blob: 36f2a9727f810cd596f9ce85f6dcb40c3072e353 [file] [log] [blame]
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001version: ?.??
2
3extended: 1
4rounding: half_even
5
6-- testing folddown and clamping
7maxexponent: 9
8minexponent: -9
9precision: 6
10clamp: 1
11extr0000 apply 1E+11 -> Infinity Overflow Inexact Rounded
12extr0001 apply 1E+10 -> Infinity Overflow Inexact Rounded
13extr0002 apply 1E+9 -> 1.00000E+9 Clamped
14extr0003 apply 1E+8 -> 1.0000E+8 Clamped
15extr0004 apply 1E+7 -> 1.000E+7 Clamped
16extr0005 apply 1E+6 -> 1.00E+6 Clamped
17extr0006 apply 1E+5 -> 1.0E+5 Clamped
18extr0007 apply 1E+4 -> 1E+4
19extr0008 apply 1E+3 -> 1E+3
20extr0009 apply 1E+2 -> 1E+2
21extr0010 apply 1E+1 -> 1E+1
22extr0011 apply 1 -> 1
23extr0012 apply 1E-1 -> 0.1
24extr0013 apply 1E-2 -> 0.01
25extr0014 apply 1E-3 -> 0.001
26extr0015 apply 1E-4 -> 0.0001
27extr0016 apply 1E-5 -> 0.00001
28extr0017 apply 1E-6 -> 0.000001
29extr0018 apply 1E-7 -> 1E-7
30extr0019 apply 1E-8 -> 1E-8
31extr0020 apply 1E-9 -> 1E-9
32extr0021 apply 1E-10 -> 1E-10 Subnormal
33extr0022 apply 1E-11 -> 1E-11 Subnormal
34extr0023 apply 1E-12 -> 1E-12 Subnormal
35extr0024 apply 1E-13 -> 1E-13 Subnormal
36extr0025 apply 1E-14 -> 1E-14 Subnormal
37extr0026 apply 1E-15 -> 0E-14 Inexact Rounded Subnormal Underflow Clamped
38extr0027 apply 1E-16 -> 0E-14 Inexact Rounded Subnormal Underflow Clamped
39clamp: 0
40
41-- large precision, small minimum and maximum exponent; in this case
42-- it's possible that folddown is required on a subnormal result
43maxexponent: 9
44minexponent: -9
45precision: 24
46clamp: 1
47extr0100 apply 1E+11 -> Infinity Overflow Inexact Rounded
48extr0101 apply 1E+10 -> Infinity Overflow Inexact Rounded
49extr0102 apply 1E+9 -> 1000000000.00000000000000 Clamped
50extr0103 apply 1E+8 -> 100000000.00000000000000 Clamped
51extr0104 apply 1E+7 -> 10000000.00000000000000 Clamped
52extr0105 apply 1E+6 -> 1000000.00000000000000 Clamped
53extr0106 apply 1E+5 -> 100000.00000000000000 Clamped
54extr0107 apply 1E+4 -> 10000.00000000000000 Clamped
55extr0108 apply 1E+3 -> 1000.00000000000000 Clamped
56extr0109 apply 1E+2 -> 100.00000000000000 Clamped
57extr0110 apply 1E+1 -> 10.00000000000000 Clamped
58extr0111 apply 1 -> 1.00000000000000 Clamped
59extr0112 apply 1E-1 -> 0.10000000000000 Clamped
60extr0113 apply 1E-2 -> 0.01000000000000 Clamped
61extr0114 apply 1E-3 -> 0.00100000000000 Clamped
62extr0115 apply 1E-4 -> 0.00010000000000 Clamped
63extr0116 apply 1E-5 -> 0.00001000000000 Clamped
64extr0117 apply 1E-6 -> 0.00000100000000 Clamped
65extr0118 apply 1E-7 -> 1.0000000E-7 Clamped
66extr0119 apply 1E-8 -> 1.000000E-8 Clamped
67extr0120 apply 1E-9 -> 1.00000E-9 Clamped
68extr0121 apply 1E-10 -> 1.0000E-10 Subnormal Clamped
69extr0122 apply 1E-11 -> 1.000E-11 Subnormal Clamped
70extr0123 apply 1E-12 -> 1.00E-12 Subnormal Clamped
