blob: 2c7613027bd0bc45b952b5b63129fe446efb4a18 [file] [log] [blame]
:mod:`subprocess` --- Subprocess management
===========================================
.. module:: subprocess
:synopsis: Subprocess management.
.. moduleauthor:: Peter Åstrand <astrand@lysator.liu.se>
.. sectionauthor:: Peter Åstrand <astrand@lysator.liu.se>
The :mod:`subprocess` module allows you to spawn new processes, connect to their
input/output/error pipes, and obtain their return codes. This module intends to
replace several other, older modules and functions, such as::
os.system
os.spawn*
Information about how the :mod:`subprocess` module can be used to replace these
modules and functions can be found in the following sections.
.. seealso::
:pep:`324` -- PEP proposing the subprocess module
Using the subprocess Module
---------------------------
This module defines one class called :class:`Popen`:
.. class:: Popen(args, bufsize=0, executable=None, stdin=None, stdout=None, stderr=None, preexec_fn=None, close_fds=True, shell=False, cwd=None, env=None, universal_newlines=False, startupinfo=None, creationflags=0, restore_signals=True, start_new_session=False, pass_fds=())
Arguments are:
*args* should be a string, or a sequence of program arguments. The program
to execute is normally the first item in the args sequence or the string if
a string is given, but can be explicitly set by using the *executable*
argument. When *executable* is given, the first item in the args sequence
is still treated by most programs as the command name, which can then be
different from the actual executable name. On Unix, it becomes the display
name for the executing program in utilities such as :program:`ps`.
On Unix, with *shell=False* (default): In this case, the Popen class uses
:meth:`os.execvp` like behavior to execute the child program.
*args* should normally be a
sequence. If a string is specified for *args*, it will be used as the name
or path of the program to execute; this will only work if the program is
being given no arguments.
.. note::
:meth:`shlex.split` can be useful when determining the correct
tokenization for *args*, especially in complex cases::
>>> import shlex, subprocess
>>> command_line = input()
/bin/vikings -input eggs.txt -output "spam spam.txt" -cmd "echo '$MONEY'"
>>> args = shlex.split(command_line)
>>> print(args)
['/bin/vikings', '-input', 'eggs.txt', '-output', 'spam spam.txt', '-cmd', "echo '$MONEY'"]
>>> p = subprocess.Popen(args) # Success!
Note in particular that options (such as *-input*) and arguments (such
as *eggs.txt*) that are separated by whitespace in the shell go in separate
list elements, while arguments that need quoting or backslash escaping when
used in the shell (such as filenames containing spaces or the *echo* command
shown above) are single list elements.
On Unix, with *shell=True*: If args is a string, it specifies the command
string to execute through the shell. This means that the string must be
formatted exactly as it would be when typed at the shell prompt. This
includes, for example, quoting or backslash escaping filenames with spaces in
them. If *args* is a sequence, the first item specifies the command string, and
any additional items will be treated as additional arguments to the shell
itself. That is to say, *Popen* does the equivalent of::
Popen(['/bin/sh', '-c', args[0], args[1], ...])
.. warning::
Executing shell commands that incorporate unsanitized input from an
untrusted source makes a program vulnerable to `shell injection
<http://en.wikipedia.org/wiki/Shell_injection#Shell_injection>`_,
a serious security flaw which can result in arbitrary command execution.
For this reason, the use of *shell=True* is **strongly discouraged** in cases
where the command string is constructed from external input::
>>> from subprocess import call
>>> filename = input("What file would you like to display?\n")
What file would you like to display?
non_existent; rm -rf / #
>>> call("cat " + filename, shell=True) # Uh-oh. This will end badly...
*shell=False* does not suffer from this vulnerability; the above Note may be
helpful in getting code using *shell=False* to work. See also
:func:`shlex.quote` for a function useful to quote filenames and commands.
On Windows: the :class:`Popen` class uses CreateProcess() to execute the
child program, which operates on strings. If *args* is a sequence, it will
be converted to a string in a manner described in
:ref:`converting-argument-sequence`.
*bufsize*, if given, has the same meaning as the corresponding argument to the
built-in open() function: :const:`0` means unbuffered, :const:`1` means line
buffered, any other positive value means use a buffer of (approximately) that
size. A negative *bufsize* means to use the system default, which usually means
fully buffered. The default value for *bufsize* is :const:`0` (unbuffered).
