| /* | 
 |  | 
 |   Reference Cycle Garbage Collection | 
 |   ================================== | 
 |  | 
 |   Neil Schemenauer <nas@arctrix.com> | 
 |  | 
 |   Based on a post on the python-dev list.  Ideas from Guido van Rossum, | 
 |   Eric Tiedemann, and various others. | 
 |  | 
 |   http://www.arctrix.com/nas/python/gc/ | 
 |  | 
 |   The following mailing list threads provide a historical perspective on | 
 |   the design of this module.  Note that a fair amount of refinement has | 
 |   occurred since those discussions. | 
 |  | 
 |   http://mail.python.org/pipermail/python-dev/2000-March/002385.html | 
 |   http://mail.python.org/pipermail/python-dev/2000-March/002434.html | 
 |   http://mail.python.org/pipermail/python-dev/2000-March/002497.html | 
 |  | 
 |   For a highlevel view of the collection process, read the collect | 
 |   function. | 
 |  | 
 | */ | 
 |  | 
 | #include "Python.h" | 
 | #include "internal/context.h" | 
 | #include "internal/mem.h" | 
 | #include "internal/pystate.h" | 
 | #include "frameobject.h"        /* for PyFrame_ClearFreeList */ | 
 | #include "pydtrace.h" | 
 | #include "pytime.h"             /* for _PyTime_GetMonotonicClock() */ | 
 |  | 
 | /*[clinic input] | 
 | module gc | 
 | [clinic start generated code]*/ | 
 | /*[clinic end generated code: output=da39a3ee5e6b4b0d input=b5c9690ecc842d79]*/ | 
 |  | 
 | /* Get an object's GC head */ | 
 | #define AS_GC(o) ((PyGC_Head *)(o)-1) | 
 |  | 
 | /* Get the object given the GC head */ | 
 | #define FROM_GC(g) ((PyObject *)(((PyGC_Head *)g)+1)) | 
 |  | 
 | /* Python string to use if unhandled exception occurs */ | 
 | static PyObject *gc_str = NULL; | 
 |  | 
 | /* set for debugging information */ | 
 | #define DEBUG_STATS             (1<<0) /* print collection statistics */ | 
 | #define DEBUG_COLLECTABLE       (1<<1) /* print collectable objects */ | 
 | #define DEBUG_UNCOLLECTABLE     (1<<2) /* print uncollectable objects */ | 
 | #define DEBUG_SAVEALL           (1<<5) /* save all garbage in gc.garbage */ | 
 | #define DEBUG_LEAK              DEBUG_COLLECTABLE | \ | 
 |                 DEBUG_UNCOLLECTABLE | \ | 
 |                 DEBUG_SAVEALL | 
 |  | 
 | #define GEN_HEAD(n) (&_PyRuntime.gc.generations[n].head) | 
 |  | 
 | void | 
 | _PyGC_Initialize(struct _gc_runtime_state *state) | 
 | { | 
 |     state->enabled = 1; /* automatic collection enabled? */ | 
 |  | 
 | #define _GEN_HEAD(n) (&state->generations[n].head) | 
 |     struct gc_generation generations[NUM_GENERATIONS] = { | 
 |         /* PyGC_Head,                                 threshold,      count */ | 
 |         {{{_GEN_HEAD(0), _GEN_HEAD(0), 0}},           700,            0}, | 
 |         {{{_GEN_HEAD(1), _GEN_HEAD(1), 0}},           10,             0}, | 
 |         {{{_GEN_HEAD(2), _GEN_HEAD(2), 0}},           10,             0}, | 
 |     }; | 
 |     for (int i = 0; i < NUM_GENERATIONS; i++) { | 
 |         state->generations[i] = generations[i]; | 
 |     }; | 
 |     state->generation0 = GEN_HEAD(0); | 
 |     struct gc_generation permanent_generation = { | 
 |           {{&state->permanent_generation.head, &state->permanent_generation.head, 0}}, 0, 0 | 
 |     }; | 
 |     state->permanent_generation = permanent_generation; | 
 | } | 
 |  | 
 | /*-------------------------------------------------------------------------- | 
 | gc_refs values. | 
 |  | 
 | Between collections, every gc'ed object has one of two gc_refs values: | 
 |  | 
 | GC_UNTRACKED | 
 |     The initial state; objects returned by PyObject_GC_Malloc are in this | 
 |     state.  The object doesn't live in any generation list, and its | 
 |     tp_traverse slot must not be called. | 
 |  | 
 | GC_REACHABLE | 
 |     The object lives in some generation list, and its tp_traverse is safe to | 
 |     call.  An object transitions to GC_REACHABLE when PyObject_GC_Track | 
 |     is called. | 
 |  | 
 | During a collection, gc_refs can temporarily take on other states: | 
 |  | 
 | >= 0 | 
 |     At the start of a collection, update_refs() copies the true refcount | 
 |     to gc_refs, for each object in the generation being collected. | 
 |     subtract_refs() then adjusts gc_refs so that it equals the number of | 
 |     times an object is referenced directly from outside the generation | 
 |     being collected. | 
 |     gc_refs remains >= 0 throughout these steps. | 
 |  | 
 | GC_TENTATIVELY_UNREACHABLE | 
 |     move_unreachable() then moves objects not reachable (whether directly or | 
 |     indirectly) from outside the generation into an "unreachable" set. | 
 |     Objects that are found to be reachable have gc_refs set to GC_REACHABLE | 
 |     again.  Objects that are found to be unreachable have gc_refs set to | 
 |     GC_TENTATIVELY_UNREACHABLE.  It's "tentatively" because the pass doing | 
 |     this can't be sure until it ends, and GC_TENTATIVELY_UNREACHABLE may | 
 |     transition back to GC_REACHABLE. | 
 |  | 
 |     Only objects with GC_TENTATIVELY_UNREACHABLE still set are candidates | 
 |     for collection.  If it's decided not to collect such an object (e.g., | 
 |     it has a __del__ method), its gc_refs is restored to GC_REACHABLE again. | 
 | ---------------------------------------------------------------------------- | 
 | */ | 
 | #define GC_UNTRACKED                    _PyGC_REFS_UNTRACKED | 
 | #define GC_REACHABLE                    _PyGC_REFS_REACHABLE | 
 | #define GC_TENTATIVELY_UNREACHABLE      _PyGC_REFS_TENTATIVELY_UNREACHABLE | 
 |  | 
 | #define IS_TRACKED(o) (_PyGC_REFS(o) != GC_UNTRACKED) | 
 | #define IS_REACHABLE(o) (_PyGC_REFS(o) == GC_REACHABLE) | 
 | #define IS_TENTATIVELY_UNREACHABLE(o) ( \ | 
 |     _PyGC_REFS(o) == GC_TENTATIVELY_UNREACHABLE) | 
 |  | 
 | /*** list functions ***/ | 
 |  | 
 | static void | 
 | gc_list_init(PyGC_Head *list) | 
 | { | 
 |     list->gc.gc_prev = list; | 
 |     list->gc.gc_next = list; | 
 | } | 
 |  | 
 | static int | 
 | gc_list_is_empty(PyGC_Head *list) | 
 | { | 
 |     return (list->gc.gc_next == list); | 
 | } | 
 |  | 
 | #if 0 | 
 | /* This became unused after gc_list_move() was introduced. */ | 
 | /* Append `node` to `list`. */ | 
 | static void | 
 | gc_list_append(PyGC_Head *node, PyGC_Head *list) | 
 | { | 
 |     node->gc.gc_next = list; | 
 |     node->gc.gc_prev = list->gc.gc_prev; | 
 |     node->gc.gc_prev->gc.gc_next = node; | 
 |     list->gc.gc_prev = node; | 
 | } | 
 | #endif | 
 |  | 
 | /* Remove `node` from the gc list it's currently in. */ | 
 | static void | 
 | gc_list_remove(PyGC_Head *node) | 
 | { | 
 |     node->gc.gc_prev->gc.gc_next = node->gc.gc_next; | 
 |     node->gc.gc_next->gc.gc_prev = node->gc.gc_prev; | 
 |     node->gc.gc_next = NULL; /* object is not currently tracked */ | 
 | } | 
 |  | 
 | /* Move `node` from the gc list it's currently in (which is not explicitly | 
 |  * named here) to the end of `list`.  This is semantically the same as | 
 |  * gc_list_remove(node) followed by gc_list_append(node, list). | 
 |  */ | 
 | static void | 
 | gc_list_move(PyGC_Head *node, PyGC_Head *list) | 
 | { | 
 |     PyGC_Head *new_prev; | 
 |     PyGC_Head *current_prev = node->gc.gc_prev; | 
 |     PyGC_Head *current_next = node->gc.gc_next; | 
 |     /* Unlink from current list. */ | 
 |     current_prev->gc.gc_next = current_next; | 
 |     current_next->gc.gc_prev = current_prev; | 
 |     /* Relink at end of new list. */ | 
 |     new_prev = node->gc.gc_prev = list->gc.gc_prev; | 
 |     new_prev->gc.gc_next = list->gc.gc_prev = node; | 
 |     node->gc.gc_next = list; | 
 | } | 
 |  | 
 | /* append list `from` onto list `to`; `from` becomes an empty list */ | 
 | static void | 
 | gc_list_merge(PyGC_Head *from, PyGC_Head *to) | 
 | { | 
 |     PyGC_Head *tail; | 
 |     assert(from != to); | 
 |     if (!gc_list_is_empty(from)) { | 
 |         tail = to->gc.gc_prev; | 
 |         tail->gc.gc_next = from->gc.gc_next; | 
 |         tail->gc.gc_next->gc.gc_prev = tail; | 
 |         to->gc.gc_prev = from->gc.gc_prev; | 
 |         to->gc.gc_prev->gc.gc_next = to; | 
 |     } | 
 |     gc_list_init(from); | 
 | } | 
 |  | 
 | static Py_ssize_t | 
 | gc_list_size(PyGC_Head *list) | 
 | { | 
 |     PyGC_Head *gc; | 
 |     Py_ssize_t n = 0; | 
 |     for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { | 
 |         n++; | 
 |     } | 
 |     return n; | 
 | } | 
 |  | 
 | /* Append objects in a GC list to a Python list. | 
