blob: 9c3bd03698e9290c064af251c566473bfb18a425 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
Mark Dickinson603b7532010-04-06 19:55:03 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000038
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Christian Heimes072c0f12008-01-03 23:01:04 +0000100.. function:: isinf(x)
101
Mark Dickinson603b7532010-04-06 19:55:03 +0000102 Check if the float *x* is positive or negative infinity.
Christian Heimes072c0f12008-01-03 23:01:04 +0000103
Christian Heimes072c0f12008-01-03 23:01:04 +0000104
105.. function:: isnan(x)
106
Mark Dickinson603b7532010-04-06 19:55:03 +0000107 Check if the float *x* is a NaN (not a number). For more information
108 on NaNs, see the IEEE 754 standards.
Christian Heimes072c0f12008-01-03 23:01:04 +0000109
Christian Heimes072c0f12008-01-03 23:01:04 +0000110
Georg Brandl116aa622007-08-15 14:28:22 +0000111.. function:: ldexp(x, i)
112
113 Return ``x * (2**i)``. This is essentially the inverse of function
114 :func:`frexp`.
115
116
117.. function:: modf(x)
118
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000119 Return the fractional and integer parts of *x*. Both results carry the sign
120 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000121
Christian Heimes400adb02008-02-01 08:12:03 +0000122
123.. function:: trunc(x)
124
125 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000126 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000127
Christian Heimes400adb02008-02-01 08:12:03 +0000128
Georg Brandl116aa622007-08-15 14:28:22 +0000129Note that :func:`frexp` and :func:`modf` have a different call/return pattern
130than their C equivalents: they take a single argument and return a pair of
131values, rather than returning their second return value through an 'output
132parameter' (there is no such thing in Python).
133
134For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
135floating-point numbers of sufficiently large magnitude are exact integers.
136Python floats typically carry no more than 53 bits of precision (the same as the
137platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
138necessarily has no fractional bits.
139
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000140
141Power and logarithmic functions
142-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000143
Georg Brandl116aa622007-08-15 14:28:22 +0000144.. function:: exp(x)
145
146 Return ``e**x``.
147
148
Mark Dickinson664b5112009-12-16 20:23:42 +0000149.. function:: expm1(x)
150
151 Return ``e**x - 1``. For small floats *x*, the subtraction in
152 ``exp(x) - 1`` can result in a significant loss of precision; the
153 :func:`expm1` function provides a way to compute this quantity to
154 full precision::
155
156 >>> from math import exp, expm1
157 >>> exp(1e-5) - 1 # gives result accurate to 11 places
158 1.0000050000069649e-05
159 >>> expm1(1e-5) # result accurate to full precision
160 1.0000050000166668e-05
161
Mark Dickinson45f992a2009-12-19 11:20:49 +0000162 .. versionadded:: 3.2
163
Mark Dickinson664b5112009-12-16 20:23:42 +0000164
Georg Brandl116aa622007-08-15 14:28:22 +0000165.. function:: log(x[, base])
166
Georg Brandla6053b42009-09-01 08:11:14 +0000167 With one argument, return the natural logarithm of *x* (to base *e*).
168
169 With two arguments, return the logarithm of *x* to the given *base*,
170 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000171
Georg Brandl116aa622007-08-15 14:28:22 +0000172
Christian Heimes53876d92008-04-19 00:31:39 +0000173.. function:: log1p(x)
174
175 Return the natural logarithm of *1+x* (base *e*). The
176 result is calculated in a way which is accurate for *x* near zero.
177
Christian Heimes53876d92008-04-19 00:31:39 +0000178
Georg Brandl116aa622007-08-15 14:28:22 +0000179.. function:: log10(x)
180
Georg Brandla6053b42009-09-01 08:11:14 +0000181 Return the base-10 logarithm of *x*. This is usually more accurate
182 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000183
184
185.. function:: pow(x, y)
186
Christian Heimesa342c012008-04-20 21:01:16 +0000187 Return ``x`` raised to the power ``y``. Exceptional cases follow
188 Annex 'F' of the C99 standard as far as possible. In particular,
189 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
190 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
191 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
192 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000193
Georg Brandl116aa622007-08-15 14:28:22 +0000194
195.. function:: sqrt(x)
196
197 Return the square root of *x*.
198
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000199Trigonometric functions
200-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000201
202
203.. function:: acos(x)
204
205 Return the arc cosine of *x*, in radians.
206
207
208.. function:: asin(x)
209
210 Return the arc sine of *x*, in radians.
211
212
213.. function:: atan(x)
214
215 Return the arc tangent of *x*, in radians.
216
217
218.. function:: atan2(y, x)
219
220 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
221 The vector in the plane from the origin to point ``(x, y)`` makes this angle
222 with the positive X axis. The point of :func:`atan2` is that the signs of both
223 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000224 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000225 -1)`` is ``-3*pi/4``.