71extr0124 apply 1E-13 -> 1.0E-13 Subnormal Clamped
72extr0125 apply 1E-14 -> 1E-14 Subnormal
73extr0126 apply 1E-15 -> 1E-15 Subnormal
74extr0127 apply 1E-16 -> 1E-16 Subnormal
75extr0128 apply 1E-17 -> 1E-17 Subnormal
76extr0129 apply 1E-18 -> 1E-18 Subnormal
77extr0130 apply 1E-19 -> 1E-19 Subnormal
78extr0131 apply 1E-20 -> 1E-20 Subnormal
79extr0132 apply 1E-21 -> 1E-21 Subnormal
80extr0133 apply 1E-22 -> 1E-22 Subnormal
81extr0134 apply 1E-23 -> 1E-23 Subnormal
82extr0135 apply 1E-24 -> 1E-24 Subnormal
83extr0136 apply 1E-25 -> 1E-25 Subnormal
84extr0137 apply 1E-26 -> 1E-26 Subnormal
85extr0138 apply 1E-27 -> 1E-27 Subnormal
86extr0139 apply 1E-28 -> 1E-28 Subnormal
87extr0140 apply 1E-29 -> 1E-29 Subnormal
88extr0141 apply 1E-30 -> 1E-30 Subnormal
89extr0142 apply 1E-31 -> 1E-31 Subnormal
90extr0143 apply 1E-32 -> 1E-32 Subnormal
91extr0144 apply 1E-33 -> 0E-32 Inexact Rounded Subnormal Underflow Clamped
92extr0145 apply 1E-34 -> 0E-32 Inexact Rounded Subnormal Underflow Clamped
93clamp: 0
94
95-- some buggy addition cases from Python 2.5.x
96maxexponent: 999
97minexponent: -999
98precision: 6
99extr1000 add 0E+1000 0E+2000 -> 0E+999 Clamped
100extr1001 add 0E+1004 0E+1001 -> 0E+999 Clamped
101clamp: 1
102extr1002 add 0E+1000 0E+1000 -> 0E+994 Clamped
103clamp: 0
104extr1003 add 0E+1000 0E-1005 -> 0E-1004 Clamped
105extr1004 add 0E-1006 0 -> 0E-1004 Clamped
106extr1005 add 1E+1000 -1E+1000 -> 0E+999 Clamped
107extr1006 add -3.1E+1004 3.1E+1004 -> 0E+999 Clamped
108clamp: 1
109extr1007 add 1E+998 -1E+998 -> 0E+994 Clamped
110clamp: 0
111extr1008 add 2E-1005 -2E-1005 -> 0E-1004 Clamped
112extr1009 add -3.1E-1005 3.1E-1005 -> 0E-1004 Clamped
113
114precision: 3
115extr1010 add 99949.9 0.200000 -> 1.00E+5 Inexact Rounded
116extr1011 add 99949.9 0.100000 -> 1.00E+5 Inexact Rounded
117extr1012 add 99849.9 0.200000 -> 9.99E+4 Inexact Rounded
118extr1013 add 99849.9 0.100000 -> 9.98E+4 Inexact Rounded
119extr1014 add 1.0149 0.00011 -> 1.02 Inexact Rounded
120extr1015 add 1.0149 0.00010 -> 1.02 Inexact Rounded
121extr1016 add 1.0149 0.00009 -> 1.01 Inexact Rounded
122extr1017 add 1.0049 0.00011 -> 1.01 Inexact Rounded
123extr1018 add 1.0049 0.00010 -> 1.00 Inexact Rounded
124extr1019 add 1.0049 0.00009 -> 1.00 Inexact Rounded
125rounding: down
126extr1020 add 99999.9 0.200000 -> 1.00E+5 Inexact Rounded
127extr1021 add 99999.8 0.200000 -> 1.00E+5 Rounded
128extr1022 add 99999.7 0.200000 -> 9.99E+4 Inexact Rounded
129rounding: half_even
130
131-- a bug in _rescale caused the following to fail in Python 2.5.1
132maxexponent: 999
133minexponent: -999
134precision: 6
135extr1100 add 0E+1000 1E+1000 -> Infinity Overflow Inexact Rounded
136extr1101 remainder 1E+1000 2E+1000 -> Infinity Overflow Inexact Rounded
137
138-- tests for scaleb in case where input precision > context precision.