 |  * Return 0 if all OK, < 0 if error (out of memory for list). | 
 |  */ | 
 | static int | 
 | append_objects(PyObject *py_list, PyGC_Head *gc_list) | 
 | { | 
 |     PyGC_Head *gc; | 
 |     for (gc = gc_list->gc.gc_next; gc != gc_list; gc = gc->gc.gc_next) { | 
 |         PyObject *op = FROM_GC(gc); | 
 |         if (op != py_list) { | 
 |             if (PyList_Append(py_list, op)) { | 
 |                 return -1; /* exception */ | 
 |             } | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /*** end of list stuff ***/ | 
 |  | 
 |  | 
 | /* Set all gc_refs = ob_refcnt.  After this, gc_refs is > 0 for all objects | 
 |  * in containers, and is GC_REACHABLE for all tracked gc objects not in | 
 |  * containers. | 
 |  */ | 
 | static void | 
 | update_refs(PyGC_Head *containers) | 
 | { | 
 |     PyGC_Head *gc = containers->gc.gc_next; | 
 |     for (; gc != containers; gc = gc->gc.gc_next) { | 
 |         assert(_PyGCHead_REFS(gc) == GC_REACHABLE); | 
 |         _PyGCHead_SET_REFS(gc, Py_REFCNT(FROM_GC(gc))); | 
 |         /* Python's cyclic gc should never see an incoming refcount | 
 |          * of 0:  if something decref'ed to 0, it should have been | 
 |          * deallocated immediately at that time. | 
 |          * Possible cause (if the assert triggers):  a tp_dealloc | 
 |          * routine left a gc-aware object tracked during its teardown | 
 |          * phase, and did something-- or allowed something to happen -- | 
 |          * that called back into Python.  gc can trigger then, and may | 
 |          * see the still-tracked dying object.  Before this assert | 
 |          * was added, such mistakes went on to allow gc to try to | 
 |          * delete the object again.  In a debug build, that caused | 
 |          * a mysterious segfault, when _Py_ForgetReference tried | 
 |          * to remove the object from the doubly-linked list of all | 
 |          * objects a second time.  In a release build, an actual | 
 |          * double deallocation occurred, which leads to corruption | 
 |          * of the allocator's internal bookkeeping pointers.  That's | 
 |          * so serious that maybe this should be a release-build | 
 |          * check instead of an assert? | 
 |          */ | 
 |         assert(_PyGCHead_REFS(gc) != 0); | 
 |     } | 
 | } | 
 |  | 
 | /* A traversal callback for subtract_refs. */ | 
 | static int | 
 | visit_decref(PyObject *op, void *data) | 
 | { | 
 |     assert(op != NULL); | 
 |     if (PyObject_IS_GC(op)) { | 
 |         PyGC_Head *gc = AS_GC(op); | 
 |         /* We're only interested in gc_refs for objects in the | 
 |          * generation being collected, which can be recognized | 
 |          * because only they have positive gc_refs. | 
 |          */ | 
 |         assert(_PyGCHead_REFS(gc) != 0); /* else refcount was too small */ | 
 |         if (_PyGCHead_REFS(gc) > 0) | 
 |             _PyGCHead_DECREF(gc); | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Subtract internal references from gc_refs.  After this, gc_refs is >= 0 | 
 |  * for all objects in containers, and is GC_REACHABLE for all tracked gc | 
 |  * objects not in containers.  The ones with gc_refs > 0 are directly | 
 |  * reachable from outside containers, and so can't be collected. | 
 |  */ | 
 | static void | 
 | subtract_refs(PyGC_Head *containers) | 
 | { | 
 |     traverseproc traverse; | 
 |     PyGC_Head *gc = containers->gc.gc_next; | 
 |     for (; gc != containers; gc=gc->gc.gc_next) { | 
 |         traverse = Py_TYPE(FROM_GC(gc))->tp_traverse; | 
 |         (void) traverse(FROM_GC(gc), | 
 |                        (visitproc)visit_decref, | 
 |                        NULL); | 
 |     } | 
 | } | 
 |  | 
 | /* A traversal callback for move_unreachable. */ | 
 | static int | 
 | visit_reachable(PyObject *op, PyGC_Head *reachable) | 
 | { | 
 |     if (PyObject_IS_GC(op)) { | 
 |         PyGC_Head *gc = AS_GC(op); | 
 |         const Py_ssize_t gc_refs = _PyGCHead_REFS(gc); | 
 |  | 
 |         if (gc_refs == 0) { | 
 |             /* This is in move_unreachable's 'young' list, but | 
 |              * the traversal hasn't yet gotten to it.  All | 
 |              * we need to do is tell move_unreachable that it's | 
 |              * reachable. | 
 |              */ | 
 |             _PyGCHead_SET_REFS(gc, 1); | 
 |         } | 
 |         else if (gc_refs == GC_TENTATIVELY_UNREACHABLE) { | 
 |             /* This had gc_refs = 0 when move_unreachable got | 
 |              * to it, but turns out it's reachable after all. | 
 |              * Move it back to move_unreachable's 'young' list, | 
 |              * and move_unreachable will eventually get to it | 
 |              * again. | 
 |              */ | 
 |             gc_list_move(gc, reachable); | 
 |             _PyGCHead_SET_REFS(gc, 1); | 
 |         } | 
 |         /* Else there's nothing to do. | 
 |          * If gc_refs > 0, it must be in move_unreachable's 'young' | 
 |          * list, and move_unreachable will eventually get to it. | 
 |          * If gc_refs == GC_REACHABLE, it's either in some other | 
 |          * generation so we don't care about it, or move_unreachable | 
 |          * already dealt with it. | 
 |          * If gc_refs == GC_UNTRACKED, it must be ignored. | 
 |          */ | 
 |          else { | 
 |             assert(gc_refs > 0 | 
 |                    || gc_refs == GC_REACHABLE | 
 |                    || gc_refs == GC_UNTRACKED); | 
 |          } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Move the unreachable objects from young to unreachable.  After this, | 
 |  * all objects in young have gc_refs = GC_REACHABLE, and all objects in | 
 |  * unreachable have gc_refs = GC_TENTATIVELY_UNREACHABLE.  All tracked | 
 |  * gc objects not in young or unreachable still have gc_refs = GC_REACHABLE. | 
 |  * All objects in young after this are directly or indirectly reachable | 
 |  * from outside the original young; and all objects in unreachable are | 
 |  * not. | 
 |  */ | 
 | static void | 
 | move_unreachable(PyGC_Head *young, PyGC_Head *unreachable) | 
 | { | 
 |     PyGC_Head *gc = young->gc.gc_next; | 
 |  | 
 |     /* Invariants:  all objects "to the left" of us in young have gc_refs | 
 |      * = GC_REACHABLE, and are indeed reachable (directly or indirectly) | 
 |      * from outside the young list as it was at entry.  All other objects | 
 |      * from the original young "to the left" of us are in unreachable now, | 
 |      * and have gc_refs = GC_TENTATIVELY_UNREACHABLE.  All objects to the | 
 |      * left of us in 'young' now have been scanned, and no objects here | 
 |      * or to the right have been scanned yet. | 
 |      */ | 
 |  | 
 |     while (gc != young) { | 
 |         PyGC_Head *next; | 
 |  | 
 |         if (_PyGCHead_REFS(gc)) { | 
 |             /* gc is definitely reachable from outside the | 
 |              * original 'young'.  Mark it as such, and traverse | 
 |              * its pointers to find any other objects that may | 
 |              * be directly reachable from it.  Note that the | 
 |              * call to tp_traverse may append objects to young, | 
 |              * so we have to wait until it returns to determine | 
 |              * the next object to visit. | 
 |              */ | 
 |             PyObject *op = FROM_GC(gc); | 
 |             traverseproc traverse = Py_TYPE(op)->tp_traverse; | 
 |             assert(_PyGCHead_REFS(gc) > 0); | 
 |             _PyGCHead_SET_REFS(gc, GC_REACHABLE); | 
 |             (void) traverse(op, | 
 |                             (visitproc)visit_reachable, | 
 |                             (void *)young); | 
 |             next = gc->gc.gc_next; | 
 |             if (PyTuple_CheckExact(op)) { | 
 |                 _PyTuple_MaybeUntrack(op); | 
 |             } | 
 |         } | 
 |         else { | 
 |             /* This *may* be unreachable.  To make progress, | 
 |              * assume it is.  gc isn't directly reachable from | 
 |              * any object we've already traversed, but may be | 
 |              * reachable from an object we haven't gotten to yet. | 
 |              * visit_reachable will eventually move gc back into | 
 |              * young if that's so, and we'll see it again. | 
 |              */ | 
 |             next = gc->gc.gc_next; | 
 |             gc_list_move(gc, unreachable); | 