.. note::
If you experience performance issues, it is recommended that you try to
enable buffering by setting *bufsize* to either -1 or a large enough
positive value (such as 4096).
The *executable* argument specifies the program to execute. It is very seldom
needed: Usually, the program to execute is defined by the *args* argument. If
``shell=True``, the *executable* argument specifies which shell to use. On Unix,
the default shell is :file:`/bin/sh`. On Windows, the default shell is
specified by the :envvar:`COMSPEC` environment variable. The only reason you
would need to specify ``shell=True`` on Windows is where the command you
wish to execute is actually built in to the shell, eg ``dir``, ``copy``.
You don't need ``shell=True`` to run a batch file, nor to run a console-based
executable.
*stdin*, *stdout* and *stderr* specify the executed programs' standard input,
standard output and standard error file handles, respectively. Valid values
are :data:`PIPE`, :data:`DEVNULL`, an existing file descriptor (a positive
integer), an existing :term:`file object`, and ``None``. :data:`PIPE`
indicates that a new pipe to the child should be created. :data:`DEVNULL`
indicates that the special file :data:`os.devnull` will be used. With ``None``,
no redirection will occur; the child's file handles will be inherited from
the parent. Additionally, *stderr* can be :data:`STDOUT`, which indicates
that the stderr data from the applications should be captured into the same
file handle as for stdout.
If *preexec_fn* is set to a callable object, this object will be called in the
child process just before the child is executed.
(Unix only)
.. warning::
The *preexec_fn* parameter is not safe to use in the presence of threads
in your application. The child process could deadlock before exec is
called.
If you must use it, keep it trivial! Minimize the number of libraries
you call into.
.. note::
If you need to modify the environment for the child use the *env*
parameter rather than doing it in a *preexec_fn*.
The *start_new_session* parameter can take the place of a previously
common use of *preexec_fn* to call os.setsid() in the child.
If *close_fds* is true, all file descriptors except :const:`0`, :const:`1` and
:const:`2` will be closed before the child process is executed. (Unix only).
The default varies by platform: Always true on Unix. On Windows it is
true when *stdin*/*stdout*/*stderr* are :const:`None`, false otherwise.
On Windows, if *close_fds* is true then no handles will be inherited by the
child process. Note that on Windows, you cannot set *close_fds* to true and
also redirect the standard handles by setting *stdin*, *stdout* or *stderr*.
.. versionchanged:: 3.2
The default for *close_fds* was changed from :const:`False` to
what is described above.
*pass_fds* is an optional sequence of file descriptors to keep open
between the parent and child. Providing any *pass_fds* forces
*close_fds* to be :const:`True`. (Unix only)
.. versionadded:: 3.2
The *pass_fds* parameter was added.
If *cwd* is not ``None``, the child's current directory will be changed to *cwd*
before it is executed. Note that this directory is not considered when
searching the executable, so you can't specify the program's path relative to
*cwd*.
If *restore_signals* is True (the default) all signals that Python has set to
SIG_IGN are restored to SIG_DFL in the child process before the exec.
Currently this includes the SIGPIPE, SIGXFZ and SIGXFSZ signals.
(Unix only)
.. versionchanged:: 3.2
*restore_signals* was added.
If *start_new_session* is True the setsid() system call will be made in the
child process prior to the execution of the subprocess. (Unix only)
.. versionchanged:: 3.2
*start_new_session* was added.
If *env* is not ``None``, it must be a mapping that defines the environment
variables for the new process; these are used instead of the default
behavior of inheriting the current process' environment.
.. note::
If specified, *env* must provide any variables required for the program to
execute. On Windows, in order to run a `side-by-side assembly`_ the
specified *env* **must** include a valid :envvar:`SystemRoot`.
.. _side-by-side assembly: http://en.wikipedia.org/wiki/Side-by-Side_Assembly
If *universal_newlines* is :const:`True`, the file objects stdout and stderr are
opened as text files, but lines may be terminated by any of ``'\n'``, the Unix
end-of-line convention, ``'\r'``, the old Macintosh convention or ``'\r\n'``, the
Windows convention. All of these external representations are seen as ``'\n'``
by the Python program.
.. note::
This feature is only available if Python is built with universal newline
support (the default). Also, the newlines attribute of the file objects
:attr:`stdout`, :attr:`stdin` and :attr:`stderr` are not updated by the
:meth:`communicate` method.
