blob: c3e938c2e6ee172fe60e95e4d570f0a869e8ebc1 [file] [log] [blame]
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001\section{\module{decimal} ---
2 Decimal floating point arithmetic}
3
4\declaremodule{standard}{decimal}
5\modulesynopsis{Implementation of the General Decimal Arithmetic
6Specification.}
7
8\moduleauthor{Eric Price}{eprice at tjhsst.edu}
9\moduleauthor{Facundo Batista}{facundo at taniquetil.com.ar}
10\moduleauthor{Raymond Hettinger}{python at rcn.com}
11\moduleauthor{Aahz}{aahz at pobox.com}
12\moduleauthor{Tim Peters}{tim.one at comcast.net}
13
14\sectionauthor{Raymond D. Hettinger}{python at rcn.com}
15
16\versionadded{2.4}
17
Raymond Hettinger97c92082004-07-09 06:13:12 +000018The \module{decimal} module provides support for decimal floating point
Raymond Hettinger8de63a22004-07-05 05:52:03 +000019arithmetic. It offers several advantages over the \class{float()} datatype:
20
21\begin{itemize}
22
23\item Decimal numbers can be represented exactly. In contrast, numbers like
Raymond Hettinger65df07b2004-07-11 12:40:19 +000024\constant{1.1} do not have an exact representation in binary floating point.
Raymond Hettingerd7c71152004-07-12 13:22:14 +000025End users typically would not expect \constant{1.1} to display as
Raymond Hettinger8de63a22004-07-05 05:52:03 +000026\constant{1.1000000000000001} as it does with binary floating point.
27
28\item The exactness carries over into arithmetic. In decimal floating point,
29\samp{0.1 + 0.1 + 0.1 - 0.3} is exactly equal to zero. In binary floating
30point, result is \constant{5.5511151231257827e-017}. While near to zero, the
31differences prevent reliable equality testing and differences can accumulate.
32For this reason, decimal would be preferred in accounting applications which
33have strict equality invariants.
34
35\item The decimal module incorporates notion of significant places so that
36\samp{1.30 + 1.20} is \constant{2.50}. The trailing zero is kept to indicate
37significance. This is the customary presentation for monetary applications. For
38multiplication, the ``schoolbook'' approach uses all the figures in the
39multiplicands. For instance, \samp{1.3 * 1.2} gives \constant{1.56} while
40\samp{1.30 * 1.20} gives \constant{1.5600}.
41
42\item Unlike hardware based binary floating point, the decimal module has a user
43settable precision (defaulting to 28 places) which can be as large as needed for
44a given problem:
45
46\begin{verbatim}
47>>> getcontext().prec = 6
48>>> Decimal(1) / Decimal(7)
49Decimal("0.142857")
50>>> getcontext().prec = 28
51>>> Decimal(1) / Decimal(7)
52Decimal("0.1428571428571428571428571429")
53\end{verbatim}
54
55\item Both binary and decimal floating point are implemented in terms of published
56standards. While the built-in float type exposes only a modest portion of its
57capabilities, the decimal module exposes all required parts of the standard.
58When needed, the programmer has full control over rounding and signal handling.
59
60\end{itemize}
61
62
63The module design is centered around three concepts: the decimal number, the
64context for arithmetic, and signals.
65
66A decimal number is immutable. It has a sign, coefficient digits, and an
67exponent. To preserve significance, the coefficient digits do not truncate
68trailing zeroes. Decimals also include special values such as
Raymond Hettinger5aa478b2004-07-09 10:02:53 +000069\constant{Infinity}, \constant{-Infinity}, and \constant{NaN}. The standard
70also differentiates \constant{-0} from \constant{+0}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +000071
72The context for arithmetic is an environment specifying precision, rounding
Raymond Hettinger65df07b2004-07-11 12:40:19 +000073rules, limits on exponents, flags indicating the results of operations,
74and trap enablers which determine whether signals are treated as
Raymond Hettinger8de63a22004-07-05 05:52:03 +000075exceptions. Rounding options include \constant{ROUND_CEILING},
76\constant{ROUND_DOWN}, \constant{ROUND_FLOOR}, \constant{ROUND_HALF_DOWN},
77\constant{ROUND_HALF_EVEN}, \constant{ROUND_HALF_UP}, and \constant{ROUND_UP}.
78
Raymond Hettinger65df07b2004-07-11 12:40:19 +000079Signals are groups of exceptional conditions arising during the course of
80computation. Depending on the needs of the application, signals may be
Raymond Hettinger8de63a22004-07-05 05:52:03 +000081ignored, considered as informational, or treated as exceptions. The signals in
82the decimal module are: \constant{Clamped}, \constant{InvalidOperation},
Raymond Hettinger5aa478b2004-07-09 10:02:53 +000083\constant{DivisionByZero}, \constant{Inexact}, \constant{Rounded},
Raymond Hettinger8de63a22004-07-05 05:52:03 +000084\constant{Subnormal}, \constant{Overflow}, and \constant{Underflow}.
