blob: 789ecccf0969c905044b95e73ef66239fe07c7f6 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
Georg Brandl8ec7f652007-08-15 14:28:01 +000024
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +000025Number-theoretic and representation functions
26---------------------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +000027
28.. function:: ceil(x)
29
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000030 Return the ceiling of *x* as a float, the smallest integer value greater than or
31 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000032
33
Christian Heimeseebb79c2008-01-03 22:32:26 +000034.. function:: copysign(x, y)
35
Mark Dickinson02c36ef2010-04-06 19:52:05 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimeseebb79c2008-01-03 22:32:26 +000038
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000039 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000040
41
Georg Brandl8ec7f652007-08-15 14:28:01 +000042.. function:: fabs(x)
43
44 Return the absolute value of *x*.
45
Georg Brandl5da652e2008-06-18 09:28:22 +000046
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000047.. function:: factorial(x)
48
Mark Dickinsonf88f7392008-06-18 09:20:17 +000049 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000050 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000051
Georg Brandl5da652e2008-06-18 09:28:22 +000052 .. versionadded:: 2.6
53
54
Georg Brandl8ec7f652007-08-15 14:28:01 +000055.. function:: floor(x)
56
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000057 Return the floor of *x* as a float, the largest integer value less than or equal
58 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60
61.. function:: fmod(x, y)
62
63 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
64 Python expression ``x % y`` may not return the same result. The intent of the C
65 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
66 precision) equal to ``x - n*y`` for some integer *n* such that the result has
67 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
68 returns a result with the sign of *y* instead, and may not be exactly computable
69 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
70 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
71 represented exactly as a float, and rounds to the surprising ``1e100``. For
72 this reason, function :func:`fmod` is generally preferred when working with
73 floats, while Python's ``x % y`` is preferred when working with integers.
74
75
76.. function:: frexp(x)
77
78 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
79 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
80 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
81 apart" the internal representation of a float in a portable way.
82
83
Mark Dickinsonfef6b132008-07-30 16:20:10 +000084.. function:: fsum(iterable)
85
86 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettinger7f48c102009-02-19 05:53:22 +000087 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonfef6b132008-07-30 16:20:10 +000088
Raymond Hettinger7f48c102009-02-19 05:53:22 +000089 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
90 0.99999999999999989
91 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
92 1.0
Mark Dickinson23957cb2008-07-30 20:23:15 +000093
Raymond Hettinger7f48c102009-02-19 05:53:22 +000094 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
95 typical case where the rounding mode is half-even. On some non-Windows
96 builds, the underlying C library uses extended precision addition and may
97 occasionally double-round an intermediate sum causing it to be off in its
98 least significant bit.
Mark Dickinson23957cb2008-07-30 20:23:15 +000099
Raymond Hettingerb2d41212009-02-19 06:57:23 +0000100 For further discussion and two alternative approaches, see the `ASPN cookbook
101 recipes for accurate floating point summation
102 <http://code.activestate.com/recipes/393090/>`_\.
103
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000104 .. versionadded:: 2.6
105
106
Christian Heimese2ca4242008-01-03 20:23:15 +0000107.. function:: isinf(x)
108
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000109 Check if the float *x* is positive or negative infinity.
Christian Heimese2ca4242008-01-03 20:23:15 +0000110
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000111 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000112
113
114.. function:: isnan(x)
115
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000116 Check if the float *x* is a NaN (not a number). For more information
117 on NaNs, see the IEEE 754 standards.
Christian Heimese2ca4242008-01-03 20:23:15 +0000118
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000119 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000120
121
Georg Brandl8ec7f652007-08-15 14:28:01 +0000122.. function:: ldexp(x, i)
123
124 Return ``x * (2**i)``. This is essentially the inverse of function
125 :func:`frexp`.
126
127
128.. function:: modf(x)
129
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000130 Return the fractional and integer parts of *x*. Both results carry the sign
131 of *x* and are floats.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000132
Georg Brandl5da652e2008-06-18 09:28:22 +0000133
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000134.. function:: trunc(x)
135
136 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Benjamin Petersonafaeaf12010-07-01 23:41:09 +0000137 a long integer). Uses the ``__trunc__`` method.
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000138
139 .. versionadded:: 2.6
140
Georg Brandl5da652e2008-06-18 09:28:22 +0000141
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142Note that :func:`frexp` and :func:`modf` have a different call/return pattern
143than their C equivalents: they take a single argument and return a pair of
144values, rather than returning their second return value through an 'output
145parameter' (there is no such thing in Python).
146
147For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
148floating-point numbers of sufficiently large magnitude are exact integers.
149Python floats typically carry no more than 53 bits of precision (the same as the
150platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
151necessarily has no fractional bits.
152
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000153
154Power and logarithmic functions
155-------------------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000156
Georg Brandl8ec7f652007-08-15 14:28:01 +0000157.. function:: exp(x)
158
159 Return ``e**x``.
160
161
162.. function:: log(x[, base])
163
Georg Brandl5be70d42009-10-27 14:50:20 +0000164 With one argument, return the natural logarithm of *x* (to base *e*).