139-- Result should be rounded. (This isn't totally clear from the
140-- specification, but the treatment of underflow in the testcases
141-- suggests that rounding should occur in general. Furthermore, it's
142-- the way that the reference implementation behaves.)
143maxexponent: 999
144minexponent: -999
145precision: 3
146extr1200 scaleb 1234 1 -> 1.23E+4 Inexact Rounded
147extr1201 scaleb 5678 0 -> 5.68E+3 Inexact Rounded
148extr1202 scaleb -9105 -1 -> -910 Inexact Rounded
149
150-- Invalid operation from 0 * infinity in fma
151-- takes precedence over a third-argument sNaN
152extr1300 fma 0 Inf sNaN123 -> NaN Invalid_operation
153extr1301 fma Inf 0 sNaN456 -> NaN Invalid_operation
154extr1302 fma 0E123 -Inf sNaN789 -> NaN Invalid_operation
155extr1302 fma -Inf 0E-456 sNaN148 -> NaN Invalid_operation
156
157------------------------------------------------------------------------
158-- The following tests (pwmx0 through pwmx440) are for the --
159-- three-argument version of power: --
160-- --
161-- pow(x, y, z) := x**y % z --
162-- --
163-- Note that the three-argument version of power is *not* part of --
164-- the IBM General Decimal Arithmetic specification. Questions --
165-- about it, or about these testcases, should go to one of the --
166-- Python decimal authors. --
167------------------------------------------------------------------------
168
169extended: 1
170precision: 9
171rounding: down
172maxExponent: 999
173minExponent: -999
174
175-- Small numbers
176-- Note that power(0, 0, m) is an error for any m
177pwmx0 power 0 -0 1 -> NaN Invalid_operation
178pwmx1 power 0 -0 2 -> NaN Invalid_operation
179pwmx2 power 0 -0 3 -> NaN Invalid_operation
180pwmx3 power 0 -0 4 -> NaN Invalid_operation
181pwmx4 power 0 -0 -1 -> NaN Invalid_operation
182pwmx5 power 0 -0 -2 -> NaN Invalid_operation
183pwmx6 power 0 0 1 -> NaN Invalid_operation
184pwmx7 power 0 0 2 -> NaN Invalid_operation
185pwmx8 power 0 0 3 -> NaN Invalid_operation
186pwmx9 power 0 0 4 -> NaN Invalid_operation
187pwmx10 power 0 0 -1 -> NaN Invalid_operation
188pwmx11 power 0 0 -2 -> NaN Invalid_operation
189pwmx12 power 0 1 1 -> 0
190pwmx13 power 0 1 2 -> 0
191pwmx14 power 0 1 3 -> 0
192pwmx15 power 0 1 4 -> 0
193pwmx16 power 0 1 -1 -> 0
194pwmx17 power 0 1 -2 -> 0
195pwmx18 power 0 2 1 -> 0
196pwmx19 power 0 2 2 -> 0
197pwmx20 power 0 2 3 -> 0
198pwmx21 power 0 2 4 -> 0
199pwmx22 power 0 2 -1 -> 0
200pwmx23 power 0 2 -2 -> 0
201pwmx24 power 0 3 1 -> 0
202pwmx25 power 0 3 2 -> 0
