| /* Parser generator */ |
| |
| /* For a description, see the comments at end of this file */ |
| |
| #include "Python.h" |
| #include "pgenheaders.h" |
| #include "token.h" |
| #include "node.h" |
| #include "grammar.h" |
| #include "metagrammar.h" |
| #include "pgen.h" |
| |
| extern int Py_DebugFlag; |
| extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */ |
| |
| |
| /* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */ |
| |
| typedef struct _nfaarc { |
| int ar_label; |
| int ar_arrow; |
| } nfaarc; |
| |
| typedef struct _nfastate { |
| int st_narcs; |
| nfaarc *st_arc; |
| } nfastate; |
| |
| typedef struct _nfa { |
| int nf_type; |
| char *nf_name; |
| int nf_nstates; |
| nfastate *nf_state; |
| int nf_start, nf_finish; |
| } nfa; |
| |
| /* Forward */ |
| static void compile_rhs(labellist *ll, |
| nfa *nf, node *n, int *pa, int *pb); |
| static void compile_alt(labellist *ll, |
| nfa *nf, node *n, int *pa, int *pb); |
| static void compile_item(labellist *ll, |
| nfa *nf, node *n, int *pa, int *pb); |
| static void compile_atom(labellist *ll, |
| nfa *nf, node *n, int *pa, int *pb); |
| |
| static int |
| addnfastate(nfa *nf) |
| { |
| nfastate *st; |
| |
| nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state, |
| sizeof(nfastate) * (nf->nf_nstates + 1)); |
| if (nf->nf_state == NULL) |
| Py_FatalError("out of mem"); |
| st = &nf->nf_state[nf->nf_nstates++]; |
| st->st_narcs = 0; |
| st->st_arc = NULL; |
| return st - nf->nf_state; |
| } |
| |
| static void |
| addnfaarc(nfa *nf, int from, int to, int lbl) |
| { |
| nfastate *st; |
| nfaarc *ar; |
| |
| st = &nf->nf_state[from]; |
| st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc, |
| sizeof(nfaarc) * (st->st_narcs + 1)); |
| if (st->st_arc == NULL) |
| Py_FatalError("out of mem"); |
| ar = &st->st_arc[st->st_narcs++]; |
| ar->ar_label = lbl; |
| ar->ar_arrow = to; |
| } |
| |
| static nfa * |
| newnfa(char *name) |
| { |
| nfa *nf; |
| static int type = NT_OFFSET; /* All types will be disjunct */ |
| |
| nf = (nfa *)PyObject_MALLOC(sizeof(nfa)); |
| if (nf == NULL) |
| Py_FatalError("no mem for new nfa"); |
| nf->nf_type = type++; |
| nf->nf_name = name; /* XXX strdup(name) ??? */ |
| nf->nf_nstates = 0; |
| nf->nf_state = NULL; |
| nf->nf_start = nf->nf_finish = -1; |
| return nf; |
| } |
| |
| typedef struct _nfagrammar { |
| int gr_nnfas; |
| nfa **gr_nfa; |
| labellist gr_ll; |
| } nfagrammar; |
| |
| /* Forward */ |
| static void compile_rule(nfagrammar *gr, node *n); |
| |
| static nfagrammar * |
| newnfagrammar(void) |
| { |
| nfagrammar *gr; |
| |
| gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar)); |
| if (gr == NULL) |
| Py_FatalError("no mem for new nfa grammar"); |
| gr->gr_nnfas = 0; |
| gr->gr_nfa = NULL; |
| gr->gr_ll.ll_nlabels = 0; |
| gr->gr_ll.ll_label = NULL; |
| addlabel(&gr->gr_ll, ENDMARKER, "EMPTY"); |
| return gr; |
| } |
| |
| static nfa * |
| addnfa(nfagrammar *gr, char *name) |
| { |
| nfa *nf; |
| |
| nf = newnfa(name); |
| gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa, |
| sizeof(nfa*) * (gr->gr_nnfas + 1)); |
| if (gr->gr_nfa == NULL) |
| Py_FatalError("out of mem"); |
| gr->gr_nfa[gr->gr_nnfas++] = nf; |
| addlabel(&gr->gr_ll, NAME, nf->nf_name); |
| return nf; |
| } |
| |
| #ifdef Py_DEBUG |
| |
| static const char REQNFMT[] = "metacompile: less than %d children\n"; |