165
166 With two arguments, return the logarithm of *x* to the given *base*,
167 calculated as ``log(x)/log(base)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168
169 .. versionchanged:: 2.3
170 *base* argument added.
171
172
Christian Heimes6f341092008-04-18 23:13:07 +0000173.. function:: log1p(x)
174
175 Return the natural logarithm of *1+x* (base *e*). The
176 result is calculated in a way which is accurate for *x* near zero.
177
178 .. versionadded:: 2.6
179
180
Georg Brandl8ec7f652007-08-15 14:28:01 +0000181.. function:: log10(x)
182
Georg Brandl5be70d42009-10-27 14:50:20 +0000183 Return the base-10 logarithm of *x*. This is usually more accurate
184 than ``log(x, 10)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185
186
187.. function:: pow(x, y)
188
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000189 Return ``x`` raised to the power ``y``. Exceptional cases follow
190 Annex 'F' of the C99 standard as far as possible. In particular,
191 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
192 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
193 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
194 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000195
196 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000197 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000198
199
200.. function:: sqrt(x)
201
202 Return the square root of *x*.
203
Georg Brandl8ec7f652007-08-15 14:28:01 +0000204
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000205Trigonometric functions
206-----------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
208.. function:: acos(x)
209
210 Return the arc cosine of *x*, in radians.
211
212
213.. function:: asin(x)
214
215 Return the arc sine of *x*, in radians.
216
217
218.. function:: atan(x)
219
220 Return the arc tangent of *x*, in radians.
221
222
223.. function:: atan2(y, x)
224
225 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
226 The vector in the plane from the origin to point ``(x, y)`` makes this angle
227 with the positive X axis. The point of :func:`atan2` is that the signs of both
228 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000229 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl8ec7f652007-08-15 14:28:01 +0000230 -1)`` is ``-3*pi/4``.
231
232
233.. function:: cos(x)
234
235 Return the cosine of *x* radians.
236
237
238.. function:: hypot(x, y)
239
240 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
241 from the origin to point ``(x, y)``.
242
243
244.. function:: sin(x)
245
246 Return the sine of *x* radians.
247
248
249.. function:: tan(x)
250
251 Return the tangent of *x* radians.
252
Georg Brandl8ec7f652007-08-15 14:28:01 +0000253
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000254Angular conversion
255------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256
257.. function:: degrees(x)
258
259 Converts angle *x* from radians to degrees.
260
261
262.. function:: radians(x)
263
264 Converts angle *x* from degrees to radians.
265
Georg Brandl8ec7f652007-08-15 14:28:01 +0000266
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000267Hyperbolic functions
268--------------------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000269
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000270.. function:: acosh(x)
271
272 Return the inverse hyperbolic cosine of *x*.
273
274 .. versionadded:: 2.6
275
276
277.. function:: asinh(x)
278
279 Return the inverse hyperbolic sine of *x*.
280
281 .. versionadded:: 2.6
282
283
284.. function:: atanh(x)
285
286 Return the inverse hyperbolic tangent of *x*.
287
288 .. versionadded:: 2.6
289
290
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291.. function:: cosh(x)
292
293 Return the hyperbolic cosine of *x*.
294
295
296.. function:: sinh(x)
297
298 Return the hyperbolic sine of *x*.
299
300
301.. function:: tanh(x)
302
303 Return the hyperbolic tangent of *x*.
304
Christian Heimes6f341092008-04-18 23:13:07 +0000305
Benjamin Petersonc6e80eb2008-12-21 17:01:26 +0000306Constants
307---------
Georg Brandl8ec7f652007-08-15 14:28:01 +0000308
Georg Brandl8ec7f652007-08-15 14:28:01 +0000309.. data:: pi
310
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000311 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000312
313
314.. data:: e
315
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000316 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000317
Christian Heimes6f341092008-04-18 23:13:07 +0000318
Georg Brandl5d2eb342009-10-27 15:08:27 +0000319.. impl-detail::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000320
321 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000322 math library functions. Behavior in exceptional cases follows Annex F of
323 the C99 standard where appropriate. The current implementation will raise
324 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
325 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
326 and :exc:`OverflowError` for results that overflow (for example,
Mark Dickinsonb30da122010-04-12 18:43:56 +0000327 ``exp(1000.0)``). A NaN will not be returned from any of the functions
328 above unless one or more of the input arguments was a NaN; in that case,
329 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000330 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
331 ``hypot(float('nan'), float('inf'))``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
Mark Dickinson80080382010-04-06 22:11:54 +0000333 Note that Python makes no effort to distinguish signaling NaNs from
334 quiet NaNs, and behavior for signaling NaNs remains unspecified.
335 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes6f341092008-04-18 23:13:07 +0000336
Georg Brandl173b7392008-05-12 17:43:13 +0000337 .. versionchanged:: 2.6
Mark Dickinson02c36ef2010-04-06 19:52:05 +0000338 Behavior in special cases now aims to follow C99 Annex F. In earlier
339 versions of Python the behavior in special cases was loosely specified.
Christian Heimes6f341092008-04-18 23:13:07 +0000340
Georg Brandl8ec7f652007-08-15 14:28:01 +0000341
342.. seealso::
343
344 Module :mod:`cmath`
345 Complex number versions of many of these functions.