85
86For each signal there is a flag and a trap enabler. When a signal is
87encountered, its flag incremented from zero and, then, if the trap enabler
Raymond Hettinger97c92082004-07-09 06:13:12 +000088is set to one, an exception is raised. Flags are sticky, so the user
89needs to reset them before monitoring a calculation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +000090
91
92\begin{seealso}
93 \seetext{IBM's General Decimal Arithmetic Specification,
94 \citetitle[http://www2.hursley.ibm.com/decimal/decarith.html]
95 {The General Decimal Arithmetic Specification}.}
96
97 \seetext{IEEE standard 854-1987,
Raymond Hettinger536f76b2004-07-08 09:22:33 +000098 \citetitle[http://www.cs.berkeley.edu/\textasciitilde ejr/projects/754/private/drafts/854-1987/dir.html]
Raymond Hettinger8de63a22004-07-05 05:52:03 +000099 {Unofficial IEEE 854 Text}.}
100\end{seealso}
101
102
103
104%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105\subsection{Quick-start Tutorial \label{decimal-tutorial}}
106
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000107The usual start to using decimals is importing the module, viewing the current
108context with \function{getcontext()} and, if necessary, setting new values
109for precision, rounding, or enabled traps:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000110
111\begin{verbatim}
112>>> from decimal import *
113>>> getcontext()
114Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000115 capitals=1, flags=[], traps=[Overflow, InvalidOperation,
116 DivisionByZero])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000117
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000118>>> getcontext().prec = 7 # Set a new precision
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000119\end{verbatim}
120
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000121
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000122Decimal instances can be constructed from integers, strings or tuples. To
123create a Decimal from a \class{float}, first convert it to a string. This
124serves as an explicit reminder of the details of the conversion (including
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000125representation error). Decimal numbers include special values such as
126\constant{NaN} which stands for ``Not a number'', positive and negative
127\constant{Infinity}, and \constant{-0}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000128
129\begin{verbatim}
130>>> Decimal(10)
131Decimal("10")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000132>>> Decimal("3.14")
133Decimal("3.14")
134>>> Decimal((0, (3, 1, 4), -2))
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000135Decimal("3.14")
136>>> Decimal(str(2.0 ** 0.5))
137Decimal("1.41421356237")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000138>>> Decimal("NaN")
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000139Decimal("NaN")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000140>>> Decimal("-Infinity")
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000141Decimal("-Infinity")
142\end{verbatim}
143
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000144
145The significance of a new Decimal is determined solely by the number
146of digits input. Context precision and rounding only come into play during
147arithmetic operations.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000148
149\begin{verbatim}
150>>> getcontext().prec = 6
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000151>>> Decimal('3.0')
152Decimal("3.0")
153>>> Decimal('3.1415926535')
154Decimal("3.1415926535")
155>>> Decimal('3.1415926535') + Decimal('2.7182818285')
156Decimal("5.85987")
157>>> getcontext().rounding = ROUND_UP
158>>> Decimal('3.1415926535') + Decimal('2.7182818285')
159Decimal("5.85988")
160\end{verbatim}
161
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000162
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000163Decimals interact well with much of the rest of python. Here is a small
164decimal floating point flying circus:
165
166\begin{verbatim}
167>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
168>>> max(data)
169Decimal("9.25")
170>>> min(data)
171Decimal("0.03")
172>>> sorted(data)
173[Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal("1.87"),
174 Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]
175>>> sum(data)
176Decimal("19.29")
177>>> a,b,c = data[:3]
178>>> str(a)
179'1.34'
180>>> float(a)
1811.3400000000000001
Raymond Hettinger92960232004-07-14 21:06:55 +0000182>>> round(a, 1) # round() first converts to binary floating point
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001831.3
184>>> int(a)
1851
186>>> a * 5
187Decimal("6.70")
188>>> a * b
189Decimal("2.5058")
190>>> c % a
191Decimal("0.77")
192\end{verbatim}
193
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000194The \method{quantize()} method rounds a number to a fixed exponent. This
195method is useful for monetary applications that often round results to a fixed
196number of places:
197
198\begin{verbatim}
199>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
200Decimal("7.32")
201>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
202Decimal("8")
203\end{verbatim}
204
205As shown above, the \function{getcontext()} function accesses the current
206context and allows the settings to be changed. This approach meets the
207needs of most applications.
208
209For more advanced work, it may be useful to create alternate contexts using
210the Context() constructor. To make an alternate active, use the
211\function{setcontext()} function.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000212
213In accordance with the standard, the \module{Decimal} module provides two
214ready to use standard contexts, \constant{BasicContext} and
215\constant{ExtendedContext}. The former is especially useful for debugging
216because many of the traps are enabled:
217
218\begin{verbatim}
219>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000220>>> setcontext(myothercontext)
221>>> Decimal(1) / Decimal(7)
222Decimal("0.142857142857142857142857142857142857142857142857142857142857")
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000223
224>>> ExtendedContext
225Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
226 capitals=1, flags=[], traps=[])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000227>>> setcontext(ExtendedContext)
228>>> Decimal(1) / Decimal(7)
229Decimal("0.142857143")
230>>> Decimal(42) / Decimal(0)
231Decimal("Infinity")
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000232
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000233>>> setcontext(BasicContext)
234>>> Decimal(42) / Decimal(0)
235Traceback (most recent call last):
236 File "<pyshell#143>", line 1, in -toplevel-
237 Decimal(42) / Decimal(0)
238DivisionByZero: x / 0
239\end{verbatim}
240
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000241
242Contexts also have signal flags for monitoring exceptional conditions
243encountered during computations. The flags remain set until explicitly
244cleared, so it is best to clear the flags before each set of monitored
245computations by using the \method{clear_flags()} method.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000246
247\begin{verbatim}
248>>> setcontext(ExtendedContext)
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000249>>> getcontext().clear_flags()
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000250>>> Decimal(355) / Decimal(113)
251Decimal("3.14159292")
252>>> getcontext()
253Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Raymond Hettingerbf440692004-07-10 14:14:37 +0000254 capitals=1, flags=[Inexact, Rounded], traps=[])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000255\end{verbatim}
256
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000257The \var{flags} entry shows that the rational approximation to \constant{Pi}
258was rounded (digits beyond the context precision were thrown away) and that
259the result is inexact (some of the discarded digits were non-zero).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000260
Raymond Hettingerbf440692004-07-10 14:14:37 +0000261Individual traps are set using the dictionary in the \member{traps}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000262field of a context:
263
264\begin{verbatim}
265>>> Decimal(1) / Decimal(0)
266Decimal("Infinity")
Raymond Hettingerbf440692004-07-10 14:14:37 +0000267>>> getcontext().traps[DivisionByZero] = 1
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000268>>> Decimal(1) / Decimal(0)
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000269Traceback (most recent call last):
270 File "<pyshell#112>", line 1, in -toplevel-
271 Decimal(1) / Decimal(0)
272DivisionByZero: x / 0
273\end{verbatim}
274
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000275Most programs adjust the current context only once, at the beginning of the