 |             _PyGCHead_SET_REFS(gc, GC_TENTATIVELY_UNREACHABLE); | 
 |         } | 
 |         gc = next; | 
 |     } | 
 | } | 
 |  | 
 | /* Try to untrack all currently tracked dictionaries */ | 
 | static void | 
 | untrack_dicts(PyGC_Head *head) | 
 | { | 
 |     PyGC_Head *next, *gc = head->gc.gc_next; | 
 |     while (gc != head) { | 
 |         PyObject *op = FROM_GC(gc); | 
 |         next = gc->gc.gc_next; | 
 |         if (PyDict_CheckExact(op)) | 
 |             _PyDict_MaybeUntrack(op); | 
 |         gc = next; | 
 |     } | 
 | } | 
 |  | 
 | /* Return true if object has a pre-PEP 442 finalization method. */ | 
 | static int | 
 | has_legacy_finalizer(PyObject *op) | 
 | { | 
 |     return op->ob_type->tp_del != NULL; | 
 | } | 
 |  | 
 | /* Move the objects in unreachable with tp_del slots into `finalizers`. | 
 |  * Objects moved into `finalizers` have gc_refs set to GC_REACHABLE; the | 
 |  * objects remaining in unreachable are left at GC_TENTATIVELY_UNREACHABLE. | 
 |  */ | 
 | static void | 
 | move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers) | 
 | { | 
 |     PyGC_Head *gc; | 
 |     PyGC_Head *next; | 
 |  | 
 |     /* March over unreachable.  Move objects with finalizers into | 
 |      * `finalizers`. | 
 |      */ | 
 |     for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) { | 
 |         PyObject *op = FROM_GC(gc); | 
 |  | 
 |         assert(IS_TENTATIVELY_UNREACHABLE(op)); | 
 |         next = gc->gc.gc_next; | 
 |  | 
 |         if (has_legacy_finalizer(op)) { | 
 |             gc_list_move(gc, finalizers); | 
 |             _PyGCHead_SET_REFS(gc, GC_REACHABLE); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* A traversal callback for move_legacy_finalizer_reachable. */ | 
 | static int | 
 | visit_move(PyObject *op, PyGC_Head *tolist) | 
 | { | 
 |     if (PyObject_IS_GC(op)) { | 
 |         if (IS_TENTATIVELY_UNREACHABLE(op)) { | 
 |             PyGC_Head *gc = AS_GC(op); | 
 |             gc_list_move(gc, tolist); | 
 |             _PyGCHead_SET_REFS(gc, GC_REACHABLE); | 
 |         } | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Move objects that are reachable from finalizers, from the unreachable set | 
 |  * into finalizers set. | 
 |  */ | 
 | static void | 
 | move_legacy_finalizer_reachable(PyGC_Head *finalizers) | 
 | { | 
 |     traverseproc traverse; | 
 |     PyGC_Head *gc = finalizers->gc.gc_next; | 
 |     for (; gc != finalizers; gc = gc->gc.gc_next) { | 
 |         /* Note that the finalizers list may grow during this. */ | 
 |         traverse = Py_TYPE(FROM_GC(gc))->tp_traverse; | 
 |         (void) traverse(FROM_GC(gc), | 
 |                         (visitproc)visit_move, | 
 |                         (void *)finalizers); | 
 |     } | 
 | } | 
 |  | 
 | /* Clear all weakrefs to unreachable objects, and if such a weakref has a | 
 |  * callback, invoke it if necessary.  Note that it's possible for such | 
 |  * weakrefs to be outside the unreachable set -- indeed, those are precisely | 
 |  * the weakrefs whose callbacks must be invoked.  See gc_weakref.txt for | 
 |  * overview & some details.  Some weakrefs with callbacks may be reclaimed | 
 |  * directly by this routine; the number reclaimed is the return value.  Other | 
 |  * weakrefs with callbacks may be moved into the `old` generation.  Objects | 
 |  * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in | 
 |  * unreachable are left at GC_TENTATIVELY_UNREACHABLE.  When this returns, | 
 |  * no object in `unreachable` is weakly referenced anymore. | 
 |  */ | 
 | static int | 
 | handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old) | 
 | { | 
 |     PyGC_Head *gc; | 
 |     PyObject *op;               /* generally FROM_GC(gc) */ | 
 |     PyWeakReference *wr;        /* generally a cast of op */ | 
 |     PyGC_Head wrcb_to_call;     /* weakrefs with callbacks to call */ | 
 |     PyGC_Head *next; | 
 |     int num_freed = 0; | 
 |  | 
 |     gc_list_init(&wrcb_to_call); | 
 |  | 
 |     /* Clear all weakrefs to the objects in unreachable.  If such a weakref | 
 |      * also has a callback, move it into `wrcb_to_call` if the callback | 
 |      * needs to be invoked.  Note that we cannot invoke any callbacks until | 
 |      * all weakrefs to unreachable objects are cleared, lest the callback | 
 |      * resurrect an unreachable object via a still-active weakref.  We | 
 |      * make another pass over wrcb_to_call, invoking callbacks, after this | 
 |      * pass completes. | 
 |      */ | 
 |     for (gc = unreachable->gc.gc_next; gc != unreachable; gc = next) { | 
 |         PyWeakReference **wrlist; | 
 |  | 
 |         op = FROM_GC(gc); | 
 |         assert(IS_TENTATIVELY_UNREACHABLE(op)); | 
 |         next = gc->gc.gc_next; | 
 |  | 
 |         if (! PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) | 
 |             continue; | 
 |  | 
 |         /* It supports weakrefs.  Does it have any? */ | 
 |         wrlist = (PyWeakReference **) | 
 |                                 PyObject_GET_WEAKREFS_LISTPTR(op); | 
 |  | 
 |         /* `op` may have some weakrefs.  March over the list, clear | 
 |          * all the weakrefs, and move the weakrefs with callbacks | 
 |          * that must be called into wrcb_to_call. | 
 |          */ | 
 |         for (wr = *wrlist; wr != NULL; wr = *wrlist) { | 
 |             PyGC_Head *wrasgc;                  /* AS_GC(wr) */ | 
 |  | 
 |             /* _PyWeakref_ClearRef clears the weakref but leaves | 
 |              * the callback pointer intact.  Obscure:  it also | 
 |              * changes *wrlist. | 
 |              */ | 
 |             assert(wr->wr_object == op); | 
 |             _PyWeakref_ClearRef(wr); | 
 |             assert(wr->wr_object == Py_None); | 
 |             if (wr->wr_callback == NULL) | 
 |                 continue;                       /* no callback */ | 
 |  | 
 |     /* Headache time.  `op` is going away, and is weakly referenced by | 
 |      * `wr`, which has a callback.  Should the callback be invoked?  If wr | 
 |      * is also trash, no: | 
 |      * | 
 |      * 1. There's no need to call it.  The object and the weakref are | 
 |      *    both going away, so it's legitimate to pretend the weakref is | 
 |      *    going away first.  The user has to ensure a weakref outlives its | 
 |      *    referent if they want a guarantee that the wr callback will get | 
 |      *    invoked. | 
 |      * | 
 |      * 2. It may be catastrophic to call it.  If the callback is also in | 
 |      *    cyclic trash (CT), then although the CT is unreachable from | 
 |      *    outside the current generation, CT may be reachable from the | 
 |      *    callback.  Then the callback could resurrect insane objects. | 
 |      * | 
 |      * Since the callback is never needed and may be unsafe in this case, | 
 |      * wr is simply left in the unreachable set.  Note that because we | 
 |      * already called _PyWeakref_ClearRef(wr), its callback will never | 
 |      * trigger. | 
 |      * | 
 |      * OTOH, if wr isn't part of CT, we should invoke the callback:  the | 
 |      * weakref outlived the trash.  Note that since wr isn't CT in this | 
 |      * case, its callback can't be CT either -- wr acted as an external | 
 |      * root to this generation, and therefore its callback did too.  So | 
 |      * nothing in CT is reachable from the callback either, so it's hard | 
 |      * to imagine how calling it later could create a problem for us.  wr | 
 |      * is moved to wrcb_to_call in this case. | 
 |      */ | 
 |             if (IS_TENTATIVELY_UNREACHABLE(wr)) | 
 |                 continue; | 
 |             assert(IS_REACHABLE(wr)); | 
 |  | 
 |             /* Create a new reference so that wr can't go away | 
 |              * before we can process it again. | 
 |              */ | 
 |             Py_INCREF(wr); | 
 |  | 
 |             /* Move wr to wrcb_to_call, for the next pass. */ | 
 |             wrasgc = AS_GC(wr); | 
 |             assert(wrasgc != next); /* wrasgc is reachable, but | 
 |                                        next isn't, so they can't | 
 |                                        be the same */ | 
 |             gc_list_move(wrasgc, &wrcb_to_call); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Invoke the callbacks we decided to honor.  It's safe to invoke them | 
