| import re | 
 | import sys | 
 | import copy | 
 | import types | 
 | import inspect | 
 | import keyword | 
 | import builtins | 
 | import functools | 
 | import _thread | 
 |  | 
 |  | 
 | __all__ = ['dataclass', | 
 |            'field', | 
 |            'Field', | 
 |            'FrozenInstanceError', | 
 |            'InitVar', | 
 |            'MISSING', | 
 |  | 
 |            # Helper functions. | 
 |            'fields', | 
 |            'asdict', | 
 |            'astuple', | 
 |            'make_dataclass', | 
 |            'replace', | 
 |            'is_dataclass', | 
 |            ] | 
 |  | 
 | # Conditions for adding methods.  The boxes indicate what action the | 
 | # dataclass decorator takes.  For all of these tables, when I talk | 
 | # about init=, repr=, eq=, order=, unsafe_hash=, or frozen=, I'm | 
 | # referring to the arguments to the @dataclass decorator.  When | 
 | # checking if a dunder method already exists, I mean check for an | 
 | # entry in the class's __dict__.  I never check to see if an attribute | 
 | # is defined in a base class. | 
 |  | 
 | # Key: | 
 | # +=========+=========================================+ | 
 | # + Value   | Meaning                                 | | 
 | # +=========+=========================================+ | 
 | # | <blank> | No action: no method is added.          | | 
 | # +---------+-----------------------------------------+ | 
 | # | add     | Generated method is added.              | | 
 | # +---------+-----------------------------------------+ | 
 | # | raise   | TypeError is raised.                    | | 
 | # +---------+-----------------------------------------+ | 
 | # | None    | Attribute is set to None.               | | 
 | # +=========+=========================================+ | 
 |  | 
 | # __init__ | 
 | # | 
 | #   +--- init= parameter | 
 | #   | | 
 | #   v     |       |       | | 
 | #         |  no   |  yes  |  <--- class has __init__ in __dict__? | 
 | # +=======+=======+=======+ | 
 | # | False |       |       | | 
 | # +-------+-------+-------+ | 
 | # | True  | add   |       |  <- the default | 
 | # +=======+=======+=======+ | 
 |  | 
 | # __repr__ | 
 | # | 
 | #    +--- repr= parameter | 
 | #    | | 
 | #    v    |       |       | | 
 | #         |  no   |  yes  |  <--- class has __repr__ in __dict__? | 
 | # +=======+=======+=======+ | 
 | # | False |       |       | | 
 | # +-------+-------+-------+ | 
 | # | True  | add   |       |  <- the default | 
 | # +=======+=======+=======+ | 
 |  | 
 |  | 
 | # __setattr__ | 
 | # __delattr__ | 
 | # | 
 | #    +--- frozen= parameter | 
 | #    | | 
 | #    v    |       |       | | 
 | #         |  no   |  yes  |  <--- class has __setattr__ or __delattr__ in __dict__? | 
 | # +=======+=======+=======+ | 
 | # | False |       |       |  <- the default | 
 | # +-------+-------+-------+ | 
 | # | True  | add   | raise | | 
 | # +=======+=======+=======+ | 
 | # Raise because not adding these methods would break the "frozen-ness" | 
 | # of the class. | 
 |  | 
 | # __eq__ | 
 | # | 
 | #    +--- eq= parameter | 
 | #    | | 
 | #    v    |       |       | | 
 | #         |  no   |  yes  |  <--- class has __eq__ in __dict__? | 
 | # +=======+=======+=======+ | 
 | # | False |       |       | | 
 | # +-------+-------+-------+ | 
 | # | True  | add   |       |  <- the default | 
 | # +=======+=======+=======+ | 
 |  | 
 | # __lt__ | 
 | # __le__ | 
 | # __gt__ | 
 | # __ge__ | 
 | # | 
 | #    +--- order= parameter | 
 | #    | | 
 | #    v    |       |       | | 
 | #         |  no   |  yes  |  <--- class has any comparison method in __dict__? | 
 | # +=======+=======+=======+ | 
 | # | False |       |       |  <- the default | 
 | # +-------+-------+-------+ | 
 | # | True  | add   | raise | | 
 | # +=======+=======+=======+ | 
 | # Raise because to allow this case would interfere with using | 
 | # functools.total_ordering. | 
 |  | 
 | # __hash__ | 
 |  | 
 | #    +------------------- unsafe_hash= parameter | 
 | #    |       +----------- eq= parameter | 
 | #    |       |       +--- frozen= parameter | 
 | #    |       |       | | 
 | #    v       v       v    |        |        | | 
 | #                         |   no   |  yes   |  <--- class has explicitly defined __hash__ | 
 | # +=======+=======+=======+========+========+ | 
 | # | False | False | False |        |        | No __eq__, use the base class __hash__ | 
 | # +-------+-------+-------+--------+--------+ | 
 | # | False | False | True  |        |        | No __eq__, use the base class __hash__ | 
 | # +-------+-------+-------+--------+--------+ | 
 | # | False | True  | False | None   |        | <-- the default, not hashable | 
 | # +-------+-------+-------+--------+--------+ | 
 | # | False | True  | True  | add    |        | Frozen, so hashable, allows override | 
 | # +-------+-------+-------+--------+--------+ | 
 | # | True  | False | False | add    | raise  | Has no __eq__, but hashable | 
 | # +-------+-------+-------+--------+--------+ | 
 | # | True  | False | True  | add    | raise  | Has no __eq__, but hashable | 
 | # +-------+-------+-------+--------+--------+ | 
 | # | True  | True  | False | add    | raise  | Not frozen, but hashable | 
 | # +-------+-------+-------+--------+--------+ | 
 | # | True  | True  | True  | add    | raise  | Frozen, so hashable | 
 | # +=======+=======+=======+========+========+ | 
 | # For boxes that are blank, __hash__ is untouched and therefore | 
 | # inherited from the base class.  If the base is object, then | 
 | # id-based hashing is used. | 
 | # | 
 | # Note that a class may already have __hash__=None if it specified an | 
 | # __eq__ method in the class body (not one that was created by | 
 | # @dataclass). | 
 | # | 
 | # See _hash_action (below) for a coded version of this table. | 
 |  | 
 |  | 
 | # Raised when an attempt is made to modify a frozen class. | 
 | class FrozenInstanceError(AttributeError): pass | 
 |  | 
 | # A sentinel object for default values to signal that a default | 
 | # factory will be used.  This is given a nice repr() which will appear | 
 | # in the function signature of dataclasses' constructors. | 
 | class _HAS_DEFAULT_FACTORY_CLASS: | 
 |     def __repr__(self): | 
 |         return '<factory>' | 
 | _HAS_DEFAULT_FACTORY = _HAS_DEFAULT_FACTORY_CLASS() | 
 |  | 
 | # A sentinel object to detect if a parameter is supplied or not.  Use | 
 | # a class to give it a better repr. | 
 | class _MISSING_TYPE: | 
 |     pass | 
 | MISSING = _MISSING_TYPE() | 
 |  | 
 | # Since most per-field metadata will be unused, create an empty | 
 | # read-only proxy that can be shared among all fields. | 
 | _EMPTY_METADATA = types.MappingProxyType({}) | 
 |  | 
 | # Markers for the various kinds of fields and pseudo-fields. | 
 | class _FIELD_BASE: | 
 |     def __init__(self, name): | 
 |         self.name = name | 
 |     def __repr__(self): | 
 |         return self.name | 
 | _FIELD = _FIELD_BASE('_FIELD') | 