If given, *startupinfo* will be a :class:`STARTUPINFO` object, which is
passed to the underlying ``CreateProcess`` function.
*creationflags*, if given, can be :data:`CREATE_NEW_CONSOLE` or
:data:`CREATE_NEW_PROCESS_GROUP`. (Windows only)
Popen objects are supported as context managers via the :keyword:`with` statement:
on exit, standard file descriptors are closed, and the process is waited for.
::
with Popen(["ifconfig"], stdout=PIPE) as proc:
log.write(proc.stdout.read())
.. versionchanged:: 3.2
Added context manager support.
.. data:: DEVNULL
Special value that can be used as the *stdin*, *stdout* or *stderr* argument
to :class:`Popen` and indicates that the special file :data:`os.devnull`
will be used.
.. versionadded:: 3.3
.. data:: PIPE
Special value that can be used as the *stdin*, *stdout* or *stderr* argument
to :class:`Popen` and indicates that a pipe to the standard stream should be
opened.
.. data:: STDOUT
Special value that can be used as the *stderr* argument to :class:`Popen` and
indicates that standard error should go into the same handle as standard
output.
Convenience Functions
^^^^^^^^^^^^^^^^^^^^^
This module also defines the following shortcut functions:
.. function:: call(*popenargs, timeout=None, **kwargs)
Run command with arguments. Wait for command to complete, then return the
:attr:`returncode` attribute.
The arguments are the same as for the :class:`Popen` constructor, with the
exception of the *timeout* argument, which is given to :meth:`Popen.wait`.
Example::
>>> retcode = subprocess.call(["ls", "-l"])
If the timeout expires, the child process will be killed and then waited for
again. The :exc:`TimeoutExpired` exception will be re-raised after the child
process has terminated.
.. warning::
Like :meth:`Popen.wait`, this will deadlock when using
``stdout=PIPE`` and/or ``stderr=PIPE`` and the child process
generates enough output to a pipe such that it blocks waiting
for the OS pipe buffer to accept more data.
.. versionchanged:: 3.3
*timeout* was added.
.. function:: check_call(*popenargs, timeout=None, **kwargs)
Run command with arguments. Wait for command to complete. If the exit code was
zero then return, otherwise raise :exc:`CalledProcessError`. The
:exc:`CalledProcessError` object will have the return code in the
:attr:`returncode` attribute.
The arguments are the same as for the :func:`call` function. Example::
>>> subprocess.check_call(["ls", "-l"])
0
As in the :func:`call` function, if the timeout expires, the child process
will be killed and the wait retried. The :exc:`TimeoutExpired` exception
will be re-raised after the child process has terminated.
.. warning::
See the warning for :func:`call`.
.. versionchanged:: 3.3
*timeout* was added.
.. function:: check_output(*popenargs, timeout=None, **kwargs)
Run command with arguments and return its output as a bytes object.
If the exit code was non-zero it raises a :exc:`CalledProcessError`. The
:exc:`CalledProcessError` object will have the return code in the
:attr:`returncode` attribute and output in the :attr:`output` attribute.
The arguments are the same as for the :func:`call` function. Example::
>>> subprocess.check_output(["ls", "-l", "/dev/null"])
b'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n'
The stdout argument is not allowed as it is used internally.
To capture standard error in the result, use ``stderr=subprocess.STDOUT``::
>>> subprocess.check_output(
... ["/bin/sh", "-c", "ls non_existent_file; exit 0"],
... stderr=subprocess.STDOUT)
b'ls: non_existent_file: No such file or directory\n'
As in the :func:`call` function, if the timeout expires, the child process
will be killed and the wait retried. The :exc:`TimeoutExpired` exception
will be re-raised after the child process has terminated. The output from
the child process so far will be in the :attr:`output` attribute of the
exception.
.. versionadded:: 3.1
.. versionchanged:: 3.3
*timeout* was added.
.. function:: getstatusoutput(cmd)
Return ``(status, output)`` of executing *cmd* in a shell.
Execute the string *cmd* in a shell with :func:`os.popen` and return a 2-tuple
``(status, output)``. *cmd* is actually run as ``{ cmd ; } 2>&1``, so that the
returned output will contain output or error messages. A trailing newline is
stripped from the output. The exit status for the command can be interpreted
according to the rules for the C function :c:func:`wait`. Example::
>>> subprocess.getstatusoutput('ls /bin/ls')
(0, '/bin/ls')
>>> subprocess.getstatusoutput('cat /bin/junk')
(256, 'cat: /bin/junk: No such file or directory')
>>> subprocess.getstatusoutput('/bin/junk')
(256, 'sh: /bin/junk: not found')
Availability: UNIX.