 |      * because they can't reference unreachable objects. | 
 |      */ | 
 |     while (! gc_list_is_empty(&wrcb_to_call)) { | 
 |         PyObject *temp; | 
 |         PyObject *callback; | 
 |  | 
 |         gc = wrcb_to_call.gc.gc_next; | 
 |         op = FROM_GC(gc); | 
 |         assert(IS_REACHABLE(op)); | 
 |         assert(PyWeakref_Check(op)); | 
 |         wr = (PyWeakReference *)op; | 
 |         callback = wr->wr_callback; | 
 |         assert(callback != NULL); | 
 |  | 
 |         /* copy-paste of weakrefobject.c's handle_callback() */ | 
 |         temp = PyObject_CallFunctionObjArgs(callback, wr, NULL); | 
 |         if (temp == NULL) | 
 |             PyErr_WriteUnraisable(callback); | 
 |         else | 
 |             Py_DECREF(temp); | 
 |  | 
 |         /* Give up the reference we created in the first pass.  When | 
 |          * op's refcount hits 0 (which it may or may not do right now), | 
 |          * op's tp_dealloc will decref op->wr_callback too.  Note | 
 |          * that the refcount probably will hit 0 now, and because this | 
 |          * weakref was reachable to begin with, gc didn't already | 
 |          * add it to its count of freed objects.  Example:  a reachable | 
 |          * weak value dict maps some key to this reachable weakref. | 
 |          * The callback removes this key->weakref mapping from the | 
 |          * dict, leaving no other references to the weakref (excepting | 
 |          * ours). | 
 |          */ | 
 |         Py_DECREF(op); | 
 |         if (wrcb_to_call.gc.gc_next == gc) { | 
 |             /* object is still alive -- move it */ | 
 |             gc_list_move(gc, old); | 
 |         } | 
 |         else | 
 |             ++num_freed; | 
 |     } | 
 |  | 
 |     return num_freed; | 
 | } | 
 |  | 
 | static void | 
 | debug_cycle(const char *msg, PyObject *op) | 
 | { | 
 |     PySys_FormatStderr("gc: %s <%s %p>\n", | 
 |                        msg, Py_TYPE(op)->tp_name, op); | 
 | } | 
 |  | 
 | /* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable | 
 |  * only from such cycles). | 
 |  * If DEBUG_SAVEALL, all objects in finalizers are appended to the module | 
 |  * garbage list (a Python list), else only the objects in finalizers with | 
 |  * __del__ methods are appended to garbage.  All objects in finalizers are | 
 |  * merged into the old list regardless. | 
 |  * Returns 0 if all OK, <0 on error (out of memory to grow the garbage list). | 
 |  * The finalizers list is made empty on a successful return. | 
 |  */ | 
 | static int | 
 | handle_legacy_finalizers(PyGC_Head *finalizers, PyGC_Head *old) | 
 | { | 
 |     PyGC_Head *gc = finalizers->gc.gc_next; | 
 |  | 
 |     if (_PyRuntime.gc.garbage == NULL) { | 
 |         _PyRuntime.gc.garbage = PyList_New(0); | 
 |         if (_PyRuntime.gc.garbage == NULL) | 
 |             Py_FatalError("gc couldn't create gc.garbage list"); | 
 |     } | 
 |     for (; gc != finalizers; gc = gc->gc.gc_next) { | 
 |         PyObject *op = FROM_GC(gc); | 
 |  | 
 |         if ((_PyRuntime.gc.debug & DEBUG_SAVEALL) || has_legacy_finalizer(op)) { | 
 |             if (PyList_Append(_PyRuntime.gc.garbage, op) < 0) | 
 |                 return -1; | 
 |         } | 
 |     } | 
 |  | 
 |     gc_list_merge(finalizers, old); | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Run first-time finalizers (if any) on all the objects in collectable. | 
 |  * Note that this may remove some (or even all) of the objects from the | 
 |  * list, due to refcounts falling to 0. | 
 |  */ | 
 | static void | 
 | finalize_garbage(PyGC_Head *collectable) | 
 | { | 
 |     destructor finalize; | 
 |     PyGC_Head seen; | 
 |  | 
 |     /* While we're going through the loop, `finalize(op)` may cause op, or | 
 |      * other objects, to be reclaimed via refcounts falling to zero.  So | 
 |      * there's little we can rely on about the structure of the input | 
 |      * `collectable` list across iterations.  For safety, we always take the | 
 |      * first object in that list and move it to a temporary `seen` list. | 
 |      * If objects vanish from the `collectable` and `seen` lists we don't | 
 |      * care. | 
 |      */ | 
 |     gc_list_init(&seen); | 
 |  | 
 |     while (!gc_list_is_empty(collectable)) { | 
 |         PyGC_Head *gc = collectable->gc.gc_next; | 
 |         PyObject *op = FROM_GC(gc); | 
 |         gc_list_move(gc, &seen); | 
 |         if (!_PyGCHead_FINALIZED(gc) && | 
 |                 PyType_HasFeature(Py_TYPE(op), Py_TPFLAGS_HAVE_FINALIZE) && | 
 |                 (finalize = Py_TYPE(op)->tp_finalize) != NULL) { | 
 |             _PyGCHead_SET_FINALIZED(gc, 1); | 
 |             Py_INCREF(op); | 
 |             finalize(op); | 
 |             Py_DECREF(op); | 
 |         } | 
 |     } | 
 |     gc_list_merge(&seen, collectable); | 
 | } | 
 |  | 
 | /* Walk the collectable list and check that they are really unreachable | 
 |    from the outside (some objects could have been resurrected by a | 
 |    finalizer). */ | 
 | static int | 
 | check_garbage(PyGC_Head *collectable) | 
 | { | 
 |     PyGC_Head *gc; | 
 |     for (gc = collectable->gc.gc_next; gc != collectable; | 
 |          gc = gc->gc.gc_next) { | 
 |         _PyGCHead_SET_REFS(gc, Py_REFCNT(FROM_GC(gc))); | 
 |         assert(_PyGCHead_REFS(gc) != 0); | 
 |     } | 
 |     subtract_refs(collectable); | 
 |     for (gc = collectable->gc.gc_next; gc != collectable; | 
 |          gc = gc->gc.gc_next) { | 
 |         assert(_PyGCHead_REFS(gc) >= 0); | 
 |         if (_PyGCHead_REFS(gc) != 0) | 
 |             return -1; | 
 |     } | 
 |     return 0; | 
 | } | 
 |  | 
 | static void | 
 | revive_garbage(PyGC_Head *collectable) | 
 | { | 
 |     PyGC_Head *gc; | 
 |     for (gc = collectable->gc.gc_next; gc != collectable; | 
 |          gc = gc->gc.gc_next) { | 
 |         _PyGCHead_SET_REFS(gc, GC_REACHABLE); | 
 |     } | 
 | } | 
 |  | 
 | /* Break reference cycles by clearing the containers involved.  This is | 
 |  * tricky business as the lists can be changing and we don't know which | 
 |  * objects may be freed.  It is possible I screwed something up here. | 
 |  */ | 
 | static void | 
 | delete_garbage(PyGC_Head *collectable, PyGC_Head *old) | 
 | { | 
 |     inquiry clear; | 
 |  | 
 |     while (!gc_list_is_empty(collectable)) { | 
 |         PyGC_Head *gc = collectable->gc.gc_next; | 
 |         PyObject *op = FROM_GC(gc); | 
 |  | 
 |         if (_PyRuntime.gc.debug & DEBUG_SAVEALL) { | 
 |             PyList_Append(_PyRuntime.gc.garbage, op); | 
 |         } | 
 |         else { | 
 |             if ((clear = Py_TYPE(op)->tp_clear) != NULL) { | 
 |                 Py_INCREF(op); | 
 |                 clear(op); | 
 |                 Py_DECREF(op); | 
 |             } | 
 |         } | 
 |         if (collectable->gc.gc_next == gc) { | 
 |             /* object is still alive, move it, it may die later */ | 
 |             gc_list_move(gc, old); | 
 |             _PyGCHead_SET_REFS(gc, GC_REACHABLE); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /* Clear all free lists | 
 |  * All free lists are cleared during the collection of the highest generation. | 
 |  * Allocated items in the free list may keep a pymalloc arena occupied. | 
 |  * Clearing the free lists may give back memory to the OS earlier. | 
 |  */ | 
 | static void | 
 | clear_freelists(void) | 
 | { | 
 |     (void)PyMethod_ClearFreeList(); | 
 |     (void)PyFrame_ClearFreeList(); | 
 |     (void)PyCFunction_ClearFreeList(); | 
 |     (void)PyTuple_ClearFreeList(); | 
 |     (void)PyUnicode_ClearFreeList(); | 
 |     (void)PyFloat_ClearFreeList(); | 
 |     (void)PyList_ClearFreeList(); | 
 |     (void)PyDict_ClearFreeList(); | 
 |     (void)PySet_ClearFreeList(); | 
 |     (void)PyAsyncGen_ClearFreeLists(); | 
 |     (void)PyContext_ClearFreeList(); | 
 | } | 
 |  | 
 | /* This is the main function.  Read this to understand how the | 
 |  * collection process works. */ | 
 | static Py_ssize_t | 
 | collect(int generation, Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable, | 
 |         int nofail) | 
 | { | 
 |     int i; | 
 |     Py_ssize_t m = 0; /* # objects collected */ | 
 |     Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */ | 
 |     PyGC_Head *young; /* the generation we are examining */ | 
 |     PyGC_Head *old; /* next older generation */ | 
 |     PyGC_Head unreachable; /* non-problematic unreachable trash */ | 