 | _FIELD_CLASSVAR = _FIELD_BASE('_FIELD_CLASSVAR') | 
 | _FIELD_INITVAR = _FIELD_BASE('_FIELD_INITVAR') | 
 |  | 
 | # The name of an attribute on the class where we store the Field | 
 | # objects.  Also used to check if a class is a Data Class. | 
 | _FIELDS = '__dataclass_fields__' | 
 |  | 
 | # The name of an attribute on the class that stores the parameters to | 
 | # @dataclass. | 
 | _PARAMS = '__dataclass_params__' | 
 |  | 
 | # The name of the function, that if it exists, is called at the end of | 
 | # __init__. | 
 | _POST_INIT_NAME = '__post_init__' | 
 |  | 
 | # String regex that string annotations for ClassVar or InitVar must match. | 
 | # Allows "identifier.identifier[" or "identifier[". | 
 | # https://bugs.python.org/issue33453 for details. | 
 | _MODULE_IDENTIFIER_RE = re.compile(r'^(?:\s*(\w+)\s*\.)?\s*(\w+)') | 
 |  | 
 | class _InitVarMeta(type): | 
 |     def __getitem__(self, params): | 
 |         return self | 
 |  | 
 | class InitVar(metaclass=_InitVarMeta): | 
 |     pass | 
 |  | 
 |  | 
 | # Instances of Field are only ever created from within this module, | 
 | # and only from the field() function, although Field instances are | 
 | # exposed externally as (conceptually) read-only objects. | 
 | # | 
 | # name and type are filled in after the fact, not in __init__. | 
 | # They're not known at the time this class is instantiated, but it's | 
 | # convenient if they're available later. | 
 | # | 
 | # When cls._FIELDS is filled in with a list of Field objects, the name | 
 | # and type fields will have been populated. | 
 | class Field: | 
 |     __slots__ = ('name', | 
 |                  'type', | 
 |                  'default', | 
 |                  'default_factory', | 
 |                  'repr', | 
 |                  'hash', | 
 |                  'init', | 
 |                  'compare', | 
 |                  'metadata', | 
 |                  '_field_type',  # Private: not to be used by user code. | 
 |                  ) | 
 |  | 
 |     def __init__(self, default, default_factory, init, repr, hash, compare, | 
 |                  metadata): | 
 |         self.name = None | 
 |         self.type = None | 
 |         self.default = default | 
 |         self.default_factory = default_factory | 
 |         self.init = init | 
 |         self.repr = repr | 
 |         self.hash = hash | 
 |         self.compare = compare | 
 |         self.metadata = (_EMPTY_METADATA | 
 |                          if metadata is None or len(metadata) == 0 else | 
 |                          types.MappingProxyType(metadata)) | 
 |         self._field_type = None | 
 |  | 
 |     def __repr__(self): | 
 |         return ('Field(' | 
 |                 f'name={self.name!r},' | 
 |                 f'type={self.type!r},' | 
 |                 f'default={self.default!r},' | 
 |                 f'default_factory={self.default_factory!r},' | 
 |                 f'init={self.init!r},' | 
 |                 f'repr={self.repr!r},' | 
 |                 f'hash={self.hash!r},' | 
 |                 f'compare={self.compare!r},' | 
 |                 f'metadata={self.metadata!r},' | 
 |                 f'_field_type={self._field_type}' | 
 |                 ')') | 
 |  | 
 |     # This is used to support the PEP 487 __set_name__ protocol in the | 
 |     # case where we're using a field that contains a descriptor as a | 
 |     # default value.  For details on __set_name__, see | 
 |     # https://www.python.org/dev/peps/pep-0487/#implementation-details. | 
 |     # | 
 |     # Note that in _process_class, this Field object is overwritten | 
 |     # with the default value, so the end result is a descriptor that | 
 |     # had __set_name__ called on it at the right time. | 
 |     def __set_name__(self, owner, name): | 
 |         func = getattr(type(self.default), '__set_name__', None) | 
 |         if func: | 
 |             # There is a __set_name__ method on the descriptor, call | 
 |             # it. | 
 |             func(self.default, owner, name) | 
 |  | 
 |  | 
 | class _DataclassParams: | 
 |     __slots__ = ('init', | 
 |                  'repr', | 
 |                  'eq', | 
 |                  'order', | 
 |                  'unsafe_hash', | 
 |                  'frozen', | 
 |                  ) | 
 |  | 
 |     def __init__(self, init, repr, eq, order, unsafe_hash, frozen): | 
 |         self.init = init | 
 |         self.repr = repr | 
 |         self.eq = eq | 
 |         self.order = order | 
 |         self.unsafe_hash = unsafe_hash | 
 |         self.frozen = frozen | 
 |  | 
 |     def __repr__(self): | 
 |         return ('_DataclassParams(' | 
 |                 f'init={self.init!r},' | 
 |                 f'repr={self.repr!r},' | 
 |                 f'eq={self.eq!r},' | 
 |                 f'order={self.order!r},' | 
 |                 f'unsafe_hash={self.unsafe_hash!r},' | 
 |                 f'frozen={self.frozen!r}' | 
 |                 ')') | 
 |  | 
 |  | 
 | # This function is used instead of exposing Field creation directly, | 
 | # so that a type checker can be told (via overloads) that this is a | 
 | # function whose type depends on its parameters. | 
 | def field(*, default=MISSING, default_factory=MISSING, init=True, repr=True, | 
 |           hash=None, compare=True, metadata=None): | 
 |     """Return an object to identify dataclass fields. | 
 |  | 
 |     default is the default value of the field.  default_factory is a | 
 |     0-argument function called to initialize a field's value.  If init | 
 |     is True, the field will be a parameter to the class's __init__() | 
 |     function.  If repr is True, the field will be included in the | 
 |     object's repr().  If hash is True, the field will be included in | 
 |     the object's hash().  If compare is True, the field will be used | 
 |     in comparison functions.  metadata, if specified, must be a | 
 |     mapping which is stored but not otherwise examined by dataclass. | 
 |  | 
 |     It is an error to specify both default and default_factory. | 
 |     """ | 
 |  | 
 |     if default is not MISSING and default_factory is not MISSING: | 
 |         raise ValueError('cannot specify both default and default_factory') | 
 |     return Field(default, default_factory, init, repr, hash, compare, | 
 |                  metadata) | 
 |  | 
 |  | 
 | def _tuple_str(obj_name, fields): | 
 |     # Return a string representing each field of obj_name as a tuple | 
 |     # member.  So, if fields is ['x', 'y'] and obj_name is "self", | 
 |     # return "(self.x,self.y)". | 
 |  | 
 |     # Special case for the 0-tuple. | 
 |     if not fields: | 
 |         return '()' | 
 |     # Note the trailing comma, needed if this turns out to be a 1-tuple. | 
 |     return f'({",".join([f"{obj_name}.{f.name}" for f in fields])},)' | 
 |  | 
 |  | 
 | # This function's logic is copied from "recursive_repr" function in | 
 | # reprlib module to avoid dependency. | 