.. function:: getoutput(cmd)
Return output (stdout and stderr) of executing *cmd* in a shell.
Like :func:`getstatusoutput`, except the exit status is ignored and the return
value is a string containing the command's output. Example::
>>> subprocess.getoutput('ls /bin/ls')
'/bin/ls'
Availability: UNIX.
Exceptions
^^^^^^^^^^
Exceptions raised in the child process, before the new program has started to
execute, will be re-raised in the parent. Additionally, the exception object
will have one extra attribute called :attr:`child_traceback`, which is a string
containing traceback information from the child's point of view.
The most common exception raised is :exc:`OSError`. This occurs, for example,
when trying to execute a non-existent file. Applications should prepare for
:exc:`OSError` exceptions.
A :exc:`ValueError` will be raised if :class:`Popen` is called with invalid
arguments.
check_call() will raise :exc:`CalledProcessError`, if the called process returns
a non-zero return code.
All of the functions and methods that accept a *timeout* parameter, such as
:func:`call` and :meth:`Popen.communicate` will raise :exc:`TimeoutExpired` if
the timeout expires before the process exits.
Exceptions defined in this module all inherit from :exc:`SubprocessError`.
.. versionadded:: 3.3
The :exc:`SubprocessError` base class was added.
Security
^^^^^^^^
Unlike some other popen functions, this implementation will never call /bin/sh
implicitly. This means that all characters, including shell metacharacters, can
safely be passed to child processes.
Popen Objects
-------------
Instances of the :class:`Popen` class have the following methods:
.. method:: Popen.poll()
Check if child process has terminated. Set and return :attr:`returncode`
attribute.
.. method:: Popen.wait(timeout=None)
Wait for child process to terminate. Set and return :attr:`returncode`
attribute.
If the process does not terminate after *timeout* seconds, raise a
:exc:`TimeoutExpired` exception. It is safe to catch this exception and
retry the wait.
.. warning::
This will deadlock when using ``stdout=PIPE`` and/or
``stderr=PIPE`` and the child process generates enough output to
a pipe such that it blocks waiting for the OS pipe buffer to
accept more data. Use :meth:`communicate` to avoid that.
.. versionchanged:: 3.3
*timeout* was added.
.. method:: Popen.communicate(input=None, timeout=None)
Interact with process: Send data to stdin. Read data from stdout and stderr,
until end-of-file is reached. Wait for process to terminate. The optional
*input* argument should be data to be sent to the child process, or
``None``, if no data should be sent to the child. The type of *input*
must be bytes or, if *universal_newlines* was ``True``, a string.
:meth:`communicate` returns a tuple ``(stdoutdata, stderrdata)``.
Note that if you want to send data to the process's stdin, you need to create
the Popen object with ``stdin=PIPE``. Similarly, to get anything other than
``None`` in the result tuple, you need to give ``stdout=PIPE`` and/or
``stderr=PIPE`` too.
If the process does not terminate after *timeout* seconds, a
:exc:`TimeoutExpired` exception will be raised. Catching this exception and
retrying communication will not lose any output.
The child process is not killed if the timeout expires, so in order to
cleanup properly a well-behaved application should kill the child process and
finish communication::
proc = subprocess.Popen(...)
try:
outs, errs = proc.communicate(timeout=15)
except TimeoutExpired:
proc.kill()
outs, errs = proc.communicate()
.. note::
The data read is buffered in memory, so do not use this method if the data
size is large or unlimited.
.. versionchanged:: 3.3
*timeout* was added.
.. method:: Popen.send_signal(signal)
Sends the signal *signal* to the child.
.. note::
On Windows, SIGTERM is an alias for :meth:`terminate`. CTRL_C_EVENT and
CTRL_BREAK_EVENT can be sent to processes started with a *creationflags*
parameter which includes `CREATE_NEW_PROCESS_GROUP`.
.. method:: Popen.terminate()
Stop the child. On Posix OSs the method sends SIGTERM to the
child. On Windows the Win32 API function :c:func:`TerminateProcess` is called
to stop the child.
.. method:: Popen.kill()
Kills the child. On Posix OSs the function sends SIGKILL to the child.
On Windows :meth:`kill` is an alias for :meth:`terminate`.