203pwmx26 power 0 3 3 -> 0
204pwmx27 power 0 3 4 -> 0
205pwmx28 power 0 3 -1 -> 0
206pwmx29 power 0 3 -2 -> 0
207pwmx30 power 0 4 1 -> 0
208pwmx31 power 0 4 2 -> 0
209pwmx32 power 0 4 3 -> 0
210pwmx33 power 0 4 4 -> 0
211pwmx34 power 0 4 -1 -> 0
212pwmx35 power 0 4 -2 -> 0
213pwmx36 power 0 5 1 -> 0
214pwmx37 power 0 5 2 -> 0
215pwmx38 power 0 5 3 -> 0
216pwmx39 power 0 5 4 -> 0
217pwmx40 power 0 5 -1 -> 0
218pwmx41 power 0 5 -2 -> 0
219pwmx42 power 1 -0 1 -> 0
220pwmx43 power 1 -0 2 -> 1
221pwmx44 power 1 -0 3 -> 1
222pwmx45 power 1 -0 4 -> 1
223pwmx46 power 1 -0 -1 -> 0
224pwmx47 power 1 -0 -2 -> 1
225pwmx48 power 1 0 1 -> 0
226pwmx49 power 1 0 2 -> 1
227pwmx50 power 1 0 3 -> 1
228pwmx51 power 1 0 4 -> 1
229pwmx52 power 1 0 -1 -> 0
230pwmx53 power 1 0 -2 -> 1
231pwmx54 power 1 1 1 -> 0
232pwmx55 power 1 1 2 -> 1
233pwmx56 power 1 1 3 -> 1
234pwmx57 power 1 1 4 -> 1
235pwmx58 power 1 1 -1 -> 0
236pwmx59 power 1 1 -2 -> 1
237pwmx60 power 1 2 1 -> 0
238pwmx61 power 1 2 2 -> 1
239pwmx62 power 1 2 3 -> 1
240pwmx63 power 1 2 4 -> 1
241pwmx64 power 1 2 -1 -> 0
242pwmx65 power 1 2 -2 -> 1
243pwmx66 power 1 3 1 -> 0
244pwmx67 power 1 3 2 -> 1
245pwmx68 power 1 3 3 -> 1
246pwmx69 power 1 3 4 -> 1
247pwmx70 power 1 3 -1 -> 0
248pwmx71 power 1 3 -2 -> 1
249pwmx72 power 1 4 1 -> 0
250pwmx73 power 1 4 2 -> 1
251pwmx74 power 1 4 3 -> 1
252pwmx75 power 1 4 4 -> 1
253pwmx76 power 1 4 -1 -> 0
254pwmx77 power 1 4 -2 -> 1
255pwmx78 power 1 5 1 -> 0
256pwmx79 power 1 5 2 -> 1
257pwmx80 power 1 5 3 -> 1
258pwmx81 power 1 5 4 -> 1
259pwmx82 power 1 5 -1 -> 0
260pwmx83 power 1 5 -2 -> 1
261pwmx84 power 2 -0 1 -> 0
262pwmx85 power 2 -0 2 -> 1
263pwmx86 power 2 -0 3 -> 1
264pwmx87 power 2 -0 4 -> 1
265pwmx88 power 2 -0 -1 -> 0
266pwmx89 power 2 -0 -2 -> 1
267pwmx90 power 2 0 1 -> 0
268pwmx91 power 2 0 2 -> 1
269pwmx92 power 2 0 3 -> 1
270pwmx93 power 2 0 4 -> 1
271pwmx94 power 2 0 -1 -> 0
272pwmx95 power 2 0 -2 -> 1
273pwmx96 power 2 1 1 -> 0
274pwmx97 power 2 1 2 -> 0
275pwmx98 power 2 1 3 -> 2
276pwmx99 power 2 1 4 -> 2
277pwmx100 power 2 1 -1 -> 0
278pwmx101 power 2 1 -2 -> 0
279pwmx102 power 2 2 1 -> 0
280pwmx103 power 2 2 2 -> 0
281pwmx104 power 2 2 3 -> 1
282pwmx105 power 2 2 4 -> 0
283pwmx106 power 2 2 -1 -> 0
284pwmx107 power 2 2 -2 -> 0
285pwmx108 power 2 3 1 -> 0
286pwmx109 power 2 3 2 -> 0
287pwmx110 power 2 3 3 -> 2
288pwmx111 power 2 3 4 -> 0
289pwmx112 power 2 3 -1 -> 0
290pwmx113 power 2 3 -2 -> 0
291pwmx114 power 2 4 1 -> 0
292pwmx115 power 2 4 2 -> 0