 | def _recursive_repr(user_function): | 
 |     # Decorator to make a repr function return "..." for a recursive | 
 |     # call. | 
 |     repr_running = set() | 
 |  | 
 |     @functools.wraps(user_function) | 
 |     def wrapper(self): | 
 |         key = id(self), _thread.get_ident() | 
 |         if key in repr_running: | 
 |             return '...' | 
 |         repr_running.add(key) | 
 |         try: | 
 |             result = user_function(self) | 
 |         finally: | 
 |             repr_running.discard(key) | 
 |         return result | 
 |     return wrapper | 
 |  | 
 |  | 
 | def _create_fn(name, args, body, *, globals=None, locals=None, | 
 |                return_type=MISSING): | 
 |     # Note that we mutate locals when exec() is called.  Caller | 
 |     # beware!  The only callers are internal to this module, so no | 
 |     # worries about external callers. | 
 |     if locals is None: | 
 |         locals = {} | 
 |     # __builtins__ may be the "builtins" module or | 
 |     # the value of its "__dict__", | 
 |     # so make sure "__builtins__" is the module. | 
 |     if globals is not None and '__builtins__' not in globals: | 
 |         globals['__builtins__'] = builtins | 
 |     return_annotation = '' | 
 |     if return_type is not MISSING: | 
 |         locals['_return_type'] = return_type | 
 |         return_annotation = '->_return_type' | 
 |     args = ','.join(args) | 
 |     body = '\n'.join(f' {b}' for b in body) | 
 |  | 
 |     # Compute the text of the entire function. | 
 |     txt = f'def {name}({args}){return_annotation}:\n{body}' | 
 |  | 
 |     exec(txt, globals, locals) | 
 |     return locals[name] | 
 |  | 
 |  | 
 | def _field_assign(frozen, name, value, self_name): | 
 |     # If we're a frozen class, then assign to our fields in __init__ | 
 |     # via object.__setattr__.  Otherwise, just use a simple | 
 |     # assignment. | 
 |     # | 
 |     # self_name is what "self" is called in this function: don't | 
 |     # hard-code "self", since that might be a field name. | 
 |     if frozen: | 
 |         return f'__builtins__.object.__setattr__({self_name},{name!r},{value})' | 
 |     return f'{self_name}.{name}={value}' | 
 |  | 
 |  | 
 | def _field_init(f, frozen, globals, self_name): | 
 |     # Return the text of the line in the body of __init__ that will | 
 |     # initialize this field. | 
 |  | 
 |     default_name = f'_dflt_{f.name}' | 
 |     if f.default_factory is not MISSING: | 
 |         if f.init: | 
 |             # This field has a default factory.  If a parameter is | 
 |             # given, use it.  If not, call the factory. | 
 |             globals[default_name] = f.default_factory | 
 |             value = (f'{default_name}() ' | 
 |                      f'if {f.name} is _HAS_DEFAULT_FACTORY ' | 
 |                      f'else {f.name}') | 
 |         else: | 
 |             # This is a field that's not in the __init__ params, but | 
 |             # has a default factory function.  It needs to be | 
 |             # initialized here by calling the factory function, | 
 |             # because there's no other way to initialize it. | 
 |  | 
 |             # For a field initialized with a default=defaultvalue, the | 
 |             # class dict just has the default value | 
 |             # (cls.fieldname=defaultvalue).  But that won't work for a | 
 |             # default factory, the factory must be called in __init__ | 
 |             # and we must assign that to self.fieldname.  We can't | 
 |             # fall back to the class dict's value, both because it's | 
 |             # not set, and because it might be different per-class | 
 |             # (which, after all, is why we have a factory function!). | 
 |  | 
 |             globals[default_name] = f.default_factory | 
 |             value = f'{default_name}()' | 
 |     else: | 
 |         # No default factory. | 
 |         if f.init: | 
 |             if f.default is MISSING: | 
 |                 # There's no default, just do an assignment. | 
 |                 value = f.name | 
 |             elif f.default is not MISSING: | 
 |                 globals[default_name] = f.default | 
 |                 value = f.name | 
 |         else: | 
 |             # This field does not need initialization.  Signify that | 
 |             # to the caller by returning None. | 
 |             return None | 
 |  | 
 |     # Only test this now, so that we can create variables for the | 
 |     # default.  However, return None to signify that we're not going | 
 |     # to actually do the assignment statement for InitVars. | 
 |     if f._field_type is _FIELD_INITVAR: | 
 |         return None | 
 |  | 
 |     # Now, actually generate the field assignment. | 
 |     return _field_assign(frozen, f.name, value, self_name) | 
 |  | 
 |  | 
 | def _init_param(f): | 
 |     # Return the __init__ parameter string for this field.  For | 
 |     # example, the equivalent of 'x:int=3' (except instead of 'int', | 
 |     # reference a variable set to int, and instead of '3', reference a | 
 |     # variable set to 3). | 
 |     if f.default is MISSING and f.default_factory is MISSING: | 
 |         # There's no default, and no default_factory, just output the | 
 |         # variable name and type. | 
 |         default = '' | 
 |     elif f.default is not MISSING: | 
 |         # There's a default, this will be the name that's used to look | 
 |         # it up. | 
 |         default = f'=_dflt_{f.name}' | 
 |     elif f.default_factory is not MISSING: | 
 |         # There's a factory function.  Set a marker. | 
 |         default = '=_HAS_DEFAULT_FACTORY' | 
 |     return f'{f.name}:_type_{f.name}{default}' | 
 |  | 
 |  | 
 | def _init_fn(fields, frozen, has_post_init, self_name): | 
 |     # fields contains both real fields and InitVar pseudo-fields. | 
 |  | 
 |     # Make sure we don't have fields without defaults following fields | 
 |     # with defaults.  This actually would be caught when exec-ing the | 
 |     # function source code, but catching it here gives a better error | 
 |     # message, and future-proofs us in case we build up the function | 
 |     # using ast. | 
 |     seen_default = False | 
 |     for f in fields: | 
 |         # Only consider fields in the __init__ call. | 
 |         if f.init: | 
 |             if not (f.default is MISSING and f.default_factory is MISSING): | 
 |                 seen_default = True | 
 |             elif seen_default: | 
 |                 raise TypeError(f'non-default argument {f.name!r} ' | 
 |                                 'follows default argument') | 
 |  | 
 |     globals = {'MISSING': MISSING, | 
 |                '_HAS_DEFAULT_FACTORY': _HAS_DEFAULT_FACTORY} | 
 |  | 
 |     body_lines = [] | 
 |     for f in fields: | 
 |         line = _field_init(f, frozen, globals, self_name) | 
 |         # line is None means that this field doesn't require | 
 |         # initialization (it's a pseudo-field).  Just skip it. | 