276program. And, in many applications, data is converted to \class{Decimal} with
277a single cast inside a loop. With context set and decimals created, the bulk
278of the program manipulates the data no differently than with other Python
279numeric types.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000280
281
282
283%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
284\subsection{Decimal objects \label{decimal-decimal}}
285
286\begin{classdesc}{Decimal}{\optional{value \optional{, context}}}
287 Constructs a new \class{Decimal} object based from \var{value}.
288
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000289 \var{value} can be an integer, string, tuple, or another \class{Decimal}
290 object. If no \var{value} is given, returns \code{Decimal("0")}. If
291 \var{value} is a string, it should conform to the decimal numeric string
292 syntax:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000293
294 \begin{verbatim}
295 sign ::= '+' | '-'
296 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
297 indicator ::= 'e' | 'E'
298 digits ::= digit [digit]...
299 decimal-part ::= digits '.' [digits] | ['.'] digits
300 exponent-part ::= indicator [sign] digits
301 infinity ::= 'Infinity' | 'Inf'
302 nan ::= 'NaN' [digits] | 'sNaN' [digits]
303 numeric-value ::= decimal-part [exponent-part] | infinity
304 numeric-string ::= [sign] numeric-value | [sign] nan
305 \end{verbatim}
306
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000307 If \var{value} is a \class{tuple}, it should have three components,
308 a sign (\constant{0} for positive or \constant{1} for negative),
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000309 a \class{tuple} of digits, and an integer exponent. For example,
310 \samp{Decimal((0, (1, 4, 1, 4), -3))} returns \code{Decimal("1.414")}.
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000311
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000312 The \var{context} precision does not affect how many digits are stored.
313 That is determined exclusively by the number of digits in \var{value}. For
314 example, \samp{Decimal("3.00000")} records all five zeroes even if the
315 context precision is only three.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000316
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000317 The purpose of the \var{context} argument is determining what to do if
318 \var{value} is a malformed string. If the context traps
319 \constant{InvalidOperation}, an exception is raised; otherwise, the
320 constructor returns a new Decimal with the value of \constant{NaN}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000321
322 Once constructed, \class{Decimal} objects are immutable.
323\end{classdesc}
324
325Decimal floating point objects share many properties with the other builtin
326numeric types such as \class{float} and \class{int}. All of the usual
327math operations and special methods apply. Likewise, decimal objects can
328be copied, pickled, printed, used as dictionary keys, used as set elements,
329compared, sorted, and coerced to another type (such as \class{float}
330or \class{long}).
331
332In addition to the standard numeric properties, decimal floating point objects
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000333also have a number of specialized methods:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000334
335\begin{methoddesc}{adjusted}{}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000336 Return the adjusted exponent after shifting out the coefficient's rightmost
337 digits until only the lead digit remains: \code{Decimal("321e+5").adjusted()}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000338 returns seven. Used for determining the position of the most significant
339 digit with respect to the decimal point.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000340\end{methoddesc}
341
342\begin{methoddesc}{as_tuple}{}
343 Returns a tuple representation of the number:
344 \samp{(sign, digittuple, exponent)}.
345\end{methoddesc}
346
347\begin{methoddesc}{compare}{other\optional{, context}}
348 Compares like \method{__cmp__()} but returns a decimal instance:
349 \begin{verbatim}
350 a or b is a NaN ==> Decimal("NaN")
351 a < b ==> Decimal("-1")
352 a == b ==> Decimal("0")
353 a > b ==> Decimal("1")
354 \end{verbatim}
355\end{methoddesc}
356
357\begin{methoddesc}{max}{other\optional{, context}}
Facundo Batista44160942004-11-12 02:03:36 +0000358 Like \samp{max(self, other)} except that the context rounding rule
359 is applied before returning and that \constant{NaN} values are
360 either signalled or ignored (depending on the context and whether
361 they are signaling or quiet).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000362\end{methoddesc}
363
364\begin{methoddesc}{min}{other\optional{, context}}
Facundo Batista44160942004-11-12 02:03:36 +0000365 Like \samp{min(self, other)} except that the context rounding rule
366 is applied before returning and that \constant{NaN} values are
367 either signalled or ignored (depending on the context and whether
368 they are signaling or quiet).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000369\end{methoddesc}
370
371\begin{methoddesc}{normalize}{\optional{context}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000372 Normalize the number by stripping the rightmost trailing zeroes and
373 converting any result equal to \constant{Decimal("0")} to
374 \constant{Decimal("0e0")}. Used for producing canonical values for members
375 of an equivalence class. For example, \code{Decimal("32.100")} and
376 \code{Decimal("0.321000e+2")} both normalize to the equivalent value
Raymond Hettinger8df4e6b2004-08-15 23:51:38 +0000377 \code{Decimal("32.1")}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000378\end{methoddesc}
379
380\begin{methoddesc}{quantize}
Facundo Batista139af022004-11-20 00:33:51 +0000381 {exp \optional{, rounding\optional{, context\optional{, watchexp}}}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000382 Quantize makes the exponent the same as \var{exp}. Searches for a
383 rounding method in \var{rounding}, then in \var{context}, and then
384 in the current context.