293pwmx116 power 2 4 3 -> 1
294pwmx117 power 2 4 4 -> 0
295pwmx118 power 2 4 -1 -> 0
296pwmx119 power 2 4 -2 -> 0
297pwmx120 power 2 5 1 -> 0
298pwmx121 power 2 5 2 -> 0
299pwmx122 power 2 5 3 -> 2
300pwmx123 power 2 5 4 -> 0
301pwmx124 power 2 5 -1 -> 0
302pwmx125 power 2 5 -2 -> 0
303pwmx126 power 3 -0 1 -> 0
304pwmx127 power 3 -0 2 -> 1
305pwmx128 power 3 -0 3 -> 1
306pwmx129 power 3 -0 4 -> 1
307pwmx130 power 3 -0 -1 -> 0
308pwmx131 power 3 -0 -2 -> 1
309pwmx132 power 3 0 1 -> 0
310pwmx133 power 3 0 2 -> 1
311pwmx134 power 3 0 3 -> 1
312pwmx135 power 3 0 4 -> 1
313pwmx136 power 3 0 -1 -> 0
314pwmx137 power 3 0 -2 -> 1
315pwmx138 power 3 1 1 -> 0
316pwmx139 power 3 1 2 -> 1
317pwmx140 power 3 1 3 -> 0
318pwmx141 power 3 1 4 -> 3
319pwmx142 power 3 1 -1 -> 0
320pwmx143 power 3 1 -2 -> 1
321pwmx144 power 3 2 1 -> 0
322pwmx145 power 3 2 2 -> 1
323pwmx146 power 3 2 3 -> 0
324pwmx147 power 3 2 4 -> 1
325pwmx148 power 3 2 -1 -> 0
326pwmx149 power 3 2 -2 -> 1
327pwmx150 power 3 3 1 -> 0
328pwmx151 power 3 3 2 -> 1
329pwmx152 power 3 3 3 -> 0
330pwmx153 power 3 3 4 -> 3
331pwmx154 power 3 3 -1 -> 0
332pwmx155 power 3 3 -2 -> 1
333pwmx156 power 3 4 1 -> 0
334pwmx157 power 3 4 2 -> 1
335pwmx158 power 3 4 3 -> 0
336pwmx159 power 3 4 4 -> 1
337pwmx160 power 3 4 -1 -> 0
338pwmx161 power 3 4 -2 -> 1
339pwmx162 power 3 5 1 -> 0
340pwmx163 power 3 5 2 -> 1
341pwmx164 power 3 5 3 -> 0
342pwmx165 power 3 5 4 -> 3
343pwmx166 power 3 5 -1 -> 0
344pwmx167 power 3 5 -2 -> 1
345pwmx168 power -0 -0 1 -> NaN Invalid_operation
346pwmx169 power -0 -0 2 -> NaN Invalid_operation
347pwmx170 power -0 -0 3 -> NaN Invalid_operation
348pwmx171 power -0 -0 4 -> NaN Invalid_operation
349pwmx172 power -0 -0 -1 -> NaN Invalid_operation
350pwmx173 power -0 -0 -2 -> NaN Invalid_operation
351pwmx174 power -0 0 1 -> NaN Invalid_operation
352pwmx175 power -0 0 2 -> NaN Invalid_operation
353pwmx176 power -0 0 3 -> NaN Invalid_operation
354pwmx177 power -0 0 4 -> NaN Invalid_operation
355pwmx178 power -0 0 -1 -> NaN Invalid_operation
356pwmx179 power -0 0 -2 -> NaN Invalid_operation
357pwmx180 power -0 1 1 -> -0
358pwmx181 power -0 1 2 -> -0
359pwmx182 power -0 1 3 -> -0
360pwmx183 power -0 1 4 -> -0
361pwmx184 power -0 1 -1 -> -0
362pwmx185 power -0 1 -2 -> -0
363pwmx186 power -0 2 1 -> 0
364pwmx187 power -0 2 2 -> 0
365pwmx188 power -0 2 3 -> 0
366pwmx189 power -0 2 4 -> 0
367pwmx190 power -0 2 -1 -> 0
368pwmx191 power -0 2 -2 -> 0
369pwmx192 power -0 3 1 -> -0