 |         if line: | 
 |             body_lines.append(line) | 
 |  | 
 |     # Does this class have a post-init function? | 
 |     if has_post_init: | 
 |         params_str = ','.join(f.name for f in fields | 
 |                               if f._field_type is _FIELD_INITVAR) | 
 |         body_lines.append(f'{self_name}.{_POST_INIT_NAME}({params_str})') | 
 |  | 
 |     # If no body lines, use 'pass'. | 
 |     if not body_lines: | 
 |         body_lines = ['pass'] | 
 |  | 
 |     locals = {f'_type_{f.name}': f.type for f in fields} | 
 |     return _create_fn('__init__', | 
 |                       [self_name] + [_init_param(f) for f in fields if f.init], | 
 |                       body_lines, | 
 |                       locals=locals, | 
 |                       globals=globals, | 
 |                       return_type=None) | 
 |  | 
 |  | 
 | def _repr_fn(fields): | 
 |     fn = _create_fn('__repr__', | 
 |                     ('self',), | 
 |                     ['return self.__class__.__qualname__ + f"(' + | 
 |                      ', '.join([f"{f.name}={{self.{f.name}!r}}" | 
 |                                 for f in fields]) + | 
 |                      ')"']) | 
 |     return _recursive_repr(fn) | 
 |  | 
 |  | 
 | def _frozen_get_del_attr(cls, fields): | 
 |     # XXX: globals is modified on the first call to _create_fn, then | 
 |     # the modified version is used in the second call.  Is this okay? | 
 |     globals = {'cls': cls, | 
 |               'FrozenInstanceError': FrozenInstanceError} | 
 |     if fields: | 
 |         fields_str = '(' + ','.join(repr(f.name) for f in fields) + ',)' | 
 |     else: | 
 |         # Special case for the zero-length tuple. | 
 |         fields_str = '()' | 
 |     return (_create_fn('__setattr__', | 
 |                       ('self', 'name', 'value'), | 
 |                       (f'if type(self) is cls or name in {fields_str}:', | 
 |                         ' raise FrozenInstanceError(f"cannot assign to field {name!r}")', | 
 |                        f'super(cls, self).__setattr__(name, value)'), | 
 |                        globals=globals), | 
 |             _create_fn('__delattr__', | 
 |                       ('self', 'name'), | 
 |                       (f'if type(self) is cls or name in {fields_str}:', | 
 |                         ' raise FrozenInstanceError(f"cannot delete field {name!r}")', | 
 |                        f'super(cls, self).__delattr__(name)'), | 
 |                        globals=globals), | 
 |             ) | 
 |  | 
 |  | 
 | def _cmp_fn(name, op, self_tuple, other_tuple): | 
 |     # Create a comparison function.  If the fields in the object are | 
 |     # named 'x' and 'y', then self_tuple is the string | 
 |     # '(self.x,self.y)' and other_tuple is the string | 
 |     # '(other.x,other.y)'. | 
 |  | 
 |     return _create_fn(name, | 
 |                       ('self', 'other'), | 
 |                       [ 'if other.__class__ is self.__class__:', | 
 |                        f' return {self_tuple}{op}{other_tuple}', | 
 |                         'return NotImplemented']) | 
 |  | 
 |  | 
 | def _hash_fn(fields): | 
 |     self_tuple = _tuple_str('self', fields) | 
 |     return _create_fn('__hash__', | 
 |                       ('self',), | 
 |                       [f'return hash({self_tuple})']) | 
 |  | 
 |  | 
 | def _is_classvar(a_type, typing): | 
 |     # This test uses a typing internal class, but it's the best way to | 
 |     # test if this is a ClassVar. | 
 |     return (a_type is typing.ClassVar | 
 |             or (type(a_type) is typing._GenericAlias | 
 |                 and a_type.__origin__ is typing.ClassVar)) | 
 |  | 
 |  | 
 | def _is_initvar(a_type, dataclasses): | 
 |     # The module we're checking against is the module we're | 
 |     # currently in (dataclasses.py). | 
 |     return a_type is dataclasses.InitVar | 
 |  | 
 |  | 
 | def _is_type(annotation, cls, a_module, a_type, is_type_predicate): | 
 |     # Given a type annotation string, does it refer to a_type in | 
 |     # a_module?  For example, when checking that annotation denotes a | 
 |     # ClassVar, then a_module is typing, and a_type is | 
 |     # typing.ClassVar. | 
 |  | 
 |     # It's possible to look up a_module given a_type, but it involves | 
 |     # looking in sys.modules (again!), and seems like a waste since | 
 |     # the caller already knows a_module. | 
 |  | 
 |     # - annotation is a string type annotation | 
 |     # - cls is the class that this annotation was found in | 
 |     # - a_module is the module we want to match | 
 |     # - a_type is the type in that module we want to match | 
 |     # - is_type_predicate is a function called with (obj, a_module) | 
 |     #   that determines if obj is of the desired type. | 
 |  | 
 |     # Since this test does not do a local namespace lookup (and | 
 |     # instead only a module (global) lookup), there are some things it | 
 |     # gets wrong. | 
 |  | 
 |     # With string annotations, cv0 will be detected as a ClassVar: | 
 |     #   CV = ClassVar | 
 |     #   @dataclass | 
 |     #   class C0: | 
 |     #     cv0: CV | 
 |  | 
 |     # But in this example cv1 will not be detected as a ClassVar: | 
 |     #   @dataclass | 
 |     #   class C1: | 
 |     #     CV = ClassVar | 
 |     #     cv1: CV | 
 |  | 
 |     # In C1, the code in this function (_is_type) will look up "CV" in | 
 |     # the module and not find it, so it will not consider cv1 as a | 
 |     # ClassVar.  This is a fairly obscure corner case, and the best | 
 |     # way to fix it would be to eval() the string "CV" with the | 
 |     # correct global and local namespaces.  However that would involve | 
 |     # a eval() penalty for every single field of every dataclass | 
 |     # that's defined.  It was judged not worth it. | 
 |  | 
 |     match = _MODULE_IDENTIFIER_RE.match(annotation) | 
 |     if match: | 
 |         ns = None | 
 |         module_name = match.group(1) | 
 |         if not module_name: | 
 |             # No module name, assume the class's module did | 
 |             # "from dataclasses import InitVar". | 
 |             ns = sys.modules.get(cls.__module__).__dict__ | 
 |         else: | 
 |             # Look up module_name in the class's module. | 
 |             module = sys.modules.get(cls.__module__) | 
 |             if module and module.__dict__.get(module_name) is a_module: | 
 |                 ns = sys.modules.get(a_type.__module__).__dict__ | 
 |         if ns and is_type_predicate(ns.get(match.group(2)), a_module): | 
 |             return True | 
 |     return False | 
 |  | 
 |  | 
 | def _get_field(cls, a_name, a_type): | 
 |     # Return a Field object for this field name and type.  ClassVars | 
 |     # and InitVars are also returned, but marked as such (see | 
 |     # f._field_type). | 
 |  | 
 |     # If the default value isn't derived from Field, then it's only a | 
