; | 
 |             goto fast_failed; | 
 |         } | 
 |         if (leftright) { | 
 |             /* Use Steele & White method of only | 
 |              * generating digits needed. | 
 |              */ | 
 |             dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); | 
 |             for(i = 0;;) { | 
 |                 L = (Long)dval(&u); | 
 |                 dval(&u) -= L; | 
 |                 *s++ = '0' + (int)L; | 
 |                 if (dval(&u) < dval(&eps)) | 
 |                     goto ret1; | 
 |                 if (1. - dval(&u) < dval(&eps)) | 
 |                     goto bump_up; | 
 |                 if (++i >= ilim) | 
 |                     break; | 
 |                 dval(&eps) *= 10.; | 
 |                 dval(&u) *= 10.; | 
 |             } | 
 |         } | 
 |         else { | 
 |             /* Generate ilim digits, then fix them up. */ | 
 |             dval(&eps) *= tens[ilim-1]; | 
 |             for(i = 1;; i++, dval(&u) *= 10.) { | 
 |                 L = (Long)(dval(&u)); | 
 |                 if (!(dval(&u) -= L)) | 
 |                     ilim = i; | 
 |                 *s++ = '0' + (int)L; | 
 |                 if (i == ilim) { | 
 |                     if (dval(&u) > 0.5 + dval(&eps)) | 
 |                         goto bump_up; | 
 |                     else if (dval(&u) < 0.5 - dval(&eps)) { | 
 |                         while(*--s == '0'); | 
 |                         s++; | 
 |                         goto ret1; | 
 |                     } | 
 |                     break; | 
 |                 } | 
 |             } | 
 |         } | 
 |       fast_failed: | 
 |         s = s0; | 
 |         dval(&u) = dval(&d2); | 
 |         k = k0; | 
 |         ilim = ilim0; | 
 |     } | 
 |  | 
 |     /* Do we have a "small" integer? */ | 
 |  | 
 |     if (be >= 0 && k <= Int_max) { | 
 |         /* Yes. */ | 
 |         ds = tens[k]; | 
 |         if (ndigits < 0 && ilim <= 0) { | 
 |             S = mhi = 0; | 
 |             if (ilim < 0 || dval(&u) <= 5*ds) | 
 |                 goto no_digits; | 
 |             goto one_digit; | 
 |         } | 
 |         for(i = 1;; i++, dval(&u) *= 10.) { | 
 |             L = (Long)(dval(&u) / ds); | 
 |             dval(&u) -= L*ds; | 
 |             *s++ = '0' + (int)L; | 
 |             if (!dval(&u)) { | 
 |                 break; | 
 |             } | 
 |             if (i == ilim) { | 
 |                 dval(&u) += dval(&u); | 
 |                 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { | 
 |                   bump_up: | 
 |                     while(*--s == '9') | 
 |                         if (s == s0) { | 
 |                             k++; | 
 |                             *s = '0'; | 
 |                             break; | 
 |                         } | 
 |                     ++*s++; | 
 |                 } | 
 |                 break; | 
 |             } | 
 |         } | 
 |         goto ret1; | 
 |     } | 
 |  | 
 |     m2 = b2; | 
 |     m5 = b5; | 
 |     if (leftright) { | 
 |         i = | 
 |             denorm ? be + (Bias + (P-1) - 1 + 1) : | 
 |             1 + P - bbits; | 
 |         b2 += i; | 
 |         s2 += i; | 
 |         mhi = i2b(1); | 
 |         if (mhi == NULL) | 
 |             goto failed_malloc; | 
 |     } | 
 |     if (m2 > 0 && s2 > 0) { | 
 |         i = m2 < s2 ? m2 : s2; | 
 |         b2 -= i; | 
 |         m2 -= i; | 
 |         s2 -= i; | 
 |     } | 
 |     if (b5 > 0) { | 
 |         if (leftright) { | 
 |             if (m5 > 0) { | 
 |                 mhi = pow5mult(mhi, m5); | 
 |                 if (mhi == NULL) | 
 |                     goto failed_malloc; | 
 |                 b1 = mult(mhi, b); | 
 |                 Bfree(b); | 
 |                 b = b1; | 
 |                 if (b == NULL) | 
 |                     goto failed_malloc; | 