385
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000386 If \var{watchexp} is set (default), then an error is returned whenever
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000387 the resulting exponent is greater than \member{Emax} or less than
388 \member{Etiny}.
389\end{methoddesc}
390
391\begin{methoddesc}{remainder_near}{other\optional{, context}}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000392 Computes the modulo as either a positive or negative value depending
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000393 on which is closest to zero. For instance,
394 \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
395 which is closer to zero than \code{Decimal("4")}.
396
397 If both are equally close, the one chosen will have the same sign
398 as \var{self}.
399\end{methoddesc}
400
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000401\begin{methoddesc}{same_quantum}{other\optional{, context}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000402 Test whether self and other have the same exponent or whether both
403 are \constant{NaN}.
404\end{methoddesc}
405
406\begin{methoddesc}{sqrt}{\optional{context}}
407 Return the square root to full precision.
408\end{methoddesc}
409
410\begin{methoddesc}{to_eng_string}{\optional{context}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000411 Convert to an engineering-type string.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000412
413 Engineering notation has an exponent which is a multiple of 3, so there
414 are up to 3 digits left of the decimal place. For example, converts
415 \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
416\end{methoddesc}
417
418\begin{methoddesc}{to_integral}{\optional{rounding\optional{, context}}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000419 Rounds to the nearest integer without signaling \constant{Inexact}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000420 or \constant{Rounded}. If given, applies \var{rounding}; otherwise,
421 uses the rounding method in either the supplied \var{context} or the
422 current context.
423\end{methoddesc}
424
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000425
426
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000427%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
428\subsection{Context objects \label{decimal-decimal}}
429
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000430Contexts are environments for arithmetic operations. They govern precision,
431set rules for rounding, determine which signals are treated as exceptions, and
432limit the range for exponents.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000433
434Each thread has its own current context which is accessed or changed using
435the \function{getcontext()} and \function{setcontext()} functions:
436
437\begin{funcdesc}{getcontext}{}
438 Return the current context for the active thread.
439\end{funcdesc}
440
441\begin{funcdesc}{setcontext}{c}
442 Set the current context for the active thread to \var{c}.
443\end{funcdesc}
444
445New contexts can formed using the \class{Context} constructor described below.
446In addition, the module provides three pre-made contexts:
447
448
449\begin{classdesc*}{BasicContext}
450 This is a standard context defined by the General Decimal Arithmetic
451 Specification. Precision is set to nine. Rounding is set to
452 \constant{ROUND_HALF_UP}. All flags are cleared. All traps are enabled
453 (treated as exceptions) except \constant{Inexact}, \constant{Rounded}, and
454 \constant{Subnormal}.
455
456 Because many of the traps are enabled, this context is useful for debugging.
457\end{classdesc*}
458
459\begin{classdesc*}{ExtendedContext}
460 This is a standard context defined by the General Decimal Arithmetic
461 Specification. Precision is set to nine. Rounding is set to
462 \constant{ROUND_HALF_EVEN}. All flags are cleared. No traps are enabled
463 (so that exceptions are not raised during computations).
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000464
465 Because the trapped are disabled, this context is useful for applications
466 that prefer to have result value of \constant{NaN} or \constant{Infinity}
467 instead of raising exceptions. This allows an application to complete a
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000468 run in the presence of conditions that would otherwise halt the program.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000469\end{classdesc*}
470
471\begin{classdesc*}{DefaultContext}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000472 This context is used by the \class{Context} constructor as a prototype for
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000473 new contexts. Changing a field (such a precision) has the effect of
474 changing the default for new contexts creating by the \class{Context}
475 constructor.
476
477 This context is most useful in multi-threaded environments. Changing one of
478 the fields before threads are started has the effect of setting system-wide
479 defaults. Changing the fields after threads have started is not recommended
480 as it would require thread synchronization to prevent race conditions.
481
482 In single threaded environments, it is preferable to not use this context
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000483 at all. Instead, simply create contexts explicitly as described below.
484
485 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled
486 traps for Overflow, InvalidOperation, and DivisionByZero.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000487\end{classdesc*}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000488
489
490In addition to the three supplied contexts, new contexts can be created
491with the \class{Context} constructor.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000492
Raymond Hettingerbf440692004-07-10 14:14:37 +0000493\begin{classdesc}{Context}{prec=None, rounding=None, traps=None,
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000494 flags=None, Emin=None, Emax=None, capitals=1}
495 Creates a new context. If a field is not specified or is \constant{None},
496 the default values are copied from the \constant{DefaultContext}. If the
497 \var{flags} field is not specified or is \constant{None}, all flags are
498 cleared.
499
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000500 The \var{prec} field is a positive integer that sets the precision for
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000501 arithmetic operations in the context.
502
Raymond Hettinger97c92082004-07-09 06:13:12 +0000503 The \var{rounding} option is one of:
504 \constant{ROUND_CEILING} (towards \constant{Infinity}),
505 \constant{ROUND_DOWN} (towards zero),
506 \constant{ROUND_FLOOR} (towards \constant{-Infinity}),
507 \constant{ROUND_HALF_DOWN} (towards zero),
508 \constant{ROUND_HALF_EVEN},
509 \constant{ROUND_HALF_UP} (away from zero), or
510 \constant{ROUND_UP} (away from zero).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000511
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000512 The \var{traps} and \var{flags} fields list any signals to be set.