 |     # normal default value.  Convert it to a Field(). | 
 |     default = getattr(cls, a_name, MISSING) | 
 |     if isinstance(default, Field): | 
 |         f = default | 
 |     else: | 
 |         if isinstance(default, types.MemberDescriptorType): | 
 |             # This is a field in __slots__, so it has no default value. | 
 |             default = MISSING | 
 |         f = field(default=default) | 
 |  | 
 |     # Only at this point do we know the name and the type.  Set them. | 
 |     f.name = a_name | 
 |     f.type = a_type | 
 |  | 
 |     # Assume it's a normal field until proven otherwise.  We're next | 
 |     # going to decide if it's a ClassVar or InitVar, everything else | 
 |     # is just a normal field. | 
 |     f._field_type = _FIELD | 
 |  | 
 |     # In addition to checking for actual types here, also check for | 
 |     # string annotations.  get_type_hints() won't always work for us | 
 |     # (see https://github.com/python/typing/issues/508 for example), | 
 |     # plus it's expensive and would require an eval for every stirng | 
 |     # annotation.  So, make a best effort to see if this is a ClassVar | 
 |     # or InitVar using regex's and checking that the thing referenced | 
 |     # is actually of the correct type. | 
 |  | 
 |     # For the complete discussion, see https://bugs.python.org/issue33453 | 
 |  | 
 |     # If typing has not been imported, then it's impossible for any | 
 |     # annotation to be a ClassVar.  So, only look for ClassVar if | 
 |     # typing has been imported by any module (not necessarily cls's | 
 |     # module). | 
 |     typing = sys.modules.get('typing') | 
 |     if typing: | 
 |         if (_is_classvar(a_type, typing) | 
 |             or (isinstance(f.type, str) | 
 |                 and _is_type(f.type, cls, typing, typing.ClassVar, | 
 |                              _is_classvar))): | 
 |             f._field_type = _FIELD_CLASSVAR | 
 |  | 
 |     # If the type is InitVar, or if it's a matching string annotation, | 
 |     # then it's an InitVar. | 
 |     if f._field_type is _FIELD: | 
 |         # The module we're checking against is the module we're | 
 |         # currently in (dataclasses.py). | 
 |         dataclasses = sys.modules[__name__] | 
 |         if (_is_initvar(a_type, dataclasses) | 
 |             or (isinstance(f.type, str) | 
 |                 and _is_type(f.type, cls, dataclasses, dataclasses.InitVar, | 
 |                              _is_initvar))): | 
 |             f._field_type = _FIELD_INITVAR | 
 |  | 
 |     # Validations for individual fields.  This is delayed until now, | 
 |     # instead of in the Field() constructor, since only here do we | 
 |     # know the field name, which allows for better error reporting. | 
 |  | 
 |     # Special restrictions for ClassVar and InitVar. | 
 |     if f._field_type in (_FIELD_CLASSVAR, _FIELD_INITVAR): | 
 |         if f.default_factory is not MISSING: | 
 |             raise TypeError(f'field {f.name} cannot have a ' | 
 |                             'default factory') | 
 |         # Should I check for other field settings? default_factory | 
 |         # seems the most serious to check for.  Maybe add others.  For | 
 |         # example, how about init=False (or really, | 
 |         # init=<not-the-default-init-value>)?  It makes no sense for | 
 |         # ClassVar and InitVar to specify init=<anything>. | 
 |  | 
 |     # For real fields, disallow mutable defaults for known types. | 
 |     if f._field_type is _FIELD and isinstance(f.default, (list, dict, set)): | 
 |         raise ValueError(f'mutable default {type(f.default)} for field ' | 
 |                          f'{f.name} is not allowed: use default_factory') | 
 |  | 
 |     return f | 
 |  | 
 |  | 
 | def _set_new_attribute(cls, name, value): | 
 |     # Never overwrites an existing attribute.  Returns True if the | 
 |     # attribute already exists. | 
 |     if name in cls.__dict__: | 
 |         return True | 
 |     setattr(cls, name, value) | 
 |     return False | 
 |  | 
 |  | 
 | # Decide if/how we're going to create a hash function.  Key is | 
 | # (unsafe_hash, eq, frozen, does-hash-exist).  Value is the action to | 
 | # take.  The common case is to do nothing, so instead of providing a | 
 | # function that is a no-op, use None to signify that. | 
 |  | 
 | def _hash_set_none(cls, fields): | 
 |     return None | 
 |  | 
 | def _hash_add(cls, fields): | 
 |     flds = [f for f in fields if (f.compare if f.hash is None else f.hash)] | 
 |     return _hash_fn(flds) | 
 |  | 
 | def _hash_exception(cls, fields): | 
 |     # Raise an exception. | 
 |     raise TypeError(f'Cannot overwrite attribute __hash__ ' | 
 |                     f'in class {cls.__name__}') | 
 |  | 
 | # | 
 | #                +-------------------------------------- unsafe_hash? | 
 | #                |      +------------------------------- eq? | 
 | #                |      |      +------------------------ frozen? | 
 | #                |      |      |      +----------------  has-explicit-hash? | 
 | #                |      |      |      | | 
 | #                |      |      |      |        +-------  action | 
 | #                |      |      |      |        | | 
 | #                v      v      v      v        v | 
 | _hash_action = {(False, False, False, False): None, | 
 |                 (False, False, False, True ): None, | 
 |                 (False, False, True,  False): None, | 
 |                 (False, False, True,  True ): None, | 
 |                 (False, True,  False, False): _hash_set_none, | 
 |                 (False, True,  False, True ): None, | 
 |                 (False, True,  True,  False): _hash_add, | 
 |                 (False, True,  True,  True ): None, | 
 |                 (True,  False, False, False): _hash_add, | 
 |                 (True,  False, False, True ): _hash_exception, | 
 |                 (True,  False, True,  False): _hash_add, | 
 |                 (True,  False, True,  True ): _hash_exception, | 
 |                 (True,  True,  False, False): _hash_add, | 
 |                 (True,  True,  False, True ): _hash_exception, | 
 |                 (True,  True,  True,  False): _hash_add, | 
 |                 (True,  True,  True,  True ): _hash_exception, | 
 |                 } | 
 | # See https://bugs.python.org/issue32929#msg312829 for an if-statement | 
 | # version of this table. | 
 |  | 
 |  | 
 | def _process_class(cls, init, repr, eq, order, unsafe_hash, frozen): | 
 |     # Now that dicts retain insertion order, there's no reason to use | 
 |     # an ordered dict.  I am leveraging that ordering here, because | 
 |     # derived class fields overwrite base class fields, but the order | 
 |     # is defined by the base class, which is found first. | 
 |     fields = {} | 
 |  | 
 |     setattr(cls, _PARAMS, _DataclassParams(init, repr, eq, order, | 
 |                                            unsafe_hash, frozen)) | 