| |
| #define REQN(i, count) do { \ |
| if (i < count) { \ |
| fprintf(stderr, REQNFMT, count); \ |
| Py_FatalError("REQN"); \ |
| } \ |
| } while (0) |
| |
| #else |
| #define REQN(i, count) /* empty */ |
| #endif |
| |
| static nfagrammar * |
| metacompile(node *n) |
| { |
| nfagrammar *gr; |
| int i; |
| |
| if (Py_DebugFlag) |
| printf("Compiling (meta-) parse tree into NFA grammar\n"); |
| gr = newnfagrammar(); |
| REQ(n, MSTART); |
| i = n->n_nchildren - 1; /* Last child is ENDMARKER */ |
| n = n->n_child; |
| for (; --i >= 0; n++) { |
| if (n->n_type != NEWLINE) |
| compile_rule(gr, n); |
| } |
| return gr; |
| } |
| |
| static void |
| compile_rule(nfagrammar *gr, node *n) |
| { |
| nfa *nf; |
| |
| REQ(n, RULE); |
| REQN(n->n_nchildren, 4); |
| n = n->n_child; |
| REQ(n, NAME); |
| nf = addnfa(gr, n->n_str); |
| n++; |
| REQ(n, COLON); |
| n++; |
| REQ(n, RHS); |
| compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish); |
| n++; |
| REQ(n, NEWLINE); |
| } |
| |
| static void |
| compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb) |
| { |
| int i; |
| int a, b; |
| |
| REQ(n, RHS); |
| i = n->n_nchildren; |
| REQN(i, 1); |
| n = n->n_child; |
| REQ(n, ALT); |
| compile_alt(ll, nf, n, pa, pb); |
| if (--i <= 0) |
| return; |
| n++; |
| a = *pa; |
| b = *pb; |
| *pa = addnfastate(nf); |
| *pb = addnfastate(nf); |
| addnfaarc(nf, *pa, a, EMPTY); |
| addnfaarc(nf, b, *pb, EMPTY); |
| for (; --i >= 0; n++) { |
| REQ(n, VBAR); |
| REQN(i, 1); |
| --i; |
| n++; |
| REQ(n, ALT); |
| compile_alt(ll, nf, n, &a, &b); |
| addnfaarc(nf, *pa, a, EMPTY); |
| addnfaarc(nf, b, *pb, EMPTY); |
| } |
| } |
| |
| static void |
| compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb) |
| { |
| int i; |
| int a, b; |
| |
| REQ(n, ALT); |
| i = n->n_nchildren; |
| REQN(i, 1); |
| n = n->n_child; |
| REQ(n, ITEM); |
| compile_item(ll, nf, n, pa, pb); |
| --i; |
| n++; |
| for (; --i >= 0; n++) { |
| REQ(n, ITEM); |
| compile_item(ll, nf, n, &a, &b); |
| addnfaarc(nf, *pb, a, EMPTY); |
| *pb = b; |
| } |
| } |
| |
| static void |
| compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb) |
| { |
| int i; |
| int a, b; |
| |
| REQ(n, ITEM); |
| i = n->n_nchildren; |
| REQN(i, 1); |
| n = n->n_child; |
| if (n->n_type == LSQB) { |
| REQN(i, 3); |
| n++; |
| REQ(n, RHS); |
| *pa = addnfastate(nf); |
| *pb = addnfastate(nf); |
| addnfaarc(nf, *pa, *pb, EMPTY); |
| compile_rhs(ll, nf, n, &a, &b); |
| addnfaarc(nf, *pa, a, EMPTY); |
| addnfaarc(nf, b, *pb, EMPTY); |
| REQN(i, 1); |
| n++; |
| REQ(n, RSQB); |
| } |
| else { |
| compile_atom(ll, nf, n, pa, pb); |
| if (--i <= 0) |
| return; |
| n++; |
| addnfaarc(nf, *pb, *pa, EMPTY); |
| if (n->n_type == STAR) |
| *pb = *pa; |
| else |
| REQ(n, PLUS); |
| } |
| } |
| |
| static void |
| compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb) |
| { |
| int i; |
| |
| REQ(n, ATOM); |
| i = n->n_nchildren; |
| (void)i; /* Don't warn about set but unused */ |
| REQN(i, 1); |
| n = n->n_child; |
| if (n->n_type == LPAR) { |
| REQN(i, 3); |
| n++; |
| REQ(n, RHS); |
| compile_rhs(ll, nf, n, pa, pb); |
| n++; |
| REQ(n, RPAR); |
| } |
| else if (n->n_type == NAME || n->n_type == STRING) { |
| *pa = addnfastate(nf); |
| *pb = addnfastate(nf); |
| addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str)); |
| } |
| else |
| REQ(n, NAME); |
| } |
| |