 |             } | 
 |             if ((j = b5 - m5)) { | 
 |                 b = pow5mult(b, j); | 
 |                 if (b == NULL) | 
 |                     goto failed_malloc; | 
 |             } | 
 |         } | 
 |         else { | 
 |             b = pow5mult(b, b5); | 
 |             if (b == NULL) | 
 |                 goto failed_malloc; | 
 |         } | 
 |     } | 
 |     S = i2b(1); | 
 |     if (S == NULL) | 
 |         goto failed_malloc; | 
 |     if (s5 > 0) { | 
 |         S = pow5mult(S, s5); | 
 |         if (S == NULL) | 
 |             goto failed_malloc; | 
 |     } | 
 |  | 
 |     /* Check for special case that d is a normalized power of 2. */ | 
 |  | 
 |     spec_case = 0; | 
 |     if ((mode < 2 || leftright) | 
 |         ) { | 
 |         if (!word1(&u) && !(word0(&u) & Bndry_mask) | 
 |             && word0(&u) & (Exp_mask & ~Exp_msk1) | 
 |             ) { | 
 |             /* The special case */ | 
 |             b2 += Log2P; | 
 |             s2 += Log2P; | 
 |             spec_case = 1; | 
 |         } | 
 |     } | 
 |  | 
 |     /* Arrange for convenient computation of quotients: | 
 |      * shift left if necessary so divisor has 4 leading 0 bits. | 
 |      * | 
 |      * Perhaps we should just compute leading 28 bits of S once | 
 |      * and for all and pass them and a shift to quorem, so it | 
 |      * can do shifts and ors to compute the numerator for q. | 
 |      */ | 
 | #define iInc 28 | 
 |     i = dshift(S, s2); | 
 |     b2 += i; | 
 |     m2 += i; | 
 |     s2 += i; | 
 |     if (b2 > 0) { | 
 |         b = lshift(b, b2); | 
 |         if (b == NULL) | 
 |             goto failed_malloc; | 
 |     } | 
 |     if (s2 > 0) { | 
 |         S = lshift(S, s2); | 
 |         if (S == NULL) | 
 |             goto failed_malloc; | 
 |     } | 
 |     if (k_check) { | 
 |         if (cmp(b,S) < 0) { | 
 |             k--; | 
 |             b = multadd(b, 10, 0);      /* we botched the k estimate */ | 
 |             if (b == NULL) | 
 |                 goto failed_malloc; | 
 |             if (leftright) { | 
 |                 mhi = multadd(mhi, 10, 0); | 
 |                 if (mhi == NULL) | 
 |                     goto failed_malloc; | 
 |             } | 
 |             ilim = ilim1; | 
 |         } | 
 |     } | 
 |     if (ilim <= 0 && (mode == 3 || mode == 5)) { | 
 |         if (ilim < 0) { | 
 |             /* no digits, fcvt style */ | 
 |           no_digits: | 
 |             k = -1 - ndigits; | 
 |             goto ret; | 
 |         } | 
 |         else { | 
 |             S = multadd(S, 5, 0); | 
 |             if (S == NULL) | 
 |                 goto failed_malloc; | 
 |             if (cmp(b, S) <= 0) | 
 |                 goto no_digits; | 
 |         } | 
 |       one_digit: | 
 |         *s++ = '1'; | 
 |         k++; | 
 |         goto ret; | 
 |     } | 
 |     if (leftright) { | 
 |         if (m2 > 0) { | 
 |             mhi = lshift(mhi, m2); | 
 |             if (mhi == NULL) | 
 |                 goto failed_malloc; | 
 |         } | 
 |  | 
 |         /* Compute mlo -- check for special case | 
 |          * that d is a normalized power of 2. | 
 |          */ | 
 |  | 
 |         mlo = mhi; | 
 |         if (spec_case) { | 
 |             mhi = Balloc(mhi->k); | 
 |             if (mhi == NULL) | 
 |                 goto failed_malloc; | 
 |             Bcopy(mhi, mlo); | 
 |             mhi = lshift(mhi, Log2P); | 
 |             if (mhi == NULL) | 
 |                 goto failed_malloc; | 
 |         } | 
 |  | 
 |         for(i = 1;;i++) { | 
 |             dig = quorem(b,S) + '0'; | 
 |             /* Do we yet have the shortest decimal string | 
 |              * that will round to d? | 
 |              */ | 
 |             j = cmp(b, mlo); | 
 |             delta = diff(S, mhi); | 
 |             if (delta == NULL) | 