 |  | 
 |     # Find our base classes in reverse MRO order, and exclude | 
 |     # ourselves.  In reversed order so that more derived classes | 
 |     # override earlier field definitions in base classes.  As long as | 
 |     # we're iterating over them, see if any are frozen. | 
 |     any_frozen_base = False | 
 |     has_dataclass_bases = False | 
 |     for b in cls.__mro__[-1:0:-1]: | 
 |         # Only process classes that have been processed by our | 
 |         # decorator.  That is, they have a _FIELDS attribute. | 
 |         base_fields = getattr(b, _FIELDS, None) | 
 |         if base_fields: | 
 |             has_dataclass_bases = True | 
 |             for f in base_fields.values(): | 
 |                 fields[f.name] = f | 
 |             if getattr(b, _PARAMS).frozen: | 
 |                 any_frozen_base = True | 
 |  | 
 |     # Annotations that are defined in this class (not in base | 
 |     # classes).  If __annotations__ isn't present, then this class | 
 |     # adds no new annotations.  We use this to compute fields that are | 
 |     # added by this class. | 
 |     # | 
 |     # Fields are found from cls_annotations, which is guaranteed to be | 
 |     # ordered.  Default values are from class attributes, if a field | 
 |     # has a default.  If the default value is a Field(), then it | 
 |     # contains additional info beyond (and possibly including) the | 
 |     # actual default value.  Pseudo-fields ClassVars and InitVars are | 
 |     # included, despite the fact that they're not real fields.  That's | 
 |     # dealt with later. | 
 |     cls_annotations = cls.__dict__.get('__annotations__', {}) | 
 |  | 
 |     # Now find fields in our class.  While doing so, validate some | 
 |     # things, and set the default values (as class attributes) where | 
 |     # we can. | 
 |     cls_fields = [_get_field(cls, name, type) | 
 |                   for name, type in cls_annotations.items()] | 
 |     for f in cls_fields: | 
 |         fields[f.name] = f | 
 |  | 
 |         # If the class attribute (which is the default value for this | 
 |         # field) exists and is of type 'Field', replace it with the | 
 |         # real default.  This is so that normal class introspection | 
 |         # sees a real default value, not a Field. | 
 |         if isinstance(getattr(cls, f.name, None), Field): | 
 |             if f.default is MISSING: | 
 |                 # If there's no default, delete the class attribute. | 
 |                 # This happens if we specify field(repr=False), for | 
 |                 # example (that is, we specified a field object, but | 
 |                 # no default value).  Also if we're using a default | 
 |                 # factory.  The class attribute should not be set at | 
 |                 # all in the post-processed class. | 
 |                 delattr(cls, f.name) | 
 |             else: | 
 |                 setattr(cls, f.name, f.default) | 
 |  | 
 |     # Do we have any Field members that don't also have annotations? | 
 |     for name, value in cls.__dict__.items(): | 
 |         if isinstance(value, Field) and not name in cls_annotations: | 
 |             raise TypeError(f'{name!r} is a field but has no type annotation') | 
 |  | 
 |     # Check rules that apply if we are derived from any dataclasses. | 
 |     if has_dataclass_bases: | 
 |         # Raise an exception if any of our bases are frozen, but we're not. | 
 |         if any_frozen_base and not frozen: | 
 |             raise TypeError('cannot inherit non-frozen dataclass from a ' | 
 |                             'frozen one') | 
 |  | 
 |         # Raise an exception if we're frozen, but none of our bases are. | 
 |         if not any_frozen_base and frozen: | 
 |             raise TypeError('cannot inherit frozen dataclass from a ' | 
 |                             'non-frozen one') | 
 |  | 
 |     # Remember all of the fields on our class (including bases).  This | 
 |     # also marks this class as being a dataclass. | 
 |     setattr(cls, _FIELDS, fields) | 
 |  | 
 |     # Was this class defined with an explicit __hash__?  Note that if | 
 |     # __eq__ is defined in this class, then python will automatically | 
 |     # set __hash__ to None.  This is a heuristic, as it's possible | 
 |     # that such a __hash__ == None was not auto-generated, but it | 
 |     # close enough. | 
 |     class_hash = cls.__dict__.get('__hash__', MISSING) | 
 |     has_explicit_hash = not (class_hash is MISSING or | 
 |                              (class_hash is None and '__eq__' in cls.__dict__)) | 
 |  | 
 |     # If we're generating ordering methods, we must be generating the | 
 |     # eq methods. | 
 |     if order and not eq: | 
 |         raise ValueError('eq must be true if order is true') | 
 |  | 
 |     if init: | 
 |         # Does this class have a post-init function? | 
 |         has_post_init = hasattr(cls, _POST_INIT_NAME) | 
 |  | 
 |         # Include InitVars and regular fields (so, not ClassVars). | 
 |         flds = [f for f in fields.values() | 
 |                 if f._field_type in (_FIELD, _FIELD_INITVAR)] | 
 |         _set_new_attribute(cls, '__init__', | 
 |                            _init_fn(flds, | 
 |                                     frozen, | 
 |                                     has_post_init, | 
 |                                     # The name to use for the "self" | 
 |                                     # param in __init__.  Use "self" | 
 |                                     # if possible. | 
 |                                     '__dataclass_self__' if 'self' in fields | 
 |                                             else 'self', | 
 |                           )) | 
 |  | 
 |     # Get the fields as a list, and include only real fields.  This is | 
 |     # used in all of the following methods. | 
 |     field_list = [f for f in fields.values() if f._field_type is _FIELD] | 
 |  | 
 |     if repr: | 
 |         flds = [f for f in field_list if f.repr] | 
 |         _set_new_attribute(cls, '__repr__', _repr_fn(flds)) | 
 |  | 
 |     if eq: | 
 |         # Create _eq__ method.  There's no need for a __ne__ method, | 
 |         # since python will call __eq__ and negate it. | 
 |         flds = [f for f in field_list if f.compare] | 
 |         self_tuple = _tuple_str('self', flds) | 
 |         other_tuple = _tuple_str('other', flds) | 
 |         _set_new_attribute(cls, '__eq__', | 
 |                            _cmp_fn('__eq__', '==', | 
 |                                    self_tuple, other_tuple)) | 
 |  | 
 |     if order: | 
 |         # Create and set the ordering methods. | 
 |         flds = [f for f in field_list if f.compare] | 
 |         self_tuple = _tuple_str('self', flds) | 
 |         other_tuple = _tuple_str('other', flds) | 
 |         for name, op in [('__lt__', '<'), | 
 |                          ('__le__', '<='), | 
 |                          ('__gt__', '>'), | 