370pwmx193 power -0 3 2 -> -0
371pwmx194 power -0 3 3 -> -0
372pwmx195 power -0 3 4 -> -0
373pwmx196 power -0 3 -1 -> -0
374pwmx197 power -0 3 -2 -> -0
375pwmx198 power -0 4 1 -> 0
376pwmx199 power -0 4 2 -> 0
377pwmx200 power -0 4 3 -> 0
378pwmx201 power -0 4 4 -> 0
379pwmx202 power -0 4 -1 -> 0
380pwmx203 power -0 4 -2 -> 0
381pwmx204 power -0 5 1 -> -0
382pwmx205 power -0 5 2 -> -0
383pwmx206 power -0 5 3 -> -0
384pwmx207 power -0 5 4 -> -0
385pwmx208 power -0 5 -1 -> -0
386pwmx209 power -0 5 -2 -> -0
387pwmx210 power -1 -0 1 -> 0
388pwmx211 power -1 -0 2 -> 1
389pwmx212 power -1 -0 3 -> 1
390pwmx213 power -1 -0 4 -> 1
391pwmx214 power -1 -0 -1 -> 0
392pwmx215 power -1 -0 -2 -> 1
393pwmx216 power -1 0 1 -> 0
394pwmx217 power -1 0 2 -> 1
395pwmx218 power -1 0 3 -> 1
396pwmx219 power -1 0 4 -> 1
397pwmx220 power -1 0 -1 -> 0
398pwmx221 power -1 0 -2 -> 1
399pwmx222 power -1 1 1 -> -0
400pwmx223 power -1 1 2 -> -1
401pwmx224 power -1 1 3 -> -1
402pwmx225 power -1 1 4 -> -1
403pwmx226 power -1 1 -1 -> -0
404pwmx227 power -1 1 -2 -> -1
405pwmx228 power -1 2 1 -> 0
406pwmx229 power -1 2 2 -> 1
407pwmx230 power -1 2 3 -> 1
408pwmx231 power -1 2 4 -> 1
409pwmx232 power -1 2 -1 -> 0
410pwmx233 power -1 2 -2 -> 1
411pwmx234 power -1 3 1 -> -0
412pwmx235 power -1 3 2 -> -1
413pwmx236 power -1 3 3 -> -1
414pwmx237 power -1 3 4 -> -1
415pwmx238 power -1 3 -1 -> -0
416pwmx239 power -1 3 -2 -> -1
417pwmx240 power -1 4 1 -> 0
418pwmx241 power -1 4 2 -> 1
419pwmx242 power -1 4 3 -> 1
420pwmx243 power -1 4 4 -> 1
421pwmx244 power -1 4 -1 -> 0
422pwmx245 power -1 4 -2 -> 1
423pwmx246 power -1 5 1 -> -0
424pwmx247 power -1 5 2 -> -1
425pwmx248 power -1 5 3 -> -1
426pwmx249 power -1 5 4 -> -1
427pwmx250 power -1 5 -1 -> -0
428pwmx251 power -1 5 -2 -> -1
429
430-- Randomly chosen larger values
431pwmx252 power 0 4 7 -> 0
432pwmx253 power -4 5 -9 -> -7
433pwmx254 power -5 4 -9 -> 4
434pwmx255 power -50 29 2 -> -0
435pwmx256 power -1 83 3 -> -1
436pwmx257 power -55 65 -75 -> -25
437pwmx258 power -613 151 -302 -> -9
438pwmx259 power 551 23 -35 -> 31
439pwmx260 power 51 142 942 -> 9
440pwmx261 power 6886 9204 -6091 -> 5034
441pwmx262 power 3057 5890 -3 -> 0
442pwmx263 power 56 4438 5365 -> 521
443pwmx264 power 96237 35669 -46669 -> 30717
444pwmx265 power 40011 34375 -57611 -> 625
445pwmx266 power 44317 38493 -12196 -> 11081
446pwmx267 power -282368 895633 -235870 -> -220928
447pwmx268 power 77328 852553 -405529 -> 129173
448pwmx269 power -929659 855713 650348 -> -90803