 |     PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */ | 
 |     PyGC_Head *gc; | 
 |     _PyTime_t t1 = 0;   /* initialize to prevent a compiler warning */ | 
 |  | 
 |     struct gc_generation_stats *stats = &_PyRuntime.gc.generation_stats[generation]; | 
 |  | 
 |     if (_PyRuntime.gc.debug & DEBUG_STATS) { | 
 |         PySys_WriteStderr("gc: collecting generation %d...\n", | 
 |                           generation); | 
 |         PySys_WriteStderr("gc: objects in each generation:"); | 
 |         for (i = 0; i < NUM_GENERATIONS; i++) | 
 |             PySys_FormatStderr(" %zd", | 
 |                               gc_list_size(GEN_HEAD(i))); | 
 |         PySys_WriteStderr("\ngc: objects in permanent generation: %zd", | 
 |                          gc_list_size(&_PyRuntime.gc.permanent_generation.head)); | 
 |         t1 = _PyTime_GetMonotonicClock(); | 
 |  | 
 |         PySys_WriteStderr("\n"); | 
 |     } | 
 |  | 
 |     if (PyDTrace_GC_START_ENABLED()) | 
 |         PyDTrace_GC_START(generation); | 
 |  | 
 |     /* update collection and allocation counters */ | 
 |     if (generation+1 < NUM_GENERATIONS) | 
 |         _PyRuntime.gc.generations[generation+1].count += 1; | 
 |     for (i = 0; i <= generation; i++) | 
 |         _PyRuntime.gc.generations[i].count = 0; | 
 |  | 
 |     /* merge younger generations with one we are currently collecting */ | 
 |     for (i = 0; i < generation; i++) { | 
 |         gc_list_merge(GEN_HEAD(i), GEN_HEAD(generation)); | 
 |     } | 
 |  | 
 |     /* handy references */ | 
 |     young = GEN_HEAD(generation); | 
 |     if (generation < NUM_GENERATIONS-1) | 
 |         old = GEN_HEAD(generation+1); | 
 |     else | 
 |         old = young; | 
 |  | 
 |     /* Using ob_refcnt and gc_refs, calculate which objects in the | 
 |      * container set are reachable from outside the set (i.e., have a | 
 |      * refcount greater than 0 when all the references within the | 
 |      * set are taken into account). | 
 |      */ | 
 |     update_refs(young); | 
 |     subtract_refs(young); | 
 |  | 
 |     /* Leave everything reachable from outside young in young, and move | 
 |      * everything else (in young) to unreachable. | 
 |      * NOTE:  This used to move the reachable objects into a reachable | 
 |      * set instead.  But most things usually turn out to be reachable, | 
 |      * so it's more efficient to move the unreachable things. | 
 |      */ | 
 |     gc_list_init(&unreachable); | 
 |     move_unreachable(young, &unreachable); | 
 |  | 
 |     /* Move reachable objects to next generation. */ | 
 |     if (young != old) { | 
 |         if (generation == NUM_GENERATIONS - 2) { | 
 |             _PyRuntime.gc.long_lived_pending += gc_list_size(young); | 
 |         } | 
 |         gc_list_merge(young, old); | 
 |     } | 
 |     else { | 
 |         /* We only untrack dicts in full collections, to avoid quadratic | 
 |            dict build-up. See issue #14775. */ | 
 |         untrack_dicts(young); | 
 |         _PyRuntime.gc.long_lived_pending = 0; | 
 |         _PyRuntime.gc.long_lived_total = gc_list_size(young); | 
 |     } | 
 |  | 
 |     /* All objects in unreachable are trash, but objects reachable from | 
 |      * legacy finalizers (e.g. tp_del) can't safely be deleted. | 
 |      */ | 
 |     gc_list_init(&finalizers); | 
 |     move_legacy_finalizers(&unreachable, &finalizers); | 
 |     /* finalizers contains the unreachable objects with a legacy finalizer; | 
 |      * unreachable objects reachable *from* those are also uncollectable, | 
 |      * and we move those into the finalizers list too. | 
 |      */ | 
 |     move_legacy_finalizer_reachable(&finalizers); | 
 |  | 
 |     /* Collect statistics on collectable objects found and print | 
 |      * debugging information. | 
 |      */ | 
 |     for (gc = unreachable.gc.gc_next; gc != &unreachable; | 
 |                     gc = gc->gc.gc_next) { | 
 |         m++; | 
 |         if (_PyRuntime.gc.debug & DEBUG_COLLECTABLE) { | 
 |             debug_cycle("collectable", FROM_GC(gc)); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Clear weakrefs and invoke callbacks as necessary. */ | 
 |     m += handle_weakrefs(&unreachable, old); | 
 |  | 
 |     /* Call tp_finalize on objects which have one. */ | 
 |     finalize_garbage(&unreachable); | 
 |  | 
 |     if (check_garbage(&unreachable)) { | 
 |         revive_garbage(&unreachable); | 
 |         gc_list_merge(&unreachable, old); | 
 |     } | 
 |     else { | 
 |         /* Call tp_clear on objects in the unreachable set.  This will cause | 
 |          * the reference cycles to be broken.  It may also cause some objects | 
 |          * in finalizers to be freed. | 
 |          */ | 
 |         delete_garbage(&unreachable, old); | 
 |     } | 
 |  | 
 |     /* Collect statistics on uncollectable objects found and print | 
 |      * debugging information. */ | 
 |     for (gc = finalizers.gc.gc_next; | 
 |          gc != &finalizers; | 
 |          gc = gc->gc.gc_next) { | 
 |         n++; | 
 |         if (_PyRuntime.gc.debug & DEBUG_UNCOLLECTABLE) | 
 |             debug_cycle("uncollectable", FROM_GC(gc)); | 
 |     } | 
 |     if (_PyRuntime.gc.debug & DEBUG_STATS) { | 
 |         _PyTime_t t2 = _PyTime_GetMonotonicClock(); | 
 |  | 
 |         if (m == 0 && n == 0) | 
 |             PySys_WriteStderr("gc: done"); | 
 |         else | 
 |             PySys_FormatStderr( | 
 |                 "gc: done, %zd unreachable, %zd uncollectable", | 
 |                 n+m, n); | 
 |         PySys_WriteStderr(", %.4fs elapsed\n", | 
 |                           _PyTime_AsSecondsDouble(t2 - t1)); | 
 |     } | 
 |  | 
 |     /* Append instances in the uncollectable set to a Python | 
 |      * reachable list of garbage.  The programmer has to deal with | 
 |      * this if they insist on creating this type of structure. | 
 |      */ | 
 |     (void)handle_legacy_finalizers(&finalizers, old); | 
 |  | 
 |     /* Clear free list only during the collection of the highest | 
 |      * generation */ | 
 |     if (generation == NUM_GENERATIONS-1) { | 
 |         clear_freelists(); | 
 |     } | 
 |  | 
 |     if (PyErr_Occurred()) { | 
 |         if (nofail) { | 
 |             PyErr_Clear(); | 
 |         } | 
 |         else { | 
 |             if (gc_str == NULL) | 
 |                 gc_str = PyUnicode_FromString("garbage collection"); | 
 |             PyErr_WriteUnraisable(gc_str); | 
 |             Py_FatalError("unexpected exception during garbage collection"); | 
 |         } | 
 |     } | 
 |  | 
 |     /* Update stats */ | 
 |     if (n_collected) | 
 |         *n_collected = m; | 
 |     if (n_uncollectable) | 
 |         *n_uncollectable = n; | 
 |     stats->collections++; | 
 |     stats->collected += m; | 
 |     stats->uncollectable += n; | 
 |  | 
 |     if (PyDTrace_GC_DONE_ENABLED()) | 
 |         PyDTrace_GC_DONE(n+m); | 
 |  | 
 |     return n+m; | 
 | } | 
 |  | 
 | /* Invoke progress callbacks to notify clients that garbage collection | 
 |  * is starting or stopping | 
 |  */ | 
 | static void | 
 | invoke_gc_callback(const char *phase, int generation, | 
 |                    Py_ssize_t collected, Py_ssize_t uncollectable) | 
 | { | 
 |     Py_ssize_t i; | 
 |     PyObject *info = NULL; | 
 |  | 
 |     /* we may get called very early */ | 
 |     if (_PyRuntime.gc.callbacks == NULL) | 
 |         return; | 
 |     /* The local variable cannot be rebound, check it for sanity */ | 
 |     assert(_PyRuntime.gc.callbacks != NULL && PyList_CheckExact(_PyRuntime.gc.callbacks)); | 
 |     if (PyList_GET_SIZE(_PyRuntime.gc.callbacks) != 0) { | 
 |         info = Py_BuildValue("{sisnsn}", | 
 |             "generation", generation, | 
 |             "collected", collected, | 
 |             "uncollectable", uncollectable); | 
 |         if (info == NULL) { | 
 |             PyErr_WriteUnraisable(NULL); | 
 |             return; | 
 |         } | 
 |     } | 
 |     for (i=0; i<PyList_GET_SIZE(_PyRuntime.gc.callbacks); i++) { | 
 |         PyObject *r, *cb = PyList_GET_ITEM(_PyRuntime.gc.callbacks, i); | 
 |         Py_INCREF(cb); /* make sure cb doesn't go away */ | 
 |         r = PyObject_CallFunction(cb, "sO", phase, info); | 
 |         Py_XDECREF(r); | 
 |         if (r == NULL) | 
 |             PyErr_WriteUnraisable(cb); | 