513 Generally, new contexts should only set traps and leave the flags clear.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000514
515 The \var{Emin} and \var{Emax} fields are integers specifying the outer
516 limits allowable for exponents.
517
518 The \var{capitals} field is either \constant{0} or \constant{1} (the
519 default). If set to \constant{1}, exponents are printed with a capital
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000520 \constant{E}; otherwise, a lowercase \constant{e} is used:
521 \constant{Decimal('6.02e+23')}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000522\end{classdesc}
523
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000524The \class{Context} class defines several general purpose methods as well as a
525large number of methods for doing arithmetic directly in a given context.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000526
527\begin{methoddesc}{clear_flags}{}
528 Sets all of the flags to \constant{0}.
529\end{methoddesc}
530
531\begin{methoddesc}{copy}{}
532 Returns a duplicate of the context.
533\end{methoddesc}
534
535\begin{methoddesc}{create_decimal}{num}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000536 Creates a new Decimal instance from \var{num} but using \var{self} as
537 context. Unlike the \class{Decimal} constructor, the context precision,
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000538 rounding method, flags, and traps are applied to the conversion.
539
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000540 This is useful because constants are often given to a greater precision than
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000541 is needed by the application. Another benefit is that rounding immediately
542 eliminates unintended effects from digits beyond the current precision.
543 In the following example, using unrounded inputs means that adding zero
544 to a sum can change the result:
545
546 \begin{verbatim}
547 >>> getcontext().prec = 3
548 >>> Decimal("3.4445") + Decimal("1.0023")
549 Decimal("4.45")
550 >>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023")
551 Decimal("4.44")
552 \end{verbatim}
553
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000554\end{methoddesc}
555
556\begin{methoddesc}{Etiny}{}
557 Returns a value equal to \samp{Emin - prec + 1} which is the minimum
558 exponent value for subnormal results. When underflow occurs, the
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000559 exponent is set to \constant{Etiny}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000560\end{methoddesc}
561
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000562\begin{methoddesc}{Etop}{}
563 Returns a value equal to \samp{Emax - prec + 1}.
564\end{methoddesc}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000565
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000566
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000567The usual approach to working with decimals is to create \class{Decimal}
568instances and then apply arithmetic operations which take place within the
569current context for the active thread. An alternate approach is to use
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000570context methods for calculating within a specific context. The methods are
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000571similar to those for the \class{Decimal} class and are only briefly recounted
572here.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000573
574\begin{methoddesc}{abs}{x}
575 Returns the absolute value of \var{x}.
576\end{methoddesc}
577
578\begin{methoddesc}{add}{x, y}
579 Return the sum of \var{x} and \var{y}.
580\end{methoddesc}
581
582\begin{methoddesc}{compare}{x, y}
583 Compares values numerically.
584
585 Like \method{__cmp__()} but returns a decimal instance:
586 \begin{verbatim}
587 a or b is a NaN ==> Decimal("NaN")
588 a < b ==> Decimal("-1")
589 a == b ==> Decimal("0")
590 a > b ==> Decimal("1")
591 \end{verbatim}
592\end{methoddesc}
593
594\begin{methoddesc}{divide}{x, y}
595 Return \var{x} divided by \var{y}.
596\end{methoddesc}
597
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000598\begin{methoddesc}{divmod}{x, y}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000599 Divides two numbers and returns the integer part of the result.
600\end{methoddesc}
601
602\begin{methoddesc}{max}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000603 Compare two values numerically and return the maximum.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000604
605 If they are numerically equal then the left-hand operand is chosen as the
606 result.
607\end{methoddesc}
608
609\begin{methoddesc}{min}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000610 Compare two values numerically and return the minimum.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000611
612 If they are numerically equal then the left-hand operand is chosen as the
613 result.
614\end{methoddesc}
615
616\begin{methoddesc}{minus}{x}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000617 Minus corresponds to the unary prefix minus operator in Python.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000618\end{methoddesc}
619
620\begin{methoddesc}{multiply}{x, y}
621 Return the product of \var{x} and \var{y}.
622\end{methoddesc}
623
624\begin{methoddesc}{normalize}{x}
625 Normalize reduces an operand to its simplest form.
626
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000627 Essentially a \method{plus} operation with all trailing zeros removed from
628 the result.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000629\end{methoddesc}
630
631\begin{methoddesc}{plus}{x}
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000632 Plus corresponds to the unary prefix plus operator in Python. This
633 operation applies the context precision and rounding, so it is
634 \emph{not} an identity operation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000635\end{methoddesc}
636
637\begin{methoddesc}{power}{x, y\optional{, modulo}}
638 Return \samp{x ** y} to the \var{modulo} if given.
639
640 The right-hand operand must be a whole number whose integer part (after any
641 exponent has been applied) has no more than 9 digits and whose fractional
642 part (if any) is all zeros before any rounding. The operand may be positive,
643 negative, or zero; if negative, the absolute value of the power is used, and
644 the left-hand operand is inverted (divided into 1) before use.
645
646 If the increased precision needed for the intermediate calculations exceeds
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000647 the capabilities of the implementation then an \constant{InvalidOperation}
648 condition is signaled.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000649
650 If, when raising to a negative power, an underflow occurs during the
651 division into 1, the operation is not halted at that point but continues.
652\end{methoddesc}
653
654\begin{methoddesc}{quantize}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000655 Returns a value equal to \var{x} after rounding and having the exponent of
656 \var{y}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000657
658 Unlike other operations, if the length of the coefficient after the quantize
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000659 operation would be greater than precision, then an
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000660 \constant{InvalidOperation} is signaled. This guarantees that, unless there
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000661 is an error condition, the quantized exponent is always equal to that of the
662 right-hand operand.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000663
664 Also unlike other operations, quantize never signals Underflow, even
665 if the result is subnormal and inexact.