226
227
228.. function:: cos(x)
229
230 Return the cosine of *x* radians.
231
232
233.. function:: hypot(x, y)
234
235 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
236 from the origin to point ``(x, y)``.
237
238
239.. function:: sin(x)
240
241 Return the sine of *x* radians.
242
243
244.. function:: tan(x)
245
246 Return the tangent of *x* radians.
247
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000248Angular conversion
249------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000250
251
252.. function:: degrees(x)
253
254 Converts angle *x* from radians to degrees.
255
256
257.. function:: radians(x)
258
259 Converts angle *x* from degrees to radians.
260
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000261Hyperbolic functions
262--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000263
264
Christian Heimesa342c012008-04-20 21:01:16 +0000265.. function:: acosh(x)
266
267 Return the inverse hyperbolic cosine of *x*.
268
Christian Heimesa342c012008-04-20 21:01:16 +0000269
270.. function:: asinh(x)
271
272 Return the inverse hyperbolic sine of *x*.
273
Christian Heimesa342c012008-04-20 21:01:16 +0000274
275.. function:: atanh(x)
276
277 Return the inverse hyperbolic tangent of *x*.
278
Christian Heimesa342c012008-04-20 21:01:16 +0000279
Georg Brandl116aa622007-08-15 14:28:22 +0000280.. function:: cosh(x)
281
282 Return the hyperbolic cosine of *x*.
283
284
285.. function:: sinh(x)
286
287 Return the hyperbolic sine of *x*.
288
289
290.. function:: tanh(x)
291
292 Return the hyperbolic tangent of *x*.
293
Christian Heimes53876d92008-04-19 00:31:39 +0000294
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000295Special functions
296-----------------
297
Mark Dickinson45f992a2009-12-19 11:20:49 +0000298.. function:: erf(x)
299
300 Return the error function at *x*.
301
302 .. versionadded:: 3.2
303
304
305.. function:: erfc(x)
306
307 Return the complementary error function at *x*.
308
309 .. versionadded:: 3.2
310
311
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000312.. function:: gamma(x)
313
314 Return the Gamma function at *x*.
315
Mark Dickinson56e09662009-10-01 16:13:29 +0000316 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000317
318
Mark Dickinson05d2e082009-12-11 20:17:17 +0000319.. function:: lgamma(x)
320
321 Return the natural logarithm of the absolute value of the Gamma
322 function at *x*.
323
Mark Dickinson45f992a2009-12-19 11:20:49 +0000324 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000325
326
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000327Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000328---------
Georg Brandl116aa622007-08-15 14:28:22 +0000329
330.. data:: pi
331
Mark Dickinson603b7532010-04-06 19:55:03 +0000332 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000333
334
335.. data:: e
336
Mark Dickinson603b7532010-04-06 19:55:03 +0000337 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000338
Christian Heimes53876d92008-04-19 00:31:39 +0000339
Georg Brandl495f7b52009-10-27 15:28:25 +0000340.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000341
342 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000343 math library functions. Behavior in exceptional cases follows Annex F of
344 the C99 standard where appropriate. The current implementation will raise
345 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
346 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
347 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000348 ``exp(1000.0)``). A NaN will not be returned from any of the functions
349 above unless one or more of the input arguments was a NaN; in that case,
350 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000351 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
352 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000353
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000354 Note that Python makes no effort to distinguish signaling NaNs from
355 quiet NaNs, and behavior for signaling NaNs remains unspecified.
356 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000357
Georg Brandl116aa622007-08-15 14:28:22 +0000358
359.. seealso::
360
361 Module :mod:`cmath`
362 Complex number versions of many of these functions.