 |         Py_DECREF(cb); | 
 |     } | 
 |     Py_XDECREF(info); | 
 | } | 
 |  | 
 | /* Perform garbage collection of a generation and invoke | 
 |  * progress callbacks. | 
 |  */ | 
 | static Py_ssize_t | 
 | collect_with_callback(int generation) | 
 | { | 
 |     Py_ssize_t result, collected, uncollectable; | 
 |     invoke_gc_callback("start", generation, 0, 0); | 
 |     result = collect(generation, &collected, &uncollectable, 0); | 
 |     invoke_gc_callback("stop", generation, collected, uncollectable); | 
 |     return result; | 
 | } | 
 |  | 
 | static Py_ssize_t | 
 | collect_generations(void) | 
 | { | 
 |     int i; | 
 |     Py_ssize_t n = 0; | 
 |  | 
 |     /* Find the oldest generation (highest numbered) where the count | 
 |      * exceeds the threshold.  Objects in the that generation and | 
 |      * generations younger than it will be collected. */ | 
 |     for (i = NUM_GENERATIONS-1; i >= 0; i--) { | 
 |         if (_PyRuntime.gc.generations[i].count > _PyRuntime.gc.generations[i].threshold) { | 
 |             /* Avoid quadratic performance degradation in number | 
 |                of tracked objects. See comments at the beginning | 
 |                of this file, and issue #4074. | 
 |             */ | 
 |             if (i == NUM_GENERATIONS - 1 | 
 |                 && _PyRuntime.gc.long_lived_pending < _PyRuntime.gc.long_lived_total / 4) | 
 |                 continue; | 
 |             n = collect_with_callback(i); | 
 |             break; | 
 |         } | 
 |     } | 
 |     return n; | 
 | } | 
 |  | 
 | #include "clinic/gcmodule.c.h" | 
 |  | 
 | /*[clinic input] | 
 | gc.enable | 
 |  | 
 | Enable automatic garbage collection. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_enable_impl(PyObject *module) | 
 | /*[clinic end generated code: output=45a427e9dce9155c input=81ac4940ca579707]*/ | 
 | { | 
 |     _PyRuntime.gc.enabled = 1; | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.disable | 
 |  | 
 | Disable automatic garbage collection. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_disable_impl(PyObject *module) | 
 | /*[clinic end generated code: output=97d1030f7aa9d279 input=8c2e5a14e800d83b]*/ | 
 | { | 
 |     _PyRuntime.gc.enabled = 0; | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.isenabled -> bool | 
 |  | 
 | Returns true if automatic garbage collection is enabled. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static int | 
 | gc_isenabled_impl(PyObject *module) | 
 | /*[clinic end generated code: output=1874298331c49130 input=30005e0422373b31]*/ | 
 | { | 
 |     return _PyRuntime.gc.enabled; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.collect -> Py_ssize_t | 
 |  | 
 |     generation: int(c_default="NUM_GENERATIONS - 1") = 2 | 
 |  | 
 | Run the garbage collector. | 
 |  | 
 | With no arguments, run a full collection.  The optional argument | 
 | may be an integer specifying which generation to collect.  A ValueError | 
 | is raised if the generation number is invalid. | 
 |  | 
 | The number of unreachable objects is returned. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static Py_ssize_t | 
 | gc_collect_impl(PyObject *module, int generation) | 
 | /*[clinic end generated code: output=b697e633043233c7 input=40720128b682d879]*/ | 
 | { | 
 |     Py_ssize_t n; | 
 |  | 
 |     if (generation < 0 || generation >= NUM_GENERATIONS) { | 
 |         PyErr_SetString(PyExc_ValueError, "invalid generation"); | 
 |         return -1; | 
 |     } | 
 |  | 
 |     if (_PyRuntime.gc.collecting) | 
 |         n = 0; /* already collecting, don't do anything */ | 
 |     else { | 
 |         _PyRuntime.gc.collecting = 1; | 
 |         n = collect_with_callback(generation); | 
 |         _PyRuntime.gc.collecting = 0; | 
 |     } | 
 |  | 
 |     return n; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.set_debug | 
 |  | 
 |     flags: int | 
 |         An integer that can have the following bits turned on: | 
 |           DEBUG_STATS - Print statistics during collection. | 
 |           DEBUG_COLLECTABLE - Print collectable objects found. | 
 |           DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects | 
 |             found. | 
 |           DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them. | 
 |           DEBUG_LEAK - Debug leaking programs (everything but STATS). | 
 |     / | 
 |  | 
 | Set the garbage collection debugging flags. | 
 |  | 
 | Debugging information is written to sys.stderr. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_set_debug_impl(PyObject *module, int flags) | 
 | /*[clinic end generated code: output=7c8366575486b228 input=5e5ce15e84fbed15]*/ | 
 | { | 
 |     _PyRuntime.gc.debug = flags; | 
 |  | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.get_debug -> int | 
 |  | 
 | Get the garbage collection debugging flags. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static int | 
 | gc_get_debug_impl(PyObject *module) | 
 | /*[clinic end generated code: output=91242f3506cd1e50 input=91a101e1c3b98366]*/ | 
 | { | 
 |     return _PyRuntime.gc.debug; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(gc_set_thresh__doc__, | 
 | "set_threshold(threshold0, [threshold1, threshold2]) -> None\n" | 
 | "\n" | 
 | "Sets the collection thresholds.  Setting threshold0 to zero disables\n" | 
 | "collection.\n"); | 
 |  | 
 | static PyObject * | 
 | gc_set_thresh(PyObject *self, PyObject *args) | 
 | { | 
 |     int i; | 
 |     if (!PyArg_ParseTuple(args, "i|ii:set_threshold", | 
 |                           &_PyRuntime.gc.generations[0].threshold, | 
 |                           &_PyRuntime.gc.generations[1].threshold, | 
 |                           &_PyRuntime.gc.generations[2].threshold)) | 
 |         return NULL; | 
 |     for (i = 2; i < NUM_GENERATIONS; i++) { | 
 |         /* generations higher than 2 get the same threshold */ | 
 |         _PyRuntime.gc.generations[i].threshold = _PyRuntime.gc.generations[2].threshold; | 
 |     } | 
 |  | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.get_threshold | 
 |  | 
 | Return the current collection thresholds. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_get_threshold_impl(PyObject *module) | 
 | /*[clinic end generated code: output=7902bc9f41ecbbd8 input=286d79918034d6e6]*/ | 
 | { | 
 |     return Py_BuildValue("(iii)", | 
 |                          _PyRuntime.gc.generations[0].threshold, | 
 |                          _PyRuntime.gc.generations[1].threshold, | 
 |                          _PyRuntime.gc.generations[2].threshold); | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.get_count | 
 |  | 
 | Return a three-tuple of the current collection counts. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_get_count_impl(PyObject *module) | 
 | /*[clinic end generated code: output=354012e67b16398f input=a392794a08251751]*/ | 
 | { | 
 |     return Py_BuildValue("(iii)", | 
 |                          _PyRuntime.gc.generations[0].count, | 
 |                          _PyRuntime.gc.generations[1].count, | 
 |                          _PyRuntime.gc.generations[2].count); | 
 | } | 
 |  | 
 | static int | 
 | referrersvisit(PyObject* obj, PyObject *objs) | 
 | { | 
 |     Py_ssize_t i; | 
 |     for (i = 0; i < PyTuple_GET_SIZE(objs); i++) | 
 |         if (PyTuple_GET_ITEM(objs, i) == obj) | 
 |             return 1; | 
 |     return 0; | 
 | } | 
 |  | 
 | static int | 
 | gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist) | 
 | { | 
 |     PyGC_Head *gc; | 
 |     PyObject *obj; | 
 |     traverseproc traverse; | 
 |     for (gc = list->gc.gc_next; gc != list; gc = gc->gc.gc_next) { | 
 |         obj = FROM_GC(gc); | 
 |         traverse = Py_TYPE(obj)->tp_traverse; | 
 |         if (obj == objs || obj == resultlist) | 
 |             continue; | 
 |         if (traverse(obj, (visitproc)referrersvisit, objs)) { | 
 |             if (PyList_Append(resultlist, obj) < 0) | 
 |                 return 0; /* error */ | 
 |         } | 
 |     } | 
 |     return 1; /* no error */ | 
 | } | 
 |  | 
 | PyDoc_STRVAR(gc_get_referrers__doc__, | 
 | "get_referrers(*objs) -> list\n\ | 
 | Return the list of objects that directly refer to any of objs."); | 
 |  | 
 | static PyObject * | 
 | gc_get_referrers(PyObject *self, PyObject *args) | 
 | { | 
 |     int i; | 
 |     PyObject *result = PyList_New(0); | 
 |     if (!result) return NULL; | 
 |  | 
 |     for (i = 0; i < NUM_GENERATIONS; i++) { | 
