blob: 592b4ea4a20eec5817cd6a99cbbc8bbd0dd49265 [file] [log] [blame]
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001/* Complex math module */
2
3/* much code borrowed from mathmodule.c */
4
Roger E. Masse24070ca1996-12-09 22:59:53 +00005#include "Python.h"
Christian Heimes53876d92008-04-19 00:31:39 +00006/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
7 float.h. We assume that FLT_RADIX is either 2 or 16. */
8#include <float.h>
Guido van Rossum71aa32f1996-01-12 01:34:57 +00009
Christian Heimes53876d92008-04-19 00:31:39 +000010#if (FLT_RADIX != 2 && FLT_RADIX != 16)
11#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
Guido van Rossum71aa32f1996-01-12 01:34:57 +000012#endif
13
Christian Heimes53876d92008-04-19 00:31:39 +000014#ifndef M_LN2
15#define M_LN2 (0.6931471805599453094) /* natural log of 2 */
16#endif
Guido van Rossum71aa32f1996-01-12 01:34:57 +000017
Christian Heimes53876d92008-04-19 00:31:39 +000018#ifndef M_LN10
19#define M_LN10 (2.302585092994045684) /* natural log of 10 */
20#endif
21
22/*
23 CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
24 inverse trig and inverse hyperbolic trig functions. Its log is used in the
Ezio Melotti13925002011-03-16 11:05:33 +020025 evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary
Christian Heimes53876d92008-04-19 00:31:39 +000026 overflow.
27 */
28
29#define CM_LARGE_DOUBLE (DBL_MAX/4.)
30#define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
31#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
32#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
33
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +000034/*
Christian Heimes53876d92008-04-19 00:31:39 +000035 CM_SCALE_UP is an odd integer chosen such that multiplication by
36 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
37 CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
38 square roots accurately when the real and imaginary parts of the argument
39 are subnormal.
40*/
41
42#if FLT_RADIX==2
43#define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
44#elif FLT_RADIX==16
45#define CM_SCALE_UP (4*DBL_MANT_DIG+1)
46#endif
47#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
Guido van Rossum71aa32f1996-01-12 01:34:57 +000048
49/* forward declarations */
Christian Heimes53876d92008-04-19 00:31:39 +000050static Py_complex c_asinh(Py_complex);
51static Py_complex c_atanh(Py_complex);
52static Py_complex c_cosh(Py_complex);
53static Py_complex c_sinh(Py_complex);
Jeremy Hylton938ace62002-07-17 16:30:39 +000054static Py_complex c_sqrt(Py_complex);
Christian Heimes53876d92008-04-19 00:31:39 +000055static Py_complex c_tanh(Py_complex);
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +000056static PyObject * math_error(void);
Guido van Rossum71aa32f1996-01-12 01:34:57 +000057
Christian Heimes53876d92008-04-19 00:31:39 +000058/* Code to deal with special values (infinities, NaNs, etc.). */
59
60/* special_type takes a double and returns an integer code indicating
61 the type of the double as follows:
62*/
63
64enum special_types {
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +000065 ST_NINF, /* 0, negative infinity */
66 ST_NEG, /* 1, negative finite number (nonzero) */
67 ST_NZERO, /* 2, -0. */
68 ST_PZERO, /* 3, +0. */
69 ST_POS, /* 4, positive finite number (nonzero) */
70 ST_PINF, /* 5, positive infinity */
71 ST_NAN /* 6, Not a Number */
Christian Heimes53876d92008-04-19 00:31:39 +000072};
73
74static enum special_types
75special_type(double d)
76{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +000077 if (Py_IS_FINITE(d)) {
78 if (d != 0) {
79 if (copysign(1., d) == 1.)
80 return ST_POS;
81 else
82 return ST_NEG;
83 }
84 else {
85 if (copysign(1., d) == 1.)
86 return ST_PZERO;
87 else
88 return ST_NZERO;
89 }
90 }
91 if (Py_IS_NAN(d))
92 return ST_NAN;
93 if (copysign(1., d) == 1.)
94 return ST_PINF;
95 else
96 return ST_NINF;
Christian Heimes53876d92008-04-19 00:31:39 +000097}
98
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +000099#define SPECIAL_VALUE(z, table) \
100 if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
101 errno = 0; \
102 return table[special_type((z).real)] \
103 [special_type((z).imag)]; \
104 }
Christian Heimes53876d92008-04-19 00:31:39 +0000105
106#define P Py_MATH_PI
107#define P14 0.25*Py_MATH_PI
108#define P12 0.5*Py_MATH_PI
109#define P34 0.75*Py_MATH_PI
Christian Heimesa342c012008-04-20 21:01:16 +0000110#define INF Py_HUGE_VAL
111#define N Py_NAN
Christian Heimes53876d92008-04-19 00:31:39 +0000112#define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
113
114/* First, the C functions that do the real work. Each of the c_*
115 functions computes and returns the C99 Annex G recommended result
116 and also sets errno as follows: errno = 0 if no floating-point
117 exception is associated with the result; errno = EDOM if C99 Annex
118 G recommends raising divide-by-zero or invalid for this result; and
119 errno = ERANGE where the overflow floating-point signal should be
120 raised.