 |                          ('__ge__', '>='), | 
 |                          ]: | 
 |             if _set_new_attribute(cls, name, | 
 |                                   _cmp_fn(name, op, self_tuple, other_tuple)): | 
 |                 raise TypeError(f'Cannot overwrite attribute {name} ' | 
 |                                 f'in class {cls.__name__}. Consider using ' | 
 |                                 'functools.total_ordering') | 
 |  | 
 |     if frozen: | 
 |         for fn in _frozen_get_del_attr(cls, field_list): | 
 |             if _set_new_attribute(cls, fn.__name__, fn): | 
 |                 raise TypeError(f'Cannot overwrite attribute {fn.__name__} ' | 
 |                                 f'in class {cls.__name__}') | 
 |  | 
 |     # Decide if/how we're going to create a hash function. | 
 |     hash_action = _hash_action[bool(unsafe_hash), | 
 |                                bool(eq), | 
 |                                bool(frozen), | 
 |                                has_explicit_hash] | 
 |     if hash_action: | 
 |         # No need to call _set_new_attribute here, since by the time | 
 |         # we're here the overwriting is unconditional. | 
 |         cls.__hash__ = hash_action(cls, field_list) | 
 |  | 
 |     if not getattr(cls, '__doc__'): | 
 |         # Create a class doc-string. | 
 |         cls.__doc__ = (cls.__name__ + | 
 |                        str(inspect.signature(cls)).replace(' -> None', '')) | 
 |  | 
 |     return cls | 
 |  | 
 |  | 
 | # _cls should never be specified by keyword, so start it with an | 
 | # underscore.  The presence of _cls is used to detect if this | 
 | # decorator is being called with parameters or not. | 
 | def dataclass(_cls=None, *, init=True, repr=True, eq=True, order=False, | 
 |               unsafe_hash=False, frozen=False): | 
 |     """Returns the same class as was passed in, with dunder methods | 
 |     added based on the fields defined in the class. | 
 |  | 
 |     Examines PEP 526 __annotations__ to determine fields. | 
 |  | 
 |     If init is true, an __init__() method is added to the class. If | 
 |     repr is true, a __repr__() method is added. If order is true, rich | 
 |     comparison dunder methods are added. If unsafe_hash is true, a | 
 |     __hash__() method function is added. If frozen is true, fields may | 
 |     not be assigned to after instance creation. | 
 |     """ | 
 |  | 
 |     def wrap(cls): | 
 |         return _process_class(cls, init, repr, eq, order, unsafe_hash, frozen) | 
 |  | 
 |     # See if we're being called as @dataclass or @dataclass(). | 
 |     if _cls is None: | 
 |         # We're called with parens. | 
 |         return wrap | 
 |  | 
 |     # We're called as @dataclass without parens. | 
 |     return wrap(_cls) | 
 |  | 
 |  | 
 | def fields(class_or_instance): | 
 |     """Return a tuple describing the fields of this dataclass. | 
 |  | 
 |     Accepts a dataclass or an instance of one. Tuple elements are of | 
 |     type Field. | 
 |     """ | 
 |  | 
 |     # Might it be worth caching this, per class? | 
 |     try: | 
 |         fields = getattr(class_or_instance, _FIELDS) | 
 |     except AttributeError: | 
 |         raise TypeError('must be called with a dataclass type or instance') | 
 |  | 
 |     # Exclude pseudo-fields.  Note that fields is sorted by insertion | 
 |     # order, so the order of the tuple is as the fields were defined. | 
 |     return tuple(f for f in fields.values() if f._field_type is _FIELD) | 
 |  | 
 |  | 
 | def _is_dataclass_instance(obj): | 
 |     """Returns True if obj is an instance of a dataclass.""" | 
 |     return not isinstance(obj, type) and hasattr(obj, _FIELDS) | 
 |  | 
 |  | 
 | def is_dataclass(obj): | 
 |     """Returns True if obj is a dataclass or an instance of a | 
 |     dataclass.""" | 
 |     return hasattr(obj, _FIELDS) | 
 |  | 
 |  | 
 | def asdict(obj, *, dict_factory=dict): | 
 |     """Return the fields of a dataclass instance as a new dictionary mapping | 
 |     field names to field values. | 
 |  | 
 |     Example usage: | 
 |  | 
 |       @dataclass | 
 |       class C: | 
 |           x: int | 
 |           y: int | 
 |  | 
 |       c = C(1, 2) | 
 |       assert asdict(c) == {'x': 1, 'y': 2} | 
 |  | 
 |     If given, 'dict_factory' will be used instead of built-in dict. | 
 |     The function applies recursively to field values that are | 
 |     dataclass instances. This will also look into built-in containers: | 
 |     tuples, lists, and dicts. | 
 |     """ | 
 |     if not _is_dataclass_instance(obj): | 
 |         raise TypeError("asdict() should be called on dataclass instances") | 
 |     return _asdict_inner(obj, dict_factory) | 
 |  | 
 |  | 
 | def _asdict_inner(obj, dict_factory): | 
 |     if _is_dataclass_instance(obj): | 
 |         result = [] | 
 |         for f in fields(obj): | 
 |             value = _asdict_inner(getattr(obj, f.name), dict_factory) | 
 |             result.append((f.name, value)) | 
 |         return dict_factory(result) | 
 |     elif isinstance(obj, tuple) and hasattr(obj, '_fields'): | 
 |         # obj is a namedtuple.  Recurse into it, but the returned | 
 |         # object is another namedtuple of the same type.  This is | 
 |         # similar to how other list- or tuple-derived classes are | 
 |         # treated (see below), but we just need to create them | 
 |         # differently because a namedtuple's __init__ needs to be | 
 |         # called differently (see bpo-34363). | 
 |  | 
 |         # I'm not using namedtuple's _asdict() | 
 |         # method, because: | 
 |         # - it does not recurse in to the namedtuple fields and | 
 |         #   convert them to dicts (using dict_factory). | 
 |         # - I don't actually want to return a dict here.  The the main | 
 |         #   use case here is json.dumps, and it handles converting | 
 |         #   namedtuples to lists.  Admittedly we're losing some | 
 |         #   information here when we produce a json list instead of a | 
 |         #   dict.  Note that if we returned dicts here instead of | 
 |         #   namedtuples, we could no longer call asdict() on a data | 
 |         #   structure where a namedtuple was used as a dict key. | 
 |  | 
 |         return type(obj)(*[_asdict_inner(v, dict_factory) for v in obj]) | 
 |     elif isinstance(obj, (list, tuple)): | 
 |         # Assume we can create an object of this type by passing in a | 
 |         # generator (which is not true for namedtuples, handled | 
 |         # above). | 
 |         return type(obj)(_asdict_inner(v, dict_factory) for v in obj) | 
 |     elif isinstance(obj, dict): | 
 |         return type(obj)((_asdict_inner(k, dict_factory), | 
 |                           _asdict_inner(v, dict_factory)) | 
 |                          for k, v in obj.items()) | 
 |     else: | 
 |         return copy.deepcopy(obj) | 
 |  | 
 |  | 
 | def astuple(obj, *, tuple_factory=tuple): | 