 |                 goto failed_malloc; | 
 |             j1 = delta->sign ? 1 : cmp(b, delta); | 
 |             Bfree(delta); | 
 |             if (j1 == 0 && mode != 1 && !(word1(&u) & 1) | 
 |                 ) { | 
 |                 if (dig == '9') | 
 |                     goto round_9_up; | 
 |                 if (j > 0) | 
 |                     dig++; | 
 |                 *s++ = dig; | 
 |                 goto ret; | 
 |             } | 
 |             if (j < 0 || (j == 0 && mode != 1 | 
 |                           && !(word1(&u) & 1) | 
 |                     )) { | 
 |                 if (!b->x[0] && b->wds <= 1) { | 
 |                     goto accept_dig; | 
 |                 } | 
 |                 if (j1 > 0) { | 
 |                     b = lshift(b, 1); | 
 |                     if (b == NULL) | 
 |                         goto failed_malloc; | 
 |                     j1 = cmp(b, S); | 
 |                     if ((j1 > 0 || (j1 == 0 && dig & 1)) | 
 |                         && dig++ == '9') | 
 |                         goto round_9_up; | 
 |                 } | 
 |               accept_dig: | 
 |                 *s++ = dig; | 
 |                 goto ret; | 
 |             } | 
 |             if (j1 > 0) { | 
 |                 if (dig == '9') { /* possible if i == 1 */ | 
 |                   round_9_up: | 
 |                     *s++ = '9'; | 
 |                     goto roundoff; | 
 |                 } | 
 |                 *s++ = dig + 1; | 
 |                 goto ret; | 
 |             } | 
 |             *s++ = dig; | 
 |             if (i == ilim) | 
 |                 break; | 
 |             b = multadd(b, 10, 0); | 
 |             if (b == NULL) | 
 |                 goto failed_malloc; | 
 |             if (mlo == mhi) { | 
 |                 mlo = mhi = multadd(mhi, 10, 0); | 
 |                 if (mlo == NULL) | 
 |                     goto failed_malloc; | 
 |             } | 
 |             else { | 
 |                 mlo = multadd(mlo, 10, 0); | 
 |                 if (mlo == NULL) | 
 |                     goto failed_malloc; | 
 |                 mhi = multadd(mhi, 10, 0); | 
 |                 if (mhi == NULL) | 
 |                     goto failed_malloc; | 
 |             } | 
 |         } | 
 |     } | 
 |     else | 
 |         for(i = 1;; i++) { | 
 |             *s++ = dig = quorem(b,S) + '0'; | 
 |             if (!b->x[0] && b->wds <= 1) { | 
 |                 goto ret; | 
 |             } | 
 |             if (i >= ilim) | 
 |                 break; | 
 |             b = multadd(b, 10, 0); | 
 |             if (b == NULL) | 
 |                 goto failed_malloc; | 
 |         } | 
 |  | 
 |     /* Round off last digit */ | 
 |  | 
 |     b = lshift(b, 1); | 
 |     if (b == NULL) | 
 |         goto failed_malloc; | 
 |     j = cmp(b, S); | 
 |     if (j > 0 || (j == 0 && dig & 1)) { | 
 |       roundoff: | 
 |         while(*--s == '9') | 
 |             if (s == s0) { | 
 |                 k++; | 
 |                 *s++ = '1'; | 
 |                 goto ret; | 
 |             } | 
 |         ++*s++; | 
 |     } | 
 |     else { | 
 |         while(*--s == '0'); | 
 |         s++; | 
 |     } | 
 |   ret: | 
 |     Bfree(S); | 
 |     if (mhi) { | 
 |         if (mlo && mlo != mhi) | 
 |             Bfree(mlo); | 
 |         Bfree(mhi); | 
 |     } | 
 |   ret1: | 
 |     Bfree(b); | 
 |     *s = 0; | 
 |     *decpt = k + 1; | 
 |     if (rve) | 
 |         *rve = s; | 
 |     return s0; | 
 |   failed_malloc: | 
 |     if (S) | 
 |         Bfree(S); | 
 |     if (mlo && mlo != mhi) | 
 |         Bfree(mlo); | 
 |     if (mhi) | 
 |         Bfree(mhi); | 
 |     if (b) | 
 |         Bfree(b); | 
 |     if (s0) | 
 |         _Py_dg_freedtoa(s0); | 
 |     return NULL; | 
 | } | 
 | #ifdef __cplusplus | 
 | } | 
 | #endif | 
 |  | 
 | #endif  /* PY_NO_SHORT_FLOAT_REPR */ |