121*/
122
Christian Heimesa342c012008-04-20 21:01:16 +0000123static Py_complex acos_special_values[7][7];
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000124
Tim Peters14e26402001-02-20 20:15:19 +0000125static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000126c_acos(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000127{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000128 Py_complex s1, s2, r;
Christian Heimes53876d92008-04-19 00:31:39 +0000129
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000130 SPECIAL_VALUE(z, acos_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000131
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000132 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
133 /* avoid unnecessary overflow for large arguments */
134 r.real = atan2(fabs(z.imag), z.real);
135 /* split into cases to make sure that the branch cut has the
136 correct continuity on systems with unsigned zeros */
137 if (z.real < 0.) {
138 r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
139 M_LN2*2., z.imag);
140 } else {
141 r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
142 M_LN2*2., -z.imag);
143 }
144 } else {
145 s1.real = 1.-z.real;
146 s1.imag = -z.imag;
147 s1 = c_sqrt(s1);
148 s2.real = 1.+z.real;
149 s2.imag = z.imag;
150 s2 = c_sqrt(s2);
151 r.real = 2.*atan2(s1.real, s2.real);
152 r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real);
153 }
154 errno = 0;
155 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000156}
157
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000158PyDoc_STRVAR(c_acos_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000159"acos(x)\n"
160"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000161"Return the arc cosine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000162
163
Christian Heimesa342c012008-04-20 21:01:16 +0000164static Py_complex acosh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000165
Tim Peters14e26402001-02-20 20:15:19 +0000166static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000167c_acosh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000168{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000169 Py_complex s1, s2, r;
Christian Heimes53876d92008-04-19 00:31:39 +0000170
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000171 SPECIAL_VALUE(z, acosh_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000172
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000173 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
174 /* avoid unnecessary overflow for large arguments */
175 r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
176 r.imag = atan2(z.imag, z.real);
177 } else {
178 s1.real = z.real - 1.;
179 s1.imag = z.imag;
180 s1 = c_sqrt(s1);
181 s2.real = z.real + 1.;
182 s2.imag = z.imag;
183 s2 = c_sqrt(s2);
184 r.real = asinh(s1.real*s2.real + s1.imag*s2.imag);
185 r.imag = 2.*atan2(s1.imag, s2.real);
186 }
187 errno = 0;
188 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000189}
190
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000191PyDoc_STRVAR(c_acosh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000192"acosh(x)\n"
193"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000194"Return the hyperbolic arccosine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000195
196
Tim Peters14e26402001-02-20 20:15:19 +0000197static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000198c_asin(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000199{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000200 /* asin(z) = -i asinh(iz) */
201 Py_complex s, r;
202 s.real = -z.imag;
203 s.imag = z.real;
204 s = c_asinh(s);
205 r.real = s.imag;
206 r.imag = -s.real;
207 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000208}
209
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000210PyDoc_STRVAR(c_asin_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000211"asin(x)\n"
212"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000213"Return the arc sine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000214
215
Christian Heimesa342c012008-04-20 21:01:16 +0000216static Py_complex asinh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000217
Tim Peters14e26402001-02-20 20:15:19 +0000218static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000219c_asinh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000220{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000221 Py_complex s1, s2, r;
Christian Heimes53876d92008-04-19 00:31:39 +0000222
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000223 SPECIAL_VALUE(z, asinh_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000224
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000225 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
226 if (z.imag >= 0.) {
227 r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
228 M_LN2*2., z.real);
229 } else {
230 r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
231 M_LN2*2., -z.real);
232 }
233 r.imag = atan2(z.imag, fabs(z.real));
234 } else {
235 s1.real = 1.+z.imag;
236 s1.imag = -z.real;
237 s1 = c_sqrt(s1);
238 s2.real = 1.-z.imag;
239 s2.imag = z.real;
240 s2 = c_sqrt(s2);
241 r.real = asinh(s1.real*s2.imag-s2.real*s1.imag);
242 r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
243 }
244 errno = 0;
245 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000246}
247
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000248PyDoc_STRVAR(c_asinh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000249"asinh(x)\n"
250"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000251"Return the hyperbolic arc sine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000252
253
Tim Peters14e26402001-02-20 20:15:19 +0000254static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000255c_atan(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000256{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000257 /* atan(z) = -i atanh(iz) */
258 Py_complex s, r;
259 s.real = -z.imag;
260 s.imag = z.real;
261 s = c_atanh(s);
262 r.real = s.imag;
263 r.imag = -s.real;
264 return r;
Christian Heimes53876d92008-04-19 00:31:39 +0000265}
266
Christian Heimese57950f2008-04-21 13:08:03 +0000267/* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
268 C99 for atan2(0., 0.). */
Christian Heimes53876d92008-04-19 00:31:39 +0000269static double
270c_atan2(Py_complex z)
271{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000272 if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
273 return Py_NAN;
274 if (Py_IS_INFINITY(z.imag)) {
275 if (Py_IS_INFINITY(z.real)) {
276 if (copysign(1., z.real) == 1.)
277 /* atan2(+-inf, +inf) == +-pi/4 */
278 return copysign(0.25*Py_MATH_PI, z.imag);
279 else
280 /* atan2(+-inf, -inf) == +-pi*3/4 */
281 return copysign(0.75*Py_MATH_PI, z.imag);
282 }
283 /* atan2(+-inf, x) == +-pi/2 for finite x */
284 return copysign(0.5*Py_MATH_PI, z.imag);
285 }
286 if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
287 if (copysign(1., z.real) == 1.)