666\end{methoddesc}
667
668\begin{methoddesc}{remainder}{x, y}
669 Returns the remainder from integer division.
670
671 The sign of the result, if non-zero, is the same as that of the original
672 dividend.
673\end{methoddesc}
674
675\begin{methoddesc}{remainder_near}{x, y}
676 Computed the modulo as either a positive or negative value depending
677 on which is closest to zero. For instance,
678 \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
679 which is closer to zero than \code{Decimal("4")}.
680
681 If both are equally close, the one chosen will have the same sign
682 as \var{self}.
683\end{methoddesc}
684
685\begin{methoddesc}{same_quantum}{x, y}
686 Test whether \var{x} and \var{y} have the same exponent or whether both are
687 \constant{NaN}.
688\end{methoddesc}
689
690\begin{methoddesc}{sqrt}{}
691 Return the square root to full precision.
692\end{methoddesc}
693
694\begin{methoddesc}{substract}{x, y}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000695 Return the difference between \var{x} and \var{y}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000696\end{methoddesc}
697
698\begin{methoddesc}{to_eng_string}{}
699 Convert to engineering-type string.
700
701 Engineering notation has an exponent which is a multiple of 3, so there
702 are up to 3 digits left of the decimal place. For example, converts
703 \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
704\end{methoddesc}
705
706\begin{methoddesc}{to_integral}{x}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000707 Rounds to the nearest integer without signaling \constant{Inexact}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000708 or \constant{Rounded}.
709\end{methoddesc}
710
711\begin{methoddesc}{to_sci_string}{}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000712 Converts a number to a string using scientific notation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000713\end{methoddesc}
714
715
716
717%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
718\subsection{Signals \label{decimal-signals}}
719
720Signals represent conditions that arise during computation.
721Each corresponds to one context flag and one context trap enabler.
722
723The context flag is incremented whenever the condition is encountered.
724After the computation, flags may be checked for informational
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000725purposes (for instance, to determine whether a computation was exact).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000726After checking the flags, be sure to clear all flags before starting
727the next computation.
728
729If the context's trap enabler is set for the signal, then the condition
730causes a Python exception to be raised. For example, if the
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000731\class{DivisionByZero} trap is set, then a \exception{DivisionByZero}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000732exception is raised upon encountering the condition.
733
734
735\begin{classdesc*}{Clamped}
736 Altered an exponent to fit representation constraints.
737
738 Typically, clamping occurs when an exponent falls outside the context's
739 \member{Emin} and \member{Emax} limits. If possible, the exponent is
740 reduced to fit by adding zeroes to the coefficient.
741\end{classdesc*}
742
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000743\begin{classdesc*}{DecimalException}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000744 Base class for other signals and is a subclass of
745 \exception{ArithmeticError}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000746\end{classdesc*}
747
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000748\begin{classdesc*}{DivisionByZero}
749 Signals the division of a non-infinite number by zero.
750
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000751 Can occur with division, modulo division, or when raising a number to a
752 negative power. If this signal is not trapped, returns
753 \constant{Infinity} or \constant{-Infinity} with the sign determined by
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000754 the inputs to the calculation.
755\end{classdesc*}
756
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000757\begin{classdesc*}{Inexact}
758 Indicates that rounding occurred and the result is not exact.
759
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000760 Signals when non-zero digits were discarded during rounding. The rounded
761 result is returned. The signal flag or trap is used to detect when
762 results are inexact.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000763\end{classdesc*}
764
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000765\begin{classdesc*}{InvalidOperation}
766 An invalid operation was performed.
767
768 Indicates that an operation was requested that does not make sense.
769 If not trapped, returns \constant{NaN}. Possible causes include:
770
771 \begin{verbatim}
772 Infinity - Infinity
773 0 * Infinity
774 Infinity / Infinity
775 x % 0
776 Infinity % x
777 x._rescale( non-integer )
778 sqrt(-x) and x > 0
779 0 ** 0
780 x ** (non-integer)
781 x ** Infinity
782 \end{verbatim}
783\end{classdesc*}
784
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000785\begin{classdesc*}{Overflow}
786 Numerical overflow.
787
788 Indicates the exponent is larger than \member{Emax} after rounding has
789 occurred. If not trapped, the result depends on the rounding mode, either
790 pulling inward to the largest representable finite number or rounding
791 outward to \constant{Infinity}. In either case, \class{Inexact} and
792 \class{Rounded} are also signaled.
793\end{classdesc*}
794
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000795\begin{classdesc*}{Rounded}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000796 Rounding occurred though possibly no information was lost.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000797
798 Signaled whenever rounding discards digits; even if those digits are
799 zero (such as rounding \constant{5.00} to \constant{5.0}). If not
800 trapped, returns the result unchanged. This signal is used to detect
801 loss of significant digits.
802\end{classdesc*}
803
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000804\begin{classdesc*}{Subnormal}
805 Exponent was lower than \member{Emin} prior to rounding.
806
807 Occurs when an operation result is subnormal (the exponent is too small).
808 If not trapped, returns the result unchanged.
809\end{classdesc*}
810
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000811\begin{classdesc*}{Underflow}
812 Numerical underflow with result rounded to zero.
813
814 Occurs when a subnormal result is pushed to zero by rounding.
815 \class{Inexact} and \class{Subnormal} are also signaled.