| static void |
| dumpstate(labellist *ll, nfa *nf, int istate) |
| { |
| nfastate *st; |
| int i; |
| nfaarc *ar; |
| |
| printf("%c%2d%c", |
| istate == nf->nf_start ? '*' : ' ', |
| istate, |
| istate == nf->nf_finish ? '.' : ' '); |
| st = &nf->nf_state[istate]; |
| ar = st->st_arc; |
| for (i = 0; i < st->st_narcs; i++) { |
| if (i > 0) |
| printf("\n "); |
| printf("-> %2d %s", ar->ar_arrow, |
| PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label])); |
| ar++; |
| } |
| printf("\n"); |
| } |
| |
| static void |
| dumpnfa(labellist *ll, nfa *nf) |
| { |
| int i; |
| |
| printf("NFA '%s' has %d states; start %d, finish %d\n", |
| nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish); |
| for (i = 0; i < nf->nf_nstates; i++) |
| dumpstate(ll, nf, i); |
| } |
| |
| |
| /* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */ |
| |
| static void |
| addclosure(bitset ss, nfa *nf, int istate) |
| { |
| if (addbit(ss, istate)) { |
| nfastate *st = &nf->nf_state[istate]; |
| nfaarc *ar = st->st_arc; |
| int i; |
| |
| for (i = st->st_narcs; --i >= 0; ) { |
| if (ar->ar_label == EMPTY) |
| addclosure(ss, nf, ar->ar_arrow); |
| ar++; |
| } |
| } |
| } |
| |
| typedef struct _ss_arc { |
| bitset sa_bitset; |
| int sa_arrow; |
| int sa_label; |
| } ss_arc; |
| |
| typedef struct _ss_state { |
| bitset ss_ss; |
| int ss_narcs; |
| struct _ss_arc *ss_arc; |
| int ss_deleted; |
| int ss_finish; |
| int ss_rename; |
| } ss_state; |
| |
| typedef struct _ss_dfa { |
| int sd_nstates; |
| ss_state *sd_state; |
| } ss_dfa; |
| |
| /* Forward */ |
| static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits, |
| labellist *ll, const char *msg); |
| static void simplify(int xx_nstates, ss_state *xx_state); |
| static void convert(dfa *d, int xx_nstates, ss_state *xx_state); |
| |
| static void |
| makedfa(nfagrammar *gr, nfa *nf, dfa *d) |
| { |
| int nbits = nf->nf_nstates; |
| bitset ss; |
| int xx_nstates; |
| ss_state *xx_state, *yy; |
| ss_arc *zz; |
| int istate, jstate, iarc, jarc, ibit; |
| nfastate *st; |
| nfaarc *ar; |
| |
| ss = newbitset(nbits); |
| addclosure(ss, nf, nf->nf_start); |
| xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state)); |
| if (xx_state == NULL) |
| Py_FatalError("no mem for xx_state in makedfa"); |
| xx_nstates = 1; |
| yy = &xx_state[0]; |
| yy->ss_ss = ss; |
| yy->ss_narcs = 0; |
| yy->ss_arc = NULL; |
| yy->ss_deleted = 0; |
| yy->ss_finish = testbit(ss, nf->nf_finish); |
| if (yy->ss_finish) |
| printf("Error: nonterminal '%s' may produce empty.\n", |
| nf->nf_name); |
| |
| /* This algorithm is from a book written before |
| the invention of structured programming... */ |
| |
| /* For each unmarked state... */ |
| for (istate = 0; istate < xx_nstates; ++istate) { |
| size_t size; |
| yy = &xx_state[istate]; |
| ss = yy->ss_ss; |
| /* For all its states... */ |
| for (ibit = 0; ibit < nf->nf_nstates; ++ibit) { |
| if (!testbit(ss, ibit)) |
| continue; |
| st = &nf->nf_state[ibit]; |
| /* For all non-empty arcs from this state... */ |
| for (iarc = 0; iarc < st->st_narcs; iarc++) { |
| ar = &st->st_arc[iarc]; |
| if (ar->ar_label == EMPTY) |
| continue; |
| /* Look up in list of arcs from this state */ |
| for (jarc = 0; jarc < yy->ss_narcs; ++jarc) { |
| zz = &yy->ss_arc[jarc]; |
| if (ar->ar_label == zz->sa_label) |
| goto found; |
| } |