288 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
289 return copysign(0., z.imag);
290 else
291 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
292 return copysign(Py_MATH_PI, z.imag);
293 }
294 return atan2(z.imag, z.real);
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000295}
296
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000297PyDoc_STRVAR(c_atan_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000298"atan(x)\n"
299"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000300"Return the arc tangent of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000301
302
Christian Heimesa342c012008-04-20 21:01:16 +0000303static Py_complex atanh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000304
Tim Peters14e26402001-02-20 20:15:19 +0000305static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000306c_atanh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000307{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000308 Py_complex r;
309 double ay, h;
Christian Heimes53876d92008-04-19 00:31:39 +0000310
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000311 SPECIAL_VALUE(z, atanh_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000312
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000313 /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
314 if (z.real < 0.) {
315 return c_neg(c_atanh(c_neg(z)));
316 }
Christian Heimes53876d92008-04-19 00:31:39 +0000317
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000318 ay = fabs(z.imag);
319 if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
320 /*
321 if abs(z) is large then we use the approximation
322 atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
323 of z.imag)
324 */
325 h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
326 r.real = z.real/4./h/h;
327 /* the two negations in the next line cancel each other out
328 except when working with unsigned zeros: they're there to
329 ensure that the branch cut has the correct continuity on
330 systems that don't support signed zeros */
331 r.imag = -copysign(Py_MATH_PI/2., -z.imag);
332 errno = 0;
333 } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
334 /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
335 if (ay == 0.) {
336 r.real = INF;
337 r.imag = z.imag;
338 errno = EDOM;
339 } else {
340 r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
341 r.imag = copysign(atan2(2., -ay)/2, z.imag);
342 errno = 0;
343 }
344 } else {
345 r.real = log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
346 r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
347 errno = 0;
348 }
349 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000350}
351
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000352PyDoc_STRVAR(c_atanh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000353"atanh(x)\n"
354"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000355"Return the hyperbolic arc tangent of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000356
357
Tim Peters14e26402001-02-20 20:15:19 +0000358static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000359c_cos(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000360{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000361 /* cos(z) = cosh(iz) */
362 Py_complex r;
363 r.real = -z.imag;
364 r.imag = z.real;
365 r = c_cosh(r);
366 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000367}
368
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000369PyDoc_STRVAR(c_cos_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000370"cos(x)\n"
Mark Dickinson1bd2e292009-02-28 15:53:24 +0000371"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000372"Return the cosine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000373
374
Christian Heimes53876d92008-04-19 00:31:39 +0000375/* cosh(infinity + i*y) needs to be dealt with specially */
Christian Heimesa342c012008-04-20 21:01:16 +0000376static Py_complex cosh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000377
Tim Peters14e26402001-02-20 20:15:19 +0000378static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000379c_cosh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000380{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000381 Py_complex r;
382 double x_minus_one;
Christian Heimes53876d92008-04-19 00:31:39 +0000383
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000384 /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
385 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
386 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
387 (z.imag != 0.)) {
388 if (z.real > 0) {
389 r.real = copysign(INF, cos(z.imag));
390 r.imag = copysign(INF, sin(z.imag));
391 }
392 else {
393 r.real = copysign(INF, cos(z.imag));
394 r.imag = -copysign(INF, sin(z.imag));
395 }
396 }
397 else {
398 r = cosh_special_values[special_type(z.real)]
399 [special_type(z.imag)];
400 }
401 /* need to set errno = EDOM if y is +/- infinity and x is not
402 a NaN */
403 if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
404 errno = EDOM;
405 else
406 errno = 0;
407 return r;
408 }
Christian Heimes53876d92008-04-19 00:31:39 +0000409
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000410 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
411 /* deal correctly with cases where cosh(z.real) overflows but
412 cosh(z) does not. */
413 x_minus_one = z.real - copysign(1., z.real);
414 r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
415 r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
416 } else {
417 r.real = cos(z.imag) * cosh(z.real);
418 r.imag = sin(z.imag) * sinh(z.real);
419 }
420 /* detect overflow, and set errno accordingly */
421 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
422 errno = ERANGE;
423 else
424 errno = 0;
425 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000426}
427
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000428PyDoc_STRVAR(c_cosh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000429"cosh(x)\n"
Mark Dickinson1bd2e292009-02-28 15:53:24 +0000430"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000431"Return the hyperbolic cosine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000432
433
Christian Heimes53876d92008-04-19 00:31:39 +0000434/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
435 finite y */
Christian Heimesa342c012008-04-20 21:01:16 +0000436static Py_complex exp_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000437
Tim Peters14e26402001-02-20 20:15:19 +0000438static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000439c_exp(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000440{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000441 Py_complex r;
442 double l;
Christian Heimes53876d92008-04-19 00:31:39 +0000443
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000444 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
445 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
446 && (z.imag != 0.)) {
447 if (z.real > 0) {
448 r.real = copysign(INF, cos(z.imag));
449 r.imag = copysign(INF, sin(z.imag));
450 }
451 else {
452 r.real = copysign(0., cos(z.imag));
453 r.imag = copysign(0., sin(z.imag));
454 }
455 }
456 else {
457 r = exp_special_values[special_type(z.real)]
458 [special_type(z.imag)];
459 }
460 /* need to set errno = EDOM if y is +/- infinity and x is not
461 a NaN and not -infinity */
462 if (Py_IS_INFINITY(z.imag) &&
463 (Py_IS_FINITE(z.real) ||
464 (Py_IS_INFINITY(z.real) && z.real > 0)))
465 errno = EDOM;
466 else
467 errno = 0;
468 return r;
469 }
Christian Heimes53876d92008-04-19 00:31:39 +0000470
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000471 if (z.real > CM_LOG_LARGE_DOUBLE) {
472 l = exp(z.real-1.);
473 r.real = l*cos(z.imag)*Py_MATH_E;
474 r.imag = l*sin(z.imag)*Py_MATH_E;
475 } else {
476 l = exp(z.real);
477 r.real = l*cos(z.imag);
478 r.imag = l*sin(z.imag);
479 }
480 /* detect overflow, and set errno accordingly */
481 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
482 errno = ERANGE;
483 else
484 errno = 0;
485 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000486}
487
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000488PyDoc_STRVAR(c_exp_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000489"exp(x)\n"
490"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000491"Return the exponential value e**x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000492
493
Christian Heimesa342c012008-04-20 21:01:16 +0000494static Py_complex log_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000495
Tim Peters14e26402001-02-20 20:15:19 +0000496static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000497c_log(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000498{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000499 /*