816\end{classdesc*}
817
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000818The following table summarizes the hierarchy of signals:
819
820\begin{verbatim}
821 exceptions.ArithmeticError(exceptions.StandardError)
822 DecimalException
823 Clamped
824 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
825 Inexact
826 Overflow(Inexact, Rounded)
827 Underflow(Inexact, Rounded, Subnormal)
828 InvalidOperation
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000829 Rounded
830 Subnormal
831\end{verbatim}
832
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000833
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000834%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Raymond Hettinger2864b802004-08-15 23:47:48 +0000835\subsection{Floating Point Notes \label{decimal-notes}}
836
837The use of decimal floating point eliminates decimal representation error
838(making it possible to represent \constant{0.1} exactly); however, some
839operations can still incur round-off error when non-zero digits exceed the
840fixed precision.
841
842The effects of round-off error can be amplified by the addition or subtraction
843of nearly offsetting quantities resulting in loss of significance. Knuth
844provides two instructive examples where rounded floating point arithmetic with
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000845insufficient precision causes the breakdown of the associative and
Raymond Hettinger2864b802004-08-15 23:47:48 +0000846distributive properties of addition:
847
848\begin{verbatim}
849# Examples from Seminumerical Algorithms, Section 4.2.2.
850>>> from decimal import *
851>>> getcontext().prec = 8
852
853>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
854>>> (u + v) + w
855Decimal("9.5111111")
856>>> u + (v + w)
857Decimal("10")
858
859>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
860>>> (u*v) + (u*w)
861Decimal("0.01")
862>>> u * (v+w)
863Decimal("0.0060000")
864\end{verbatim}
865
866The \module{decimal} module makes it possible to restore the identities
867by expanding the precision sufficiently to avoid loss of significance:
868
869\begin{verbatim}
870>>> getcontext().prec = 20
871>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
872>>> (u + v) + w
873Decimal("9.51111111")
874>>> u + (v + w)
875Decimal("9.51111111")
876>>>
877>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
878>>> (u*v) + (u*w)
879Decimal("0.0060000")
880>>> u * (v+w)
881Decimal("0.0060000")
882\end{verbatim}
883
884
885The number system for the \module{decimal} module provides special
886values including \constant{NaN}, \constant{sNaN}, \constant{-Infinity},
887\constant{Infinity}, and two zeroes, \constant{+0} and \constant{-0}.
888
Andrew M. Kuchling7ec75842004-08-16 16:12:23 +0000889Infinities can be constructed directly with: \code{Decimal('Infinity')}. Also,
Raymond Hettinger2864b802004-08-15 23:47:48 +0000890they can arise from dividing by zero when the \exception{DivisionByZero}
891signal is not trapped. Likewise, when the \exception{Overflow} signal is not
892trapped, infinity can result from rounding beyond the limits of the largest
893representable number.
894
895The infinities are signed (affine) and can be used in arithmetic operations
896where they get treated as very large, indeterminate numbers. For instance,
897adding a constant to infinity gives another infinite result.
898
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000899Some operations are indeterminate and return \constant{NaN}, or if the
Raymond Hettinger2864b802004-08-15 23:47:48 +0000900\exception{InvalidOperation} signal is trapped, raise an exception. For
901example, \code{0/0} returns \constant{NaN} which means ``not a number''. This
902variety of \constant{NaN} is quiet and, once created, will flow through other
903computations always resulting in another \constant{NaN}. This behavior can be
904useful for a series of computations that occasionally have missing inputs ---
905it allows the calculation to proceed while flagging specific results as
906invalid.
907
908A variant is \constant{sNaN} which signals rather than remaining quiet
909after every operation. This is a useful return value when an invalid
910result needs to interrupt a calculation for special handling.
911
912The signed zeros can result from calculations that underflow.
913They keep the sign that would have resulted if the calculation had
914been carried out to greater precision. Since their magnitude is
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000915zero, both positive and negative zeros are treated as equal and their
Raymond Hettinger2864b802004-08-15 23:47:48 +0000916sign is informational.
917
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000918In addition to the two signed zeros which are distinct yet equal,
919there are various representations of zero with differing precisions
Raymond Hettinger2864b802004-08-15 23:47:48 +0000920yet equivalent in value. This takes a bit of getting used to. For
921an eye accustomed to normalized floating point representations, it
922is not immediately obvious that the following calculation returns
923a value equal to zero:
924
925\begin{verbatim}
926>>> 1 / Decimal('Infinity')
927Decimal("0E-1000000026")
928\end{verbatim}
929
930%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000931\subsection{Working with threads \label{decimal-threads}}
932
933The \function{getcontext()} function accesses a different \class{Context}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000934object for each thread. Having separate thread contexts means that threads
935may make changes (such as \code{getcontext.prec=10}) without interfering with
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000936other threads.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000937
938Likewise, the \function{setcontext()} function automatically assigns its target
939to the current thread.
940
941If \function{setcontext()} has not been called before \function{getcontext()},
942then \function{getcontext()} will automatically create a new context for use
943in the current thread.
944
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000945The new context is copied from a prototype context called
946\var{DefaultContext}. To control the defaults so that each thread will use the
947same values throughout the application, directly modify the
948\var{DefaultContext} object. This should be done \emph{before} any threads are
949started so that there won't be a race condition between threads calling
950\function{getcontext()}. For example:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000951
952\begin{verbatim}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000953# Set applicationwide defaults for all threads about to be launched
Raymond Hettinger92960232004-07-14 21:06:55 +0000954DefaultContext.prec = 12
955DefaultContext.rounding = ROUND_DOWN
956DefaultContext.traps = ExtendedContext.traps.copy()
957DefaultContext.traps[InvalidOperation] = 1
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000958setcontext(DefaultContext)
959
Raymond Hettinger92960232004-07-14 21:06:55 +0000960# Afterwards, the threads can be started
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000961t1.start()
962t2.start()
963t3.start()
964 . . .