 |     """Return the fields of a dataclass instance as a new tuple of field values. | 
 |  | 
 |     Example usage:: | 
 |  | 
 |       @dataclass | 
 |       class C: | 
 |           x: int | 
 |           y: int | 
 |  | 
 |     c = C(1, 2) | 
 |     assert astuple(c) == (1, 2) | 
 |  | 
 |     If given, 'tuple_factory' will be used instead of built-in tuple. | 
 |     The function applies recursively to field values that are | 
 |     dataclass instances. This will also look into built-in containers: | 
 |     tuples, lists, and dicts. | 
 |     """ | 
 |  | 
 |     if not _is_dataclass_instance(obj): | 
 |         raise TypeError("astuple() should be called on dataclass instances") | 
 |     return _astuple_inner(obj, tuple_factory) | 
 |  | 
 |  | 
 | def _astuple_inner(obj, tuple_factory): | 
 |     if _is_dataclass_instance(obj): | 
 |         result = [] | 
 |         for f in fields(obj): | 
 |             value = _astuple_inner(getattr(obj, f.name), tuple_factory) | 
 |             result.append(value) | 
 |         return tuple_factory(result) | 
 |     elif isinstance(obj, tuple) and hasattr(obj, '_fields'): | 
 |         # obj is a namedtuple.  Recurse into it, but the returned | 
 |         # object is another namedtuple of the same type.  This is | 
 |         # similar to how other list- or tuple-derived classes are | 
 |         # treated (see below), but we just need to create them | 
 |         # differently because a namedtuple's __init__ needs to be | 
 |         # called differently (see bpo-34363). | 
 |         return type(obj)(*[_astuple_inner(v, tuple_factory) for v in obj]) | 
 |     elif isinstance(obj, (list, tuple)): | 
 |         # Assume we can create an object of this type by passing in a | 
 |         # generator (which is not true for namedtuples, handled | 
 |         # above). | 
 |         return type(obj)(_astuple_inner(v, tuple_factory) for v in obj) | 
 |     elif isinstance(obj, dict): | 
 |         return type(obj)((_astuple_inner(k, tuple_factory), _astuple_inner(v, tuple_factory)) | 
 |                           for k, v in obj.items()) | 
 |     else: | 
 |         return copy.deepcopy(obj) | 
 |  | 
 |  | 
 | def make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True, | 
 |                    repr=True, eq=True, order=False, unsafe_hash=False, | 
 |                    frozen=False): | 
 |     """Return a new dynamically created dataclass. | 
 |  | 
 |     The dataclass name will be 'cls_name'.  'fields' is an iterable | 
 |     of either (name), (name, type) or (name, type, Field) objects. If type is | 
 |     omitted, use the string 'typing.Any'.  Field objects are created by | 
 |     the equivalent of calling 'field(name, type [, Field-info])'. | 
 |  | 
 |       C = make_dataclass('C', ['x', ('y', int), ('z', int, field(init=False))], bases=(Base,)) | 
 |  | 
 |     is equivalent to: | 
 |  | 
 |       @dataclass | 
 |       class C(Base): | 
 |           x: 'typing.Any' | 
 |           y: int | 
 |           z: int = field(init=False) | 
 |  | 
 |     For the bases and namespace parameters, see the builtin type() function. | 
 |  | 
 |     The parameters init, repr, eq, order, unsafe_hash, and frozen are passed to | 
 |     dataclass(). | 
 |     """ | 
 |  | 
 |     if namespace is None: | 
 |         namespace = {} | 
 |     else: | 
 |         # Copy namespace since we're going to mutate it. | 
 |         namespace = namespace.copy() | 
 |  | 
 |     # While we're looking through the field names, validate that they | 
 |     # are identifiers, are not keywords, and not duplicates. | 
 |     seen = set() | 
 |     anns = {} | 
 |     for item in fields: | 
 |         if isinstance(item, str): | 
 |             name = item | 
 |             tp = 'typing.Any' | 
 |         elif len(item) == 2: | 
 |             name, tp, = item | 
 |         elif len(item) == 3: | 
 |             name, tp, spec = item | 
 |             namespace[name] = spec | 
 |         else: | 
 |             raise TypeError(f'Invalid field: {item!r}') | 
 |  | 
 |         if not isinstance(name, str) or not name.isidentifier(): | 
 |             raise TypeError(f'Field names must be valid identifers: {name!r}') | 
 |         if keyword.iskeyword(name): | 
 |             raise TypeError(f'Field names must not be keywords: {name!r}') | 
 |         if name in seen: | 
 |             raise TypeError(f'Field name duplicated: {name!r}') | 
 |  | 
 |         seen.add(name) | 
 |         anns[name] = tp | 
 |  | 
 |     namespace['__annotations__'] = anns | 
 |     # We use `types.new_class()` instead of simply `type()` to allow dynamic creation | 
 |     # of generic dataclassses. | 
 |     cls = types.new_class(cls_name, bases, {}, lambda ns: ns.update(namespace)) | 
 |     return dataclass(cls, init=init, repr=repr, eq=eq, order=order, | 
 |                      unsafe_hash=unsafe_hash, frozen=frozen) | 
 |  | 
 |  | 
 | def replace(obj, **changes): | 
 |     """Return a new object replacing specified fields with new values. | 
 |  | 
 |     This is especially useful for frozen classes.  Example usage: | 
 |  | 
 |       @dataclass(frozen=True) | 
 |       class C: | 
 |           x: int | 
 |           y: int | 
 |  | 
 |       c = C(1, 2) | 
 |       c1 = replace(c, x=3) | 
 |       assert c1.x == 3 and c1.y == 2 | 
 |       """ | 
 |  | 
 |     # We're going to mutate 'changes', but that's okay because it's a | 
 |     # new dict, even if called with 'replace(obj, **my_changes)'. | 
 |  | 
 |     if not _is_dataclass_instance(obj): | 
 |         raise TypeError("replace() should be called on dataclass instances") | 
 |  | 
 |     # It's an error to have init=False fields in 'changes'. | 
 |     # If a field is not in 'changes', read its value from the provided obj. | 
 |  | 
 |     for f in getattr(obj, _FIELDS).values(): | 
 |         # Only consider normal fields or InitVars. | 
 |         if f._field_type is _FIELD_CLASSVAR: | 
 |             continue | 
 |  | 
 |         if not f.init: | 
 |             # Error if this field is specified in changes. | 
 |             if f.name in changes: | 
 |                 raise ValueError(f'field {f.name} is declared with ' | 
 |                                  'init=False, it cannot be specified with ' | 
 |                                  'replace()') | 
 |             continue | 
 |  | 
 |         if f.name not in changes: | 
 |             if f._field_type is _FIELD_INITVAR: | 
 |                 raise ValueError(f"InitVar {f.name!r} " | 
 |                                  'must be specified with replace()') | 
 |             changes[f.name] = getattr(obj, f.name) | 
 |  | 
 |     # Create the new object, which calls __init__() and | 
 |     # __post_init__() (if defined), using all of the init fields we've | 
 |     # added and/or left in 'changes'.  If there are values supplied in | 
 |     # changes that aren't fields, this will correctly raise a | 
 |     # TypeError. | 
 |     return obj.__class__(**changes) |