The following attributes are also available:
.. warning::
Use :meth:`communicate` rather than :attr:`.stdin.write <stdin>`,
:attr:`.stdout.read <stdout>` or :attr:`.stderr.read <stderr>` to avoid
deadlocks due to any of the other OS pipe buffers filling up and blocking the
child process.
.. attribute:: Popen.stdin
If the *stdin* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides input to the child process. Otherwise, it is ``None``.
.. attribute:: Popen.stdout
If the *stdout* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides output from the child process. Otherwise, it is ``None``.
.. attribute:: Popen.stderr
If the *stderr* argument was :data:`PIPE`, this attribute is a :term:`file
object` that provides error output from the child process. Otherwise, it is
``None``.
.. attribute:: Popen.pid
The process ID of the child process.
Note that if you set the *shell* argument to ``True``, this is the process ID
of the spawned shell.
.. attribute:: Popen.returncode
The child return code, set by :meth:`poll` and :meth:`wait` (and indirectly
by :meth:`communicate`). A ``None`` value indicates that the process
hasn't terminated yet.
A negative value ``-N`` indicates that the child was terminated by signal
``N`` (Unix only).
Windows Popen Helpers
---------------------
The :class:`STARTUPINFO` class and following constants are only available
on Windows.
.. class:: STARTUPINFO()
Partial support of the Windows
`STARTUPINFO <http://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx>`__
structure is used for :class:`Popen` creation.
.. attribute:: dwFlags
A bit field that determines whether certain :class:`STARTUPINFO`
attributes are used when the process creates a window. ::
si = subprocess.STARTUPINFO()
si.dwFlags = subprocess.STARTF_USESTDHANDLES | subprocess.STARTF_USESHOWWINDOW
.. attribute:: hStdInput
If :attr:`dwFlags` specifies :data:`STARTF_USESTDHANDLES`, this attribute
is the standard input handle for the process. If
:data:`STARTF_USESTDHANDLES` is not specified, the default for standard
input is the keyboard buffer.
.. attribute:: hStdOutput
If :attr:`dwFlags` specifies :data:`STARTF_USESTDHANDLES`, this attribute
is the standard output handle for the process. Otherwise, this attribute
is ignored and the default for standard output is the console window's
buffer.
.. attribute:: hStdError
If :attr:`dwFlags` specifies :data:`STARTF_USESTDHANDLES`, this attribute
is the standard error handle for the process. Otherwise, this attribute is
ignored and the default for standard error is the console window's buffer.
.. attribute:: wShowWindow
If :attr:`dwFlags` specifies :data:`STARTF_USESHOWWINDOW`, this attribute
can be any of the values that can be specified in the ``nCmdShow``
parameter for the
`ShowWindow <http://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx>`__
function, except for ``SW_SHOWDEFAULT``. Otherwise, this attribute is
ignored.
:data:`SW_HIDE` is provided for this attribute. It is used when
:class:`Popen` is called with ``shell=True``.
Constants
^^^^^^^^^
The :mod:`subprocess` module exposes the following constants.
.. data:: STD_INPUT_HANDLE
The standard input device. Initially, this is the console input buffer,
``CONIN$``.
.. data:: STD_OUTPUT_HANDLE
The standard output device. Initially, this is the active console screen
buffer, ``CONOUT$``.
.. data:: STD_ERROR_HANDLE
The standard error device. Initially, this is the active console screen
buffer, ``CONOUT$``.
.. data:: SW_HIDE
Hides the window. Another window will be activated.
.. data:: STARTF_USESTDHANDLES
Specifies that the :attr:`STARTUPINFO.hStdInput`,
:attr:`STARTUPINFO.hStdOutput`, and :attr:`STARTUPINFO.hStdError` attributes
contain additional information.
.. data:: STARTF_USESHOWWINDOW
Specifies that the :attr:`STARTUPINFO.wShowWindow` attribute contains
additional information.
.. data:: CREATE_NEW_CONSOLE
The new process has a new console, instead of inheriting its parent's
console (the default).
This flag is always set when :class:`Popen` is created with ``shell=True``.
.. data:: CREATE_NEW_PROCESS_GROUP
A :class:`Popen` ``creationflags`` parameter to specify that a new process
group will be created. This flag is necessary for using :func:`os.kill`
on the subprocess.
This flag is ignored if :data:`CREATE_NEW_CONSOLE` is specified.