500 The usual formula for the real part is log(hypot(z.real, z.imag)).
501 There are four situations where this formula is potentially
502 problematic:
Christian Heimes53876d92008-04-19 00:31:39 +0000503
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000504 (1) the absolute value of z is subnormal. Then hypot is subnormal,
505 so has fewer than the usual number of bits of accuracy, hence may
506 have large relative error. This then gives a large absolute error
507 in the log. This can be solved by rescaling z by a suitable power
508 of 2.
Christian Heimes53876d92008-04-19 00:31:39 +0000509
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000510 (2) the absolute value of z is greater than DBL_MAX (e.g. when both
511 z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
512 Again, rescaling solves this.
Christian Heimes53876d92008-04-19 00:31:39 +0000513
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000514 (3) the absolute value of z is close to 1. In this case it's
515 difficult to achieve good accuracy, at least in part because a
516 change of 1ulp in the real or imaginary part of z can result in a
517 change of billions of ulps in the correctly rounded answer.
Christian Heimes53876d92008-04-19 00:31:39 +0000518
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000519 (4) z = 0. The simplest thing to do here is to call the
520 floating-point log with an argument of 0, and let its behaviour
521 (returning -infinity, signaling a floating-point exception, setting
522 errno, or whatever) determine that of c_log. So the usual formula
523 is fine here.
Christian Heimes53876d92008-04-19 00:31:39 +0000524
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000525 */
Christian Heimes53876d92008-04-19 00:31:39 +0000526
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000527 Py_complex r;
528 double ax, ay, am, an, h;
Christian Heimes53876d92008-04-19 00:31:39 +0000529
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000530 SPECIAL_VALUE(z, log_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000531
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000532 ax = fabs(z.real);
533 ay = fabs(z.imag);
Christian Heimes53876d92008-04-19 00:31:39 +0000534
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000535 if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
536 r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
537 } else if (ax < DBL_MIN && ay < DBL_MIN) {
538 if (ax > 0. || ay > 0.) {
539 /* catch cases where hypot(ax, ay) is subnormal */
540 r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
541 ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
542 }
543 else {
544 /* log(+/-0. +/- 0i) */
545 r.real = -INF;
546 r.imag = atan2(z.imag, z.real);
547 errno = EDOM;
548 return r;
549 }
550 } else {
551 h = hypot(ax, ay);
552 if (0.71 <= h && h <= 1.73) {
553 am = ax > ay ? ax : ay; /* max(ax, ay) */
554 an = ax > ay ? ay : ax; /* min(ax, ay) */
555 r.real = log1p((am-1)*(am+1)+an*an)/2.;
556 } else {
557 r.real = log(h);
558 }
559 }
560 r.imag = atan2(z.imag, z.real);
561 errno = 0;
562 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000563}
564
Guido van Rossumc6e22901998-12-04 19:26:43 +0000565
Tim Peters14e26402001-02-20 20:15:19 +0000566static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000567c_log10(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000568{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000569 Py_complex r;
570 int errno_save;
Christian Heimes53876d92008-04-19 00:31:39 +0000571
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000572 r = c_log(z);
573 errno_save = errno; /* just in case the divisions affect errno */
574 r.real = r.real / M_LN10;
575 r.imag = r.imag / M_LN10;
576 errno = errno_save;
577 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000578}
579
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000580PyDoc_STRVAR(c_log10_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000581"log10(x)\n"
582"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000583"Return the base-10 logarithm of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000584
585
Tim Peters14e26402001-02-20 20:15:19 +0000586static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000587c_sin(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000588{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000589 /* sin(z) = -i sin(iz) */
590 Py_complex s, r;
591 s.real = -z.imag;
592 s.imag = z.real;
593 s = c_sinh(s);
594 r.real = s.imag;
595 r.imag = -s.real;
596 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000597}
598
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000599PyDoc_STRVAR(c_sin_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000600"sin(x)\n"
601"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000602"Return the sine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000603
604
Christian Heimes53876d92008-04-19 00:31:39 +0000605/* sinh(infinity + i*y) needs to be dealt with specially */
Christian Heimesa342c012008-04-20 21:01:16 +0000606static Py_complex sinh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000607
Tim Peters14e26402001-02-20 20:15:19 +0000608static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000609c_sinh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000610{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000611 Py_complex r;
612 double x_minus_one;
Christian Heimes53876d92008-04-19 00:31:39 +0000613
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000614 /* special treatment for sinh(+/-inf + iy) if y is finite and
615 nonzero */
616 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
617 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
618 && (z.imag != 0.)) {
619 if (z.real > 0) {
620 r.real = copysign(INF, cos(z.imag));
621 r.imag = copysign(INF, sin(z.imag));
622 }
623 else {
624 r.real = -copysign(INF, cos(z.imag));
625 r.imag = copysign(INF, sin(z.imag));
626 }
627 }
628 else {
629 r = sinh_special_values[special_type(z.real)]
630 [special_type(z.imag)];
631 }
632 /* need to set errno = EDOM if y is +/- infinity and x is not
633 a NaN */
634 if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
635 errno = EDOM;
636 else
637 errno = 0;
638 return r;
639 }
Christian Heimes53876d92008-04-19 00:31:39 +0000640