 |         if (!(gc_referrers_for(args, GEN_HEAD(i), result))) { | 
 |             Py_DECREF(result); | 
 |             return NULL; | 
 |         } | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | /* Append obj to list; return true if error (out of memory), false if OK. */ | 
 | static int | 
 | referentsvisit(PyObject *obj, PyObject *list) | 
 | { | 
 |     return PyList_Append(list, obj) < 0; | 
 | } | 
 |  | 
 | PyDoc_STRVAR(gc_get_referents__doc__, | 
 | "get_referents(*objs) -> list\n\ | 
 | Return the list of objects that are directly referred to by objs."); | 
 |  | 
 | static PyObject * | 
 | gc_get_referents(PyObject *self, PyObject *args) | 
 | { | 
 |     Py_ssize_t i; | 
 |     PyObject *result = PyList_New(0); | 
 |  | 
 |     if (result == NULL) | 
 |         return NULL; | 
 |  | 
 |     for (i = 0; i < PyTuple_GET_SIZE(args); i++) { | 
 |         traverseproc traverse; | 
 |         PyObject *obj = PyTuple_GET_ITEM(args, i); | 
 |  | 
 |         if (! PyObject_IS_GC(obj)) | 
 |             continue; | 
 |         traverse = Py_TYPE(obj)->tp_traverse; | 
 |         if (! traverse) | 
 |             continue; | 
 |         if (traverse(obj, (visitproc)referentsvisit, result)) { | 
 |             Py_DECREF(result); | 
 |             return NULL; | 
 |         } | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.get_objects | 
 |  | 
 | Return a list of objects tracked by the collector (excluding the list returned). | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_get_objects_impl(PyObject *module) | 
 | /*[clinic end generated code: output=fcb95d2e23e1f750 input=9439fe8170bf35d8]*/ | 
 | { | 
 |     int i; | 
 |     PyObject* result; | 
 |  | 
 |     result = PyList_New(0); | 
 |     if (result == NULL) | 
 |         return NULL; | 
 |     for (i = 0; i < NUM_GENERATIONS; i++) { | 
 |         if (append_objects(result, GEN_HEAD(i))) { | 
 |             Py_DECREF(result); | 
 |             return NULL; | 
 |         } | 
 |     } | 
 |     return result; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.get_stats | 
 |  | 
 | Return a list of dictionaries containing per-generation statistics. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_get_stats_impl(PyObject *module) | 
 | /*[clinic end generated code: output=a8ab1d8a5d26f3ab input=1ef4ed9d17b1a470]*/ | 
 | { | 
 |     int i; | 
 |     PyObject *result; | 
 |     struct gc_generation_stats stats[NUM_GENERATIONS], *st; | 
 |  | 
 |     /* To get consistent values despite allocations while constructing | 
 |        the result list, we use a snapshot of the running stats. */ | 
 |     for (i = 0; i < NUM_GENERATIONS; i++) { | 
 |         stats[i] = _PyRuntime.gc.generation_stats[i]; | 
 |     } | 
 |  | 
 |     result = PyList_New(0); | 
 |     if (result == NULL) | 
 |         return NULL; | 
 |  | 
 |     for (i = 0; i < NUM_GENERATIONS; i++) { | 
 |         PyObject *dict; | 
 |         st = &stats[i]; | 
 |         dict = Py_BuildValue("{snsnsn}", | 
 |                              "collections", st->collections, | 
 |                              "collected", st->collected, | 
 |                              "uncollectable", st->uncollectable | 
 |                             ); | 
 |         if (dict == NULL) | 
 |             goto error; | 
 |         if (PyList_Append(result, dict)) { | 
 |             Py_DECREF(dict); | 
 |             goto error; | 
 |         } | 
 |         Py_DECREF(dict); | 
 |     } | 
 |     return result; | 
 |  | 
 | error: | 
 |     Py_XDECREF(result); | 
 |     return NULL; | 
 | } | 
 |  | 
 |  | 
 | /*[clinic input] | 
 | gc.is_tracked | 
 |  | 
 |     obj: object | 
 |     / | 
 |  | 
 | Returns true if the object is tracked by the garbage collector. | 
 |  | 
 | Simple atomic objects will return false. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_is_tracked(PyObject *module, PyObject *obj) | 
 | /*[clinic end generated code: output=14f0103423b28e31 input=d83057f170ea2723]*/ | 
 | { | 
 |     PyObject *result; | 
 |  | 
 |     if (PyObject_IS_GC(obj) && IS_TRACKED(obj)) | 
 |         result = Py_True; | 
 |     else | 
 |         result = Py_False; | 
 |     Py_INCREF(result); | 
 |     return result; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.freeze | 
 |  | 
 | Freeze all current tracked objects and ignore them for future collections. | 
 |  | 
 | This can be used before a POSIX fork() call to make the gc copy-on-write friendly. | 
 | Note: collection before a POSIX fork() call may free pages for future allocation | 
 | which can cause copy-on-write. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_freeze_impl(PyObject *module) | 
 | /*[clinic end generated code: output=502159d9cdc4c139 input=b602b16ac5febbe5]*/ | 
 | { | 
 |     for (int i = 0; i < NUM_GENERATIONS; ++i) { | 
 |         gc_list_merge(GEN_HEAD(i), &_PyRuntime.gc.permanent_generation.head); | 
 |         _PyRuntime.gc.generations[i].count = 0; | 
 |     } | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.unfreeze | 
 |  | 
 | Unfreeze all objects in the permanent generation. | 
 |  | 
 | Put all objects in the permanent generation back into oldest generation. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static PyObject * | 
 | gc_unfreeze_impl(PyObject *module) | 
 | /*[clinic end generated code: output=1c15f2043b25e169 input=2dd52b170f4cef6c]*/ | 
 | { | 
 |     gc_list_merge(&_PyRuntime.gc.permanent_generation.head, GEN_HEAD(NUM_GENERATIONS-1)); | 
 |     Py_RETURN_NONE; | 
 | } | 
 |  | 
 | /*[clinic input] | 
 | gc.get_freeze_count -> Py_ssize_t | 
 |  | 
 | Return the number of objects in the permanent generation. | 
 | [clinic start generated code]*/ | 
 |  | 
 | static Py_ssize_t | 
 | gc_get_freeze_count_impl(PyObject *module) | 
 | /*[clinic end generated code: output=61cbd9f43aa032e1 input=45ffbc65cfe2a6ed]*/ | 
 | { | 
 |     return gc_list_size(&_PyRuntime.gc.permanent_generation.head); | 
 | } | 
 |  | 
 |  | 
 | PyDoc_STRVAR(gc__doc__, | 
 | "This module provides access to the garbage collector for reference cycles.\n" | 
 | "\n" | 
 | "enable() -- Enable automatic garbage collection.\n" | 
 | "disable() -- Disable automatic garbage collection.\n" | 
 | "isenabled() -- Returns true if automatic collection is enabled.\n" | 
 | "collect() -- Do a full collection right now.\n" | 
 | "get_count() -- Return the current collection counts.\n" | 
 | "get_stats() -- Return list of dictionaries containing per-generation stats.\n" | 
 | "set_debug() -- Set debugging flags.\n" | 
 | "get_debug() -- Get debugging flags.\n" | 
 | "set_threshold() -- Set the collection thresholds.\n" | 
 | "get_threshold() -- Return the current the collection thresholds.\n" | 
 | "get_objects() -- Return a list of all objects tracked by the collector.\n" | 
 | "is_tracked() -- Returns true if a given object is tracked.\n" | 
 | "get_referrers() -- Return the list of objects that refer to an object.\n" | 
 | "get_referents() -- Return the list of objects that an object refers to.\n" | 
 | "freeze() -- Freeze all tracked objects and ignore them for future collections.\n" | 
 | "unfreeze() -- Unfreeze all objects in the permanent generation.\n" | 
 | "get_freeze_count() -- Return the number of objects in the permanent generation.\n"); | 
 |  | 
 | static PyMethodDef GcMethods[] = { | 
 |     GC_ENABLE_METHODDEF | 
 |     GC_DISABLE_METHODDEF | 
 |     GC_ISENABLED_METHODDEF | 
 |     GC_SET_DEBUG_METHODDEF | 
 |     GC_GET_DEBUG_METHODDEF | 
 |     GC_GET_COUNT_METHODDEF | 
 |     {"set_threshold",  gc_set_thresh, METH_VARARGS, gc_set_thresh__doc__}, | 
 |     GC_GET_THRESHOLD_METHODDEF | 
 |     GC_COLLECT_METHODDEF | 
 |     GC_GET_OBJECTS_METHODDEF | 
 |     GC_GET_STATS_METHODDEF | 
 |     GC_IS_TRACKED_METHODDEF | 
 |     {"get_referrers",  gc_get_referrers, METH_VARARGS, | 
 |         gc_get_referrers__doc__}, | 
 |     {"get_referents",  gc_get_referents, METH_VARARGS, | 
 |         gc_get_referents__doc__}, | 
 |     GC_FREEZE_METHODDEF | 
 |     GC_UNFREEZE_METHODDEF | 
 |     GC_GET_FREEZE_COUNT_METHODDEF | 
 |     {NULL,      NULL}           /* Sentinel */ | 
 | }; | 
 |  | 
 | static struct PyModuleDef gcmodule = { | 
 |     PyModuleDef_HEAD_INIT, | 
 |     "gc",              /* m_name */ | 
 |     gc__doc__,         /* m_doc */ | 
 |     -1,                /* m_size */ | 
 |     GcMethods,         /* m_methods */ | 