| /* Add new arc for this state */ |
| size = sizeof(ss_arc) * (yy->ss_narcs + 1); |
| yy->ss_arc = (ss_arc *)PyObject_REALLOC( |
| yy->ss_arc, size); |
| if (yy->ss_arc == NULL) |
| Py_FatalError("out of mem"); |
| zz = &yy->ss_arc[yy->ss_narcs++]; |
| zz->sa_label = ar->ar_label; |
| zz->sa_bitset = newbitset(nbits); |
| zz->sa_arrow = -1; |
| found: ; |
| /* Add destination */ |
| addclosure(zz->sa_bitset, nf, ar->ar_arrow); |
| } |
| } |
| /* Now look up all the arrow states */ |
| for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) { |
| zz = &xx_state[istate].ss_arc[jarc]; |
| for (jstate = 0; jstate < xx_nstates; jstate++) { |
| if (samebitset(zz->sa_bitset, |
| xx_state[jstate].ss_ss, nbits)) { |
| zz->sa_arrow = jstate; |
| goto done; |
| } |
| } |
| size = sizeof(ss_state) * (xx_nstates + 1); |
| xx_state = (ss_state *)PyObject_REALLOC(xx_state, |
| size); |
| if (xx_state == NULL) |
| Py_FatalError("out of mem"); |
| zz->sa_arrow = xx_nstates; |
| yy = &xx_state[xx_nstates++]; |
| yy->ss_ss = zz->sa_bitset; |
| yy->ss_narcs = 0; |
| yy->ss_arc = NULL; |
| yy->ss_deleted = 0; |
| yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish); |
| done: ; |
| } |
| } |
| |
| if (Py_DebugFlag) |
| printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, |
| "before minimizing"); |
| |
| simplify(xx_nstates, xx_state); |
| |
| if (Py_DebugFlag) |
| printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll, |
| "after minimizing"); |
| |
| convert(d, xx_nstates, xx_state); |
| |
| /* XXX cleanup */ |
| PyObject_FREE(xx_state); |
| } |
| |
| static void |
| printssdfa(int xx_nstates, ss_state *xx_state, int nbits, |
| labellist *ll, const char *msg) |
| { |
| int i, ibit, iarc; |
| ss_state *yy; |
| ss_arc *zz; |
| |
| printf("Subset DFA %s\n", msg); |
| for (i = 0; i < xx_nstates; i++) { |
| yy = &xx_state[i]; |
| if (yy->ss_deleted) |
| continue; |
| printf(" Subset %d", i); |
| if (yy->ss_finish) |
| printf(" (finish)"); |
| printf(" { "); |
| for (ibit = 0; ibit < nbits; ibit++) { |
| if (testbit(yy->ss_ss, ibit)) |
| printf("%d ", ibit); |
| } |
| printf("}\n"); |
| for (iarc = 0; iarc < yy->ss_narcs; iarc++) { |
| zz = &yy->ss_arc[iarc]; |
| printf(" Arc to state %d, label %s\n", |
| zz->sa_arrow, |
| PyGrammar_LabelRepr( |
| &ll->ll_label[zz->sa_label])); |
| } |
| } |
| } |
| |
| |
| /* PART THREE -- SIMPLIFY DFA */ |
| |
| /* Simplify the DFA by repeatedly eliminating states that are |
| equivalent to another oner. This is NOT Algorithm 3.3 from |
| [Aho&Ullman 77]. It does not always finds the minimal DFA, |
| but it does usually make a much smaller one... (For an example |
| of sub-optimal behavior, try S: x a b+ | y a b+.) |
| */ |
| |
| static int |
| samestate(ss_state *s1, ss_state *s2) |
| { |
| int i; |
| |
| if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish) |
| return 0; |
| for (i = 0; i < s1->ss_narcs; i++) { |
| if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow || |
| s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label) |
| return 0; |
| } |
| return 1; |
| } |
| |
| static void |
| renamestates(int xx_nstates, ss_state *xx_state, int from, int to) |
| { |
| int i, j; |
| |
| if (Py_DebugFlag) |
| printf("Rename state %d to %d.\n", from, to); |
| for (i = 0; i < xx_nstates; i++) { |
| if (xx_state[i].ss_deleted) |
| continue; |
| for (j = 0; j < xx_state[i].ss_narcs; j++) { |