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000641 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
642 x_minus_one = z.real - copysign(1., z.real);
643 r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
644 r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
645 } else {
646 r.real = cos(z.imag) * sinh(z.real);
647 r.imag = sin(z.imag) * cosh(z.real);
648 }
649 /* detect overflow, and set errno accordingly */
650 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
651 errno = ERANGE;
652 else
653 errno = 0;
654 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000655}
656
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000657PyDoc_STRVAR(c_sinh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000658"sinh(x)\n"
659"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000660"Return the hyperbolic sine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000661
662
Christian Heimesa342c012008-04-20 21:01:16 +0000663static Py_complex sqrt_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000664
Tim Peters14e26402001-02-20 20:15:19 +0000665static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000666c_sqrt(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000667{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000668 /*
669 Method: use symmetries to reduce to the case when x = z.real and y
670 = z.imag are nonnegative. Then the real part of the result is
671 given by
Christian Heimes53876d92008-04-19 00:31:39 +0000672
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000673 s = sqrt((x + hypot(x, y))/2)
Christian Heimes53876d92008-04-19 00:31:39 +0000674
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000675 and the imaginary part is
Christian Heimes53876d92008-04-19 00:31:39 +0000676
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000677 d = (y/2)/s
Christian Heimes53876d92008-04-19 00:31:39 +0000678
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000679 If either x or y is very large then there's a risk of overflow in
680 computation of the expression x + hypot(x, y). We can avoid this
681 by rewriting the formula for s as:
Christian Heimes53876d92008-04-19 00:31:39 +0000682
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000683 s = 2*sqrt(x/8 + hypot(x/8, y/8))
Christian Heimes53876d92008-04-19 00:31:39 +0000684
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000685 This costs us two extra multiplications/divisions, but avoids the
686 overhead of checking for x and y large.
Christian Heimes53876d92008-04-19 00:31:39 +0000687
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000688 If both x and y are subnormal then hypot(x, y) may also be
689 subnormal, so will lack full precision. We solve this by rescaling
690 x and y by a sufficiently large power of 2 to ensure that x and y
691 are normal.
692 */
Christian Heimes53876d92008-04-19 00:31:39 +0000693
694
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000695 Py_complex r;
696 double s,d;
697 double ax, ay;
Christian Heimes53876d92008-04-19 00:31:39 +0000698
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000699 SPECIAL_VALUE(z, sqrt_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000700
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000701 if (z.real == 0. && z.imag == 0.) {
702 r.real = 0.;
703 r.imag = z.imag;
704 return r;
705 }
Christian Heimes53876d92008-04-19 00:31:39 +0000706
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000707 ax = fabs(z.real);
708 ay = fabs(z.imag);
Christian Heimes53876d92008-04-19 00:31:39 +0000709
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000710 if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
711 /* here we catch cases where hypot(ax, ay) is subnormal */
712 ax = ldexp(ax, CM_SCALE_UP);
713 s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
714 CM_SCALE_DOWN);
715 } else {
716 ax /= 8.;
717 s = 2.*sqrt(ax + hypot(ax, ay/8.));
718 }
719 d = ay/(2.*s);
Christian Heimes53876d92008-04-19 00:31:39 +0000720
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000721 if (z.real >= 0.) {
722 r.real = s;
723 r.imag = copysign(d, z.imag);
724 } else {
725 r.real = d;
726 r.imag = copysign(s, z.imag);
727 }
728 errno = 0;
729 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000730}
731
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000732PyDoc_STRVAR(c_sqrt_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000733"sqrt(x)\n"
734"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000735"Return the square root of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000736
737
Tim Peters14e26402001-02-20 20:15:19 +0000738static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000739c_tan(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000740{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000741 /* tan(z) = -i tanh(iz) */
742 Py_complex s, r;
743 s.real = -z.imag;
744 s.imag = z.real;
745 s = c_tanh(s);
746 r.real = s.imag;
747 r.imag = -s.real;
748 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000749}
750
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000751PyDoc_STRVAR(c_tan_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000752"tan(x)\n"
753"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000754"Return the tangent of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000755
756
Christian Heimes53876d92008-04-19 00:31:39 +0000757/* tanh(infinity + i*y) needs to be dealt with specially */
Christian Heimesa342c012008-04-20 21:01:16 +0000758static Py_complex tanh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000759
Tim Peters14e26402001-02-20 20:15:19 +0000760static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000761c_tanh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000762{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000763 /* Formula:
Christian Heimes53876d92008-04-19 00:31:39 +0000764
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000765 tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
766 (1+tan(y)^2 tanh(x)^2)
Christian Heimes53876d92008-04-19 00:31:39 +0000767
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000768 To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
769 as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
770 by 4 exp(-2*x) instead, to avoid possible overflow in the
771 computation of cosh(x).