 |     NULL,              /* m_reload */ | 
 |     NULL,              /* m_traverse */ | 
 |     NULL,              /* m_clear */ | 
 |     NULL               /* m_free */ | 
 | }; | 
 |  | 
 | PyMODINIT_FUNC | 
 | PyInit_gc(void) | 
 | { | 
 |     PyObject *m; | 
 |  | 
 |     m = PyModule_Create(&gcmodule); | 
 |  | 
 |     if (m == NULL) | 
 |         return NULL; | 
 |  | 
 |     if (_PyRuntime.gc.garbage == NULL) { | 
 |         _PyRuntime.gc.garbage = PyList_New(0); | 
 |         if (_PyRuntime.gc.garbage == NULL) | 
 |             return NULL; | 
 |     } | 
 |     Py_INCREF(_PyRuntime.gc.garbage); | 
 |     if (PyModule_AddObject(m, "garbage", _PyRuntime.gc.garbage) < 0) | 
 |         return NULL; | 
 |  | 
 |     if (_PyRuntime.gc.callbacks == NULL) { | 
 |         _PyRuntime.gc.callbacks = PyList_New(0); | 
 |         if (_PyRuntime.gc.callbacks == NULL) | 
 |             return NULL; | 
 |     } | 
 |     Py_INCREF(_PyRuntime.gc.callbacks); | 
 |     if (PyModule_AddObject(m, "callbacks", _PyRuntime.gc.callbacks) < 0) | 
 |         return NULL; | 
 |  | 
 | #define ADD_INT(NAME) if (PyModule_AddIntConstant(m, #NAME, NAME) < 0) return NULL | 
 |     ADD_INT(DEBUG_STATS); | 
 |     ADD_INT(DEBUG_COLLECTABLE); | 
 |     ADD_INT(DEBUG_UNCOLLECTABLE); | 
 |     ADD_INT(DEBUG_SAVEALL); | 
 |     ADD_INT(DEBUG_LEAK); | 
 | #undef ADD_INT | 
 |     return m; | 
 | } | 
 |  | 
 | /* API to invoke gc.collect() from C */ | 
 | Py_ssize_t | 
 | PyGC_Collect(void) | 
 | { | 
 |     Py_ssize_t n; | 
 |  | 
 |     if (_PyRuntime.gc.collecting) | 
 |         n = 0; /* already collecting, don't do anything */ | 
 |     else { | 
 |         _PyRuntime.gc.collecting = 1; | 
 |         n = collect_with_callback(NUM_GENERATIONS - 1); | 
 |         _PyRuntime.gc.collecting = 0; | 
 |     } | 
 |  | 
 |     return n; | 
 | } | 
 |  | 
 | Py_ssize_t | 
 | _PyGC_CollectIfEnabled(void) | 
 | { | 
 |     if (!_PyRuntime.gc.enabled) | 
 |         return 0; | 
 |  | 
 |     return PyGC_Collect(); | 
 | } | 
 |  | 
 | Py_ssize_t | 
 | _PyGC_CollectNoFail(void) | 
 | { | 
 |     Py_ssize_t n; | 
 |  | 
 |     /* Ideally, this function is only called on interpreter shutdown, | 
 |        and therefore not recursively.  Unfortunately, when there are daemon | 
 |        threads, a daemon thread can start a cyclic garbage collection | 
 |        during interpreter shutdown (and then never finish it). | 
 |        See http://bugs.python.org/issue8713#msg195178 for an example. | 
 |        */ | 
 |     if (_PyRuntime.gc.collecting) | 
 |         n = 0; | 
 |     else { | 
 |         _PyRuntime.gc.collecting = 1; | 
 |         n = collect(NUM_GENERATIONS - 1, NULL, NULL, 1); | 
 |         _PyRuntime.gc.collecting = 0; | 
 |     } | 
 |     return n; | 
 | } | 
 |  | 
 | void | 
 | _PyGC_DumpShutdownStats(void) | 
 | { | 
 |     if (!(_PyRuntime.gc.debug & DEBUG_SAVEALL) | 
 |         && _PyRuntime.gc.garbage != NULL && PyList_GET_SIZE(_PyRuntime.gc.garbage) > 0) { | 
 |         const char *message; | 
 |         if (_PyRuntime.gc.debug & DEBUG_UNCOLLECTABLE) | 
 |             message = "gc: %zd uncollectable objects at " \ | 
 |                 "shutdown"; | 
 |         else | 
 |             message = "gc: %zd uncollectable objects at " \ | 
 |                 "shutdown; use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them"; | 
 |         /* PyErr_WarnFormat does too many things and we are at shutdown, | 
 |            the warnings module's dependencies (e.g. linecache) may be gone | 
 |            already. */ | 
 |         if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0, | 
 |                                      "gc", NULL, message, | 
 |                                      PyList_GET_SIZE(_PyRuntime.gc.garbage))) | 
 |             PyErr_WriteUnraisable(NULL); | 
 |         if (_PyRuntime.gc.debug & DEBUG_UNCOLLECTABLE) { | 
 |             PyObject *repr = NULL, *bytes = NULL; | 
 |             repr = PyObject_Repr(_PyRuntime.gc.garbage); | 
 |             if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr))) | 
 |                 PyErr_WriteUnraisable(_PyRuntime.gc.garbage); | 
 |             else { | 
 |                 PySys_WriteStderr( | 
 |                     "      %s\n", | 
 |                     PyBytes_AS_STRING(bytes) | 
 |                     ); | 
 |             } | 
 |             Py_XDECREF(repr); | 
 |             Py_XDECREF(bytes); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | void | 
 | _PyGC_Fini(void) | 
 | { | 
 |     Py_CLEAR(_PyRuntime.gc.callbacks); | 
 | } | 
 |  | 
 | /* for debugging */ | 
 | void | 
 | _PyGC_Dump(PyGC_Head *g) | 
 | { | 
 |     _PyObject_Dump(FROM_GC(g)); | 
 | } | 
 |  | 
 | /* extension modules might be compiled with GC support so these | 
 |    functions must always be available */ | 
 |  | 
 | #undef PyObject_GC_Track | 
 | #undef PyObject_GC_UnTrack | 
 | #undef PyObject_GC_Del | 
 | #undef _PyObject_GC_Malloc | 
 |  | 
 | void | 
 | PyObject_GC_Track(void *op) | 
 | { | 
 |     _PyObject_GC_TRACK(op); | 
 | } | 
 |  | 
 | void | 
 | PyObject_GC_UnTrack(void *op) | 
 | { | 
 |     /* Obscure:  the Py_TRASHCAN mechanism requires that we be able to | 
 |      * call PyObject_GC_UnTrack twice on an object. | 
 |      */ | 
 |     if (IS_TRACKED(op)) | 
 |         _PyObject_GC_UNTRACK(op); | 
 | } | 
 |  | 
 | static PyObject * | 
 | _PyObject_GC_Alloc(int use_calloc, size_t basicsize) | 
 | { | 
 |     PyObject *op; | 
 |     PyGC_Head *g; | 
 |     size_t size; | 
 |     if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) | 
 |         return PyErr_NoMemory(); | 
 |     size = sizeof(PyGC_Head) + basicsize; | 
 |     if (use_calloc) | 
 |         g = (PyGC_Head *)PyObject_Calloc(1, size); | 
 |     else | 
 |         g = (PyGC_Head *)PyObject_Malloc(size); | 
 |     if (g == NULL) | 
 |         return PyErr_NoMemory(); | 
 |     g->gc.gc_refs = 0; | 
 |     _PyGCHead_SET_REFS(g, GC_UNTRACKED); | 
 |     _PyRuntime.gc.generations[0].count++; /* number of allocated GC objects */ | 
 |     if (_PyRuntime.gc.generations[0].count > _PyRuntime.gc.generations[0].threshold && | 
 |         _PyRuntime.gc.enabled && | 
 |         _PyRuntime.gc.generations[0].threshold && | 
 |         !_PyRuntime.gc.collecting && | 
 |         !PyErr_Occurred()) { | 
 |         _PyRuntime.gc.collecting = 1; | 
 |         collect_generations(); | 
 |         _PyRuntime.gc.collecting = 0; | 
 |     } | 
 |     op = FROM_GC(g); | 
 |     return op; | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyObject_GC_Malloc(size_t basicsize) | 
 | { | 
 |     return _PyObject_GC_Alloc(0, basicsize); | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyObject_GC_Calloc(size_t basicsize) | 
 | { | 
 |     return _PyObject_GC_Alloc(1, basicsize); | 
 | } | 
 |  | 
 | PyObject * | 
 | _PyObject_GC_New(PyTypeObject *tp) | 
 | { | 
 |     PyObject *op = _PyObject_GC_Malloc(_PyObject_SIZE(tp)); | 
 |     if (op != NULL) | 
 |         op = PyObject_INIT(op, tp); | 
 |     return op; | 
 | } | 
 |  | 
 | PyVarObject * | 
 | _PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems) | 
 | { | 
 |     size_t size; | 
 |     PyVarObject *op; | 
 |  | 
 |     if (nitems < 0) { | 
 |         PyErr_BadInternalCall(); | 
 |         return NULL; | 
 |     } | 
 |     size = _PyObject_VAR_SIZE(tp, nitems); | 
 |     op = (PyVarObject *) _PyObject_GC_Malloc(size); | 
 |     if (op != NULL) | 
 |         op = PyObject_INIT_VAR(op, tp, nitems); | 
 |     return op; | 
 | } | 
 |  | 
 | PyVarObject * | 
 | _PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems) | 
 | { | 
 |     const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems); | 
 |     PyGC_Head *g = AS_GC(op); | 
 |     if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) | 
 |         return (PyVarObject *)PyErr_NoMemory(); | 
 |     g = (PyGC_Head *)PyObject_REALLOC(g,  sizeof(PyGC_Head) + basicsize); | 
 |     if (g == NULL) | 
 |         return (PyVarObject *)PyErr_NoMemory(); | 
 |     op = (PyVarObject *) FROM_GC(g); | 
 |     Py_SIZE(op) = nitems; | 
 |     return op; | 
 | } | 
 |  | 
 | void | 
 | PyObject_GC_Del(void *op) | 
 | { | 
 |     PyGC_Head *g = AS_GC(op); | 
 |     if (IS_TRACKED(op)) | 
 |         gc_list_remove(g); | 
 |     if (_PyRuntime.gc.generations[0].count > 0) { | 
 |         _PyRuntime.gc.generations[0].count--; | 
 |     } | 
 |     PyObject_FREE(g); | 
 | } |