| if (xx_state[i].ss_arc[j].sa_arrow == from) |
| xx_state[i].ss_arc[j].sa_arrow = to; |
| } |
| } |
| } |
| |
| static void |
| simplify(int xx_nstates, ss_state *xx_state) |
| { |
| int changes; |
| int i, j; |
| |
| do { |
| changes = 0; |
| for (i = 1; i < xx_nstates; i++) { |
| if (xx_state[i].ss_deleted) |
| continue; |
| for (j = 0; j < i; j++) { |
| if (xx_state[j].ss_deleted) |
| continue; |
| if (samestate(&xx_state[i], &xx_state[j])) { |
| xx_state[i].ss_deleted++; |
| renamestates(xx_nstates, xx_state, |
| i, j); |
| changes++; |
| break; |
| } |
| } |
| } |
| } while (changes); |
| } |
| |
| |
| /* PART FOUR -- GENERATE PARSING TABLES */ |
| |
| /* Convert the DFA into a grammar that can be used by our parser */ |
| |
| static void |
| convert(dfa *d, int xx_nstates, ss_state *xx_state) |
| { |
| int i, j; |
| ss_state *yy; |
| ss_arc *zz; |
| |
| for (i = 0; i < xx_nstates; i++) { |
| yy = &xx_state[i]; |
| if (yy->ss_deleted) |
| continue; |
| yy->ss_rename = addstate(d); |
| } |
| |
| for (i = 0; i < xx_nstates; i++) { |
| yy = &xx_state[i]; |
| if (yy->ss_deleted) |
| continue; |
| for (j = 0; j < yy->ss_narcs; j++) { |
| zz = &yy->ss_arc[j]; |
| addarc(d, yy->ss_rename, |
| xx_state[zz->sa_arrow].ss_rename, |
| zz->sa_label); |
| } |
| if (yy->ss_finish) |
| addarc(d, yy->ss_rename, yy->ss_rename, 0); |
| } |
| |
| d->d_initial = 0; |
| } |
| |
| |
| /* PART FIVE -- GLUE IT ALL TOGETHER */ |
| |
| static grammar * |
| maketables(nfagrammar *gr) |
| { |
| int i; |
| nfa *nf; |
| dfa *d; |
| grammar *g; |
| |
| if (gr->gr_nnfas == 0) |
| return NULL; |
| g = newgrammar(gr->gr_nfa[0]->nf_type); |
| /* XXX first rule must be start rule */ |
| g->g_ll = gr->gr_ll; |
| |
| for (i = 0; i < gr->gr_nnfas; i++) { |
| nf = gr->gr_nfa[i]; |
| if (Py_DebugFlag) { |
| printf("Dump of NFA for '%s' ...\n", nf->nf_name); |
| dumpnfa(&gr->gr_ll, nf); |
| printf("Making DFA for '%s' ...\n", nf->nf_name); |
| } |
| d = adddfa(g, nf->nf_type, nf->nf_name); |
| makedfa(gr, gr->gr_nfa[i], d); |
| } |
| |
| return g; |
| } |
| |
| grammar * |
| pgen(node *n) |
| { |
| nfagrammar *gr; |
| grammar *g; |
| |
| gr = metacompile(n); |
| g = maketables(gr); |
| translatelabels(g); |
| addfirstsets(g); |
| PyObject_FREE(gr); |
| return g; |
| } |
| |
| grammar * |
| Py_pgen(node *n) |
| { |
| return pgen(n); |
| } |
| |
| /* |
| |
| Description |
| ----------- |
| |
| Input is a grammar in extended BNF (using * for repetition, + for |
| at-least-once repetition, [] for optional parts, | for alternatives and |
| () for grouping). This has already been parsed and turned into a parse |
| tree. |
| |
| Each rule is considered as a regular expression in its own right. |
| It is turned into a Non-deterministic Finite Automaton (NFA), which |
| is then turned into a Deterministic Finite Automaton (DFA), which is then |
| optimized to reduce the number of states. See [Aho&Ullman 77] chapter 3, |
| or similar compiler books (this technique is more often used for lexical |
| analyzers). |
| |
| The DFA's are used by the parser as parsing tables in a special way |
| that's probably unique. Before they are usable, the FIRST sets of all |
| non-terminals are computed. |
| |
| Reference |
| --------- |
| |
| [Aho&Ullman 77] |
| Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977 |
| (first edition) |
| |
| */ |