Christian Heimes53876d92008-04-19 00:31:39 +0000772
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000773 */
Christian Heimes53876d92008-04-19 00:31:39 +0000774
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000775 Py_complex r;
776 double tx, ty, cx, txty, denom;
Christian Heimes53876d92008-04-19 00:31:39 +0000777
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000778 /* special treatment for tanh(+/-inf + iy) if y is finite and
779 nonzero */
780 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
781 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
782 && (z.imag != 0.)) {
783 if (z.real > 0) {
784 r.real = 1.0;
785 r.imag = copysign(0.,
786 2.*sin(z.imag)*cos(z.imag));
787 }
788 else {
789 r.real = -1.0;
790 r.imag = copysign(0.,
791 2.*sin(z.imag)*cos(z.imag));
792 }
793 }
794 else {
795 r = tanh_special_values[special_type(z.real)]
796 [special_type(z.imag)];
797 }
798 /* need to set errno = EDOM if z.imag is +/-infinity and
799 z.real is finite */
800 if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
801 errno = EDOM;
802 else
803 errno = 0;
804 return r;
805 }
Christian Heimes53876d92008-04-19 00:31:39 +0000806
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000807 /* danger of overflow in 2.*z.imag !*/
808 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
809 r.real = copysign(1., z.real);
810 r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
811 } else {
812 tx = tanh(z.real);
813 ty = tan(z.imag);
814 cx = 1./cosh(z.real);
815 txty = tx*ty;
816 denom = 1. + txty*txty;
817 r.real = tx*(1.+ty*ty)/denom;
818 r.imag = ((ty/denom)*cx)*cx;
819 }
820 errno = 0;
821 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000822}
823
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000824PyDoc_STRVAR(c_tanh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000825"tanh(x)\n"
826"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000827"Return the hyperbolic tangent of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000828
Christian Heimes53876d92008-04-19 00:31:39 +0000829
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000830static PyObject *
831cmath_log(PyObject *self, PyObject *args)
832{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000833 Py_complex x;
834 Py_complex y;
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000835
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000836 if (!PyArg_ParseTuple(args, "D|D", &x, &y))
837 return NULL;
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000838
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000839 errno = 0;
840 PyFPE_START_PROTECT("complex function", return 0)
841 x = c_log(x);
842 if (PyTuple_GET_SIZE(args) == 2) {
843 y = c_log(y);
844 x = c_quot(x, y);
845 }
846 PyFPE_END_PROTECT(x)
847 if (errno != 0)
848 return math_error();
849 return PyComplex_FromCComplex(x);
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000850}
851
852PyDoc_STRVAR(cmath_log_doc,
853"log(x[, base]) -> the logarithm of x to the given base.\n\
854If the base not specified, returns the natural logarithm (base e) of x.");
855
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000856
857/* And now the glue to make them available from Python: */
858
Roger E. Masse24070ca1996-12-09 22:59:53 +0000859static PyObject *
Thomas Woutersf3f33dc2000-07-21 06:00:07 +0000860math_error(void)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000861{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000862 if (errno == EDOM)
863 PyErr_SetString(PyExc_ValueError, "math domain error");
864 else if (errno == ERANGE)
865 PyErr_SetString(PyExc_OverflowError, "math range error");
866 else /* Unexpected math error */
867 PyErr_SetFromErrno(PyExc_ValueError);
868 return NULL;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000869}
870
Roger E. Masse24070ca1996-12-09 22:59:53 +0000871static PyObject *
Peter Schneider-Kampf1ca8982000-07-10 09:31:34 +0000872math_1(PyObject *args, Py_complex (*func)(Py_complex))
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000873{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000874 Py_complex x,r ;
875 if (!PyArg_ParseTuple(args, "D", &x))
876 return NULL;
877 errno = 0;
878 PyFPE_START_PROTECT("complex function", return 0);
879 r = (*func)(x);
880 PyFPE_END_PROTECT(r);
881 if (errno == EDOM) {
882 PyErr_SetString(PyExc_ValueError, "math domain error");
883 return NULL;
884 }
885 else if (errno == ERANGE) {
886 PyErr_SetString(PyExc_OverflowError, "math range error");
887 return NULL;
888 }
889 else {
890 return PyComplex_FromCComplex(r);
891 }
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000892}
893
894#define FUNC1(stubname, func) \
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000895 static PyObject * stubname(PyObject *self, PyObject *args) { \
896 return math_1(args, func); \
897 }
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000898
899FUNC1(cmath_acos, c_acos)
900FUNC1(cmath_acosh, c_acosh)
901FUNC1(cmath_asin, c_asin)
902FUNC1(cmath_asinh, c_asinh)
903FUNC1(cmath_atan, c_atan)
904FUNC1(cmath_atanh, c_atanh)
905FUNC1(cmath_cos, c_cos)
906FUNC1(cmath_cosh, c_cosh)
907FUNC1(cmath_exp, c_exp)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000908FUNC1(cmath_log10, c_log10)
909FUNC1(cmath_sin, c_sin)
910FUNC1(cmath_sinh, c_sinh)
911FUNC1(cmath_sqrt, c_sqrt)
912FUNC1(cmath_tan, c_tan)
913FUNC1(cmath_tanh, c_tanh)
914
Christian Heimes53876d92008-04-19 00:31:39 +0000915static PyObject *
916cmath_phase(PyObject *self, PyObject *args)
917{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000918 Py_complex z;
919 double phi;
920 if (!PyArg_ParseTuple(args, "D:phase", &z))
921 return NULL;
922 errno = 0;
923 PyFPE_START_PROTECT("arg function", return 0)
924 phi = c_atan2(z);
925 PyFPE_END_PROTECT(phi)
926 if (errno != 0)
927 return math_error();
928 else
929 return PyFloat_FromDouble(phi);
Christian Heimes53876d92008-04-19 00:31:39 +0000930}
931
932PyDoc_STRVAR(cmath_phase_doc,
933"phase(z) -> float\n\n\
934Return argument, also known as the phase angle, of a complex.");
935
936static PyObject *
937cmath_polar(PyObject *self, PyObject *args)
938{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000939 Py_complex z;
940 double r, phi;
941 if (!PyArg_ParseTuple(args, "D:polar", &z))
942 return NULL;
943 PyFPE_START_PROTECT("polar function", return 0)
944 phi = c_atan2(z); /* should not cause any exception */
945 r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */
946 PyFPE_END_PROTECT(r)
947 if (errno != 0)
948 return math_error();
949 else
950 return Py_BuildValue("dd", r, phi);
Christian Heimes53876d92008-04-19 00:31:39 +0000951}