965\end{verbatim}
Raymond Hettinger2864b802004-08-15 23:47:48 +0000966
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000967
968
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000969%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
970\subsection{Recipes \label{decimal-recipes}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000971
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000972Here are a few recipes that serve as utility functions and that demonstrate
973ways to work with the \class{Decimal} class:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000974
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000975\begin{verbatim}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000976def moneyfmt(value, places=2, curr='', sep=',', dp='.',
977 pos='', neg='-', trailneg=''):
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000978 """Convert Decimal to a money formatted string.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000979
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000980 places: required number of places after the decimal point
981 curr: optional currency symbol before the sign (may be blank)
Raymond Hettinger3de9aa42004-11-25 04:47:09 +0000982 sep: optional grouping separator (comma, period, space, or blank)
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000983 dp: decimal point indicator (comma or period)
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000984 only specify as blank when places is zero
Raymond Hettinger3de9aa42004-11-25 04:47:09 +0000985 pos: optional sign for positive numbers: '+', space or blank
986 neg: optional sign for negative numbers: '-', '(', space or blank
987 trailneg:optional trailing minus indicator: '-', ')', space or blank
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000988
989 >>> d = Decimal('-1234567.8901')
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000990 >>> moneyfmt(d, curr='$')
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000991 '-$1,234,567.89'
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000992 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
993 '1.234.568-'
994 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000995 '($1,234,567.89)'
Raymond Hettinger3de9aa42004-11-25 04:47:09 +0000996 >>> moneyfmt(Decimal(123456789), sep=' ')
997 '123 456 789.00'
998 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
999 '<.02>'
1000
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001001 """
1002 q = Decimal((0, (1,), -places)) # 2 places --> '0.01'
1003 sign, digits, exp = value.quantize(q).as_tuple()
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001004 assert exp == -places
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001005 result = []
1006 digits = map(str, digits)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001007 build, next = result.append, digits.pop
1008 if sign:
1009 build(trailneg)
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001010 for i in range(places):
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001011 if digits:
1012 build(next())
1013 else:
1014 build('0')
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001015 build(dp)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001016 i = 0
1017 while digits:
1018 build(next())
1019 i += 1
Raymond Hettinger8f2c4ee2004-11-24 05:53:26 +00001020 if i == 3 and digits:
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001021 i = 0
1022 build(sep)
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001023 build(curr)
1024 if sign:
1025 build(neg)
1026 else:
1027 build(pos)
1028 result.reverse()
1029 return ''.join(result)
1030
1031def pi():
Raymond Hettingerc4f93d442004-07-05 20:17:13 +00001032 """Compute Pi to the current precision.
1033
1034 >>> print pi()
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001035 3.141592653589793238462643383
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001036
Raymond Hettingerc4f93d442004-07-05 20:17:13 +00001037 """
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001038 getcontext().prec += 2 # extra digits for intermediate steps
Raymond Hettinger10959b12004-07-05 21:13:28 +00001039 three = Decimal(3) # substitute "three=3.0" for regular floats
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001040 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1041 while s != lasts:
1042 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001043 n, na = n+na, na+8
1044 d, da = d+da, da+32
1045 t = (t * n) / d
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001046 s += t
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001047 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001048 return +s # unary plus applies the new precision
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001049
1050def exp(x):
Raymond Hettinger10959b12004-07-05 21:13:28 +00001051 """Return e raised to the power of x. Result type matches input type.
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001052
1053 >>> print exp(Decimal(1))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001054 2.718281828459045235360287471
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001055 >>> print exp(Decimal(2))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001056 7.389056098930650227230427461
Raymond Hettinger10959b12004-07-05 21:13:28 +00001057 >>> print exp(2.0)
1058 7.38905609893
1059 >>> print exp(2+0j)
1060 (7.38905609893+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001061
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001062 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001063 getcontext().prec += 2
1064 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1065 while s != lasts:
1066 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001067 i += 1
1068 fact *= i
1069 num *= x
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001070 s += num / fact
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001071 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001072 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001073
1074def cos(x):
1075 """Return the cosine of x as measured in radians.
1076
1077 >>> print cos(Decimal('0.5'))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001078 0.8775825618903727161162815826
Raymond Hettinger10959b12004-07-05 21:13:28 +00001079 >>> print cos(0.5)
1080 0.87758256189
1081 >>> print cos(0.5+0j)
1082 (0.87758256189+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001083
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001084 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001085 getcontext().prec += 2
1086 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1087 while s != lasts:
1088 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001089 i += 2
1090 fact *= i * (i-1)
1091 num *= x * x
1092 sign *= -1
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001093 s += num / fact * sign
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001094 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001095 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001096
1097def sin(x):
Raymond Hettinger4fd38b32004-11-25 05:35:32 +00001098 """Return the sine of x as measured in radians.
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001099
1100 >>> print sin(Decimal('0.5'))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001101 0.4794255386042030002732879352
Raymond Hettinger10959b12004-07-05 21:13:28 +00001102 >>> print sin(0.5)
1103 0.479425538604
1104 >>> print sin(0.5+0j)
1105 (0.479425538604+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001106
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001107 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001108 getcontext().prec += 2
1109 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1110 while s != lasts:
1111 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001112 i += 2
1113 fact *= i * (i-1)
1114 num *= x * x
1115 sign *= -1
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001116 s += num / fact * sign
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001117 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001118 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001119
1120\end{verbatim}