.. _subprocess-replacements:
Replacing Older Functions with the subprocess Module
----------------------------------------------------
In this section, "a ==> b" means that b can be used as a replacement for a.
.. note::
All functions in this section fail (more or less) silently if the executed
program cannot be found; this module raises an :exc:`OSError` exception.
In the following examples, we assume that the subprocess module is imported with
"from subprocess import \*".
Replacing /bin/sh shell backquote
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
output=`mycmd myarg`
==>
output = Popen(["mycmd", "myarg"], stdout=PIPE).communicate()[0]
Replacing shell pipeline
^^^^^^^^^^^^^^^^^^^^^^^^
::
output=`dmesg | grep hda`
==>
p1 = Popen(["dmesg"], stdout=PIPE)
p2 = Popen(["grep", "hda"], stdin=p1.stdout, stdout=PIPE)
p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits.
output = p2.communicate()[0]
The p1.stdout.close() call after starting the p2 is important in order for p1
to receive a SIGPIPE if p2 exits before p1.
Replacing :func:`os.system`
^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
sts = os.system("mycmd" + " myarg")
==>
p = Popen("mycmd" + " myarg", shell=True)
sts = os.waitpid(p.pid, 0)[1]
Notes:
* Calling the program through the shell is usually not required.
* It's easier to look at the :attr:`returncode` attribute than the exit status.
A more realistic example would look like this::
try:
retcode = call("mycmd" + " myarg", shell=True)
if retcode < 0:
print("Child was terminated by signal", -retcode, file=sys.stderr)
else:
print("Child returned", retcode, file=sys.stderr)
except OSError as e:
print("Execution failed:", e, file=sys.stderr)
Replacing the :func:`os.spawn <os.spawnl>` family
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
P_NOWAIT example::
pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen(["/bin/mycmd", "myarg"]).pid
P_WAIT example::
retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])
Vector example::
os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])
Environment example::
os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})
Replacing :func:`os.popen`, :func:`os.popen2`, :func:`os.popen3`
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
::
(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)
::
(child_stdin,
child_stdout,
child_stderr) = os.popen3(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
child_stdout,
child_stderr) = (p.stdin, p.stdout, p.stderr)
::
(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)
Return code handling translates as follows::
pipe = os.popen(cmd, 'w')
...
rc = pipe.close()
if rc is not None and rc >> 8:
print("There were some errors")
==>
process = Popen(cmd, 'w', stdin=PIPE)
...
process.stdin.close()
if process.wait() != 0:
print("There were some errors")
Replacing functions from the :mod:`popen2` module
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
If the cmd argument to popen2 functions is a string, the command is executed
through /bin/sh. If it is a list, the command is directly executed.
::
(child_stdout, child_stdin) = popen2.popen2("somestring", bufsize, mode)
==>
p = Popen(["somestring"], shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)
::
(child_stdout, child_stdin) = popen2.popen2(["mycmd", "myarg"], bufsize, mode)
==>
p = Popen(["mycmd", "myarg"], bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)
:class:`popen2.Popen3` and :class:`popen2.Popen4` basically work as
:class:`subprocess.Popen`, except that:
* :class:`Popen` raises an exception if the execution fails.
* the *capturestderr* argument is replaced with the *stderr* argument.
* ``stdin=PIPE`` and ``stdout=PIPE`` must be specified.
* popen2 closes all file descriptors by default, but you have to specify
``close_fds=True`` with :class:`Popen` to guarantee this behavior on
all platforms or past Python versions.
Notes
-----
.. _converting-argument-sequence:
Converting an argument sequence to a string on Windows
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
On Windows, an *args* sequence is converted to a string that can be parsed
using the following rules (which correspond to the rules used by the MS C
runtime):
1. Arguments are delimited by white space, which is either a
space or a tab.
2. A string surrounded by double quotation marks is
interpreted as a single argument, regardless of white space
contained within. A quoted string can be embedded in an
argument.
3. A double quotation mark preceded by a backslash is
interpreted as a literal double quotation mark.
4. Backslashes are interpreted literally, unless they
immediately precede a double quotation mark.
5. If backslashes immediately precede a double quotation mark,
every pair of backslashes is interpreted as a literal
backslash. If the number of backslashes is odd, the last
backslash escapes the next double quotation mark as
described in rule 3.
.. seealso::
:mod:`shlex`
Module which provides function to parse and escape command lines.