952
953PyDoc_STRVAR(cmath_polar_doc,
954"polar(z) -> r: float, phi: float\n\n\
955Convert a complex from rectangular coordinates to polar coordinates. r is\n\
956the distance from 0 and phi the phase angle.");
957
958/*
959 rect() isn't covered by the C99 standard, but it's not too hard to
960 figure out 'spirit of C99' rules for special value handing:
961
962 rect(x, t) should behave like exp(log(x) + it) for positive-signed x
963 rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
964 rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
965 gives nan +- i0 with the sign of the imaginary part unspecified.
966
967*/
968
Christian Heimesa342c012008-04-20 21:01:16 +0000969static Py_complex rect_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000970
971static PyObject *
972cmath_rect(PyObject *self, PyObject *args)
973{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000974 Py_complex z;
975 double r, phi;
976 if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
977 return NULL;
978 errno = 0;
979 PyFPE_START_PROTECT("rect function", return 0)
Christian Heimes53876d92008-04-19 00:31:39 +0000980
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +0000981 /* deal with special values */
982 if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
983 /* if r is +/-infinity and phi is finite but nonzero then
984 result is (+-INF +-INF i), but we need to compute cos(phi)
985 and sin(phi) to figure out the signs. */
986 if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
987 && (phi != 0.))) {
988 if (r > 0) {
989 z.real = copysign(INF, cos(phi));
990 z.imag = copysign(INF, sin(phi));
991 }
992 else {
993 z.real = -copysign(INF, cos(phi));
994 z.imag = -copysign(INF, sin(phi));
995 }
996 }
997 else {
998 z = rect_special_values[special_type(r)]
999 [special_type(phi)];
1000 }
1001 /* need to set errno = EDOM if r is a nonzero number and phi
1002 is infinite */
1003 if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
1004 errno = EDOM;
1005 else
1006 errno = 0;
1007 }
1008 else {
1009 z.real = r * cos(phi);
1010 z.imag = r * sin(phi);
1011 errno = 0;
1012 }
Christian Heimes53876d92008-04-19 00:31:39 +00001013
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001014 PyFPE_END_PROTECT(z)
1015 if (errno != 0)
1016 return math_error();
1017 else
1018 return PyComplex_FromCComplex(z);
Christian Heimes53876d92008-04-19 00:31:39 +00001019}
1020
1021PyDoc_STRVAR(cmath_rect_doc,
1022"rect(r, phi) -> z: complex\n\n\
1023Convert from polar coordinates to rectangular coordinates.");
1024
1025static PyObject *
1026cmath_isnan(PyObject *self, PyObject *args)
1027{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001028 Py_complex z;
1029 if (!PyArg_ParseTuple(args, "D:isnan", &z))
1030 return NULL;
1031 return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
Christian Heimes53876d92008-04-19 00:31:39 +00001032}
1033
1034PyDoc_STRVAR(cmath_isnan_doc,
1035"isnan(z) -> bool\n\
1036Checks if the real or imaginary part of z not a number (NaN)");
1037
1038static PyObject *
1039cmath_isinf(PyObject *self, PyObject *args)
1040{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001041 Py_complex z;
1042 if (!PyArg_ParseTuple(args, "D:isnan", &z))
1043 return NULL;
1044 return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
1045 Py_IS_INFINITY(z.imag));
Christian Heimes53876d92008-04-19 00:31:39 +00001046}
1047
1048PyDoc_STRVAR(cmath_isinf_doc,
1049"isinf(z) -> bool\n\
1050Checks if the real or imaginary part of z is infinite.");
1051
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001052
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001053PyDoc_STRVAR(module_doc,
Tim Peters14e26402001-02-20 20:15:19 +00001054"This module is always available. It provides access to mathematical\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001055"functions for complex numbers.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001056
Roger E. Masse24070ca1996-12-09 22:59:53 +00001057static PyMethodDef cmath_methods[] = {
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001058 {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
1059 {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
1060 {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
1061 {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
1062 {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
1063 {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
1064 {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
1065 {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
1066 {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
1067 {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
1068 {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
1069 {"log", cmath_log, METH_VARARGS, cmath_log_doc},
1070 {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
1071 {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
1072 {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
1073 {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
1074 {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
1075 {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
1076 {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
1077 {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
1078 {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
1079 {NULL, NULL} /* sentinel */
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001080};
1081
Martin v. Löwis1a214512008-06-11 05:26:20 +00001082
1083static struct PyModuleDef cmathmodule = {
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001084 PyModuleDef_HEAD_INIT,
1085 "cmath",
1086 module_doc,
1087 -1,
1088 cmath_methods,
1089 NULL,
1090 NULL,
1091 NULL,
1092 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00001093};
1094
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001095PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00001096PyInit_cmath(void)
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001097{
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001098 PyObject *m;
Tim Peters14e26402001-02-20 20:15:19 +00001099
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001100 m = PyModule_Create(&cmathmodule);
1101 if (m == NULL)
1102 return NULL;
Fred Drakef4e34842002-04-01 03:45:06 +00001103
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001104 PyModule_AddObject(m, "pi",
1105 PyFloat_FromDouble(Py_MATH_PI));
1106 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Christian Heimesa342c012008-04-20 21:01:16 +00001107
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001108 /* initialize special value tables */
Christian Heimesa342c012008-04-20 21:01:16 +00001109
1110#define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
1111#define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
1112
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001113 INIT_SPECIAL_VALUES(acos_special_values, {
1114 C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF)
1115 C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
1116 C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
1117 C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
1118 C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
1119 C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
1120 C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N)
1121 })
Christian Heimesa342c012008-04-20 21:01:16 +00001122
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001123 INIT_SPECIAL_VALUES(acosh_special_values, {
1124 C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
1125 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1126 C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
1127 C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
1128 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1129 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
1130 C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
1131 })
Christian Heimesa342c012008-04-20 21:01:16 +00001132
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001133 INIT_SPECIAL_VALUES(asinh_special_values, {
1134 C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
1135 C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N)
1136 C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N)
1137 C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N)
1138 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1139 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
1140 C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N)
1141 })
Christian Heimesa342c012008-04-20 21:01:16 +00001142
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001143 INIT_SPECIAL_VALUES(atanh_special_values, {
1144 C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
1145 C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N)
1146 C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N)
1147 C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N)
1148 C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N)
1149 C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N)
1150 C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N)
1151 })
Christian Heimesa342c012008-04-20 21:01:16 +00001152
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001153 INIT_SPECIAL_VALUES(cosh_special_values, {
1154 C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
1155 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1156 C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.)
1157 C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.)
1158 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1159 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1160 C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1161 })
Christian Heimesa342c012008-04-20 21:01:16 +00001162
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001163 INIT_SPECIAL_VALUES(exp_special_values, {
1164 C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
1165 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1166 C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
1167 C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
1168 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1169 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1170 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1171 })
Christian Heimesa342c012008-04-20 21:01:16 +00001172
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001173 INIT_SPECIAL_VALUES(log_special_values, {
1174 C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
1175 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1176 C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N)
1177 C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N)
1178 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1179 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
1180 C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
1181 })
Christian Heimesa342c012008-04-20 21:01:16 +00001182
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001183 INIT_SPECIAL_VALUES(sinh_special_values, {
1184 C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
1185 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1186 C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N)
1187 C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N)
1188 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1189 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1190 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1191 })
Christian Heimesa342c012008-04-20 21:01:16 +00001192
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001193 INIT_SPECIAL_VALUES(sqrt_special_values, {
1194 C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
1195 C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
1196 C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
1197 C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
1198 C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
1199 C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
1200 C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N)
1201 })
Christian Heimesa342c012008-04-20 21:01:16 +00001202
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001203 INIT_SPECIAL_VALUES(tanh_special_values, {
1204 C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
1205 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1206 C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N)
1207 C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N)
1208 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1209 C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.)
1210 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1211 })
Christian Heimesa342c012008-04-20 21:01:16 +00001212
Antoine Pitrou7f14f0d2010-05-09 16:14:21 +00001213 INIT_SPECIAL_VALUES(rect_special_values, {
1214 C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
1215 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1216 C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.)
1217 C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
1218 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1219 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1220 C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1221 })
1222 return m;
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001223}