449pwmx270 power 907057 6574309 4924768 -> 3018257
450pwmx271 power -2887757 3198492 -5864352 -> 3440113
451pwmx272 power -247310 657371 -7415739 -> -1301840
452pwmx273 power -8399046 45334087 -22395020 -> -18515896
453pwmx274 power 79621397 4850236 1486555 -> 928706
454pwmx275 power 96012251 27971901 69609031 -> 50028729
455pwmx276 power -907335481 74127986 582330017 -> 51527187
456pwmx277 power -141192960 821063826 -260877928 -> 112318560
457pwmx278 power -501711702 934355994 82135143 -> 66586995
458pwmx279 power -9256358075 8900900138 -467222031 -> 95800246
459pwmx280 power -7031964291 1751257483 -935334498 -> -607626609
460pwmx281 power 8494314971 8740197252 107522491 -> 17373655
461pwmx282 power 88306216890 87477374166 -23498076 -> 15129528
462pwmx283 power -33939432478 7170196239 22133583 -> -11017036
463pwmx284 power 19466222767 30410710614 305752056 -> 191509537
464pwmx285 power -864942494008 370558899638 346688856 -> 56956768
465pwmx286 power -525406225603 345700226898 237163621 -> 56789534
466pwmx287 power 464612215955 312474621651 -329485700 -> 1853975
467pwmx288 power -1664283031244 3774474669855 919022867 -> -516034520
468pwmx289 power -3472438506913 7407327549995 -451206854 -> -74594761
469pwmx290 power -4223662152949 6891069279069 499843503 -> -80135290
470pwmx291 power -44022119276816 8168266170326 569679509 -> 375734475
471pwmx292 power -66195891207902 12532690555875 -243262129 -> -113186833
472pwmx293 power -69039911263164 52726605857673 360625196 -> -268662748
473pwmx294 power -299010116699208 885092589359231 -731310123 -> -104103765
474pwmx295 power -202495776299758 501159122943145 -686234870 -> -135511878
475pwmx296 power -595411478087676 836269270472481 -214614901 -> -183440819
476pwmx297 power -139555381056229 1324808520020507 -228944738 -> -218991473
477pwmx298 power 7846356250770543 1798045051036814 -101028985 -> 7805179
478pwmx299 power -4298015862709415 604966944844209 880212893 -> -87408671
479pwmx300 power -37384897538910893 76022206995659295 -930512842 -> -697757157
480pwmx301 power 82166659028005443 23375408251767704 817270700 -> 770697001
481pwmx302 power 97420301198165641 72213282983416924 947519716 -> 610711721
482pwmx303 power 913382043453243607 449681707248500262 211135545 -> 79544899
483pwmx304 power -313823613418052171 534579409610142937 -943062968 -> -446001379
484pwmx305 power -928106516894494093 760020177330116509 -50043994 -> -46010575
485pwmx306 power 4692146601679439796 4565354511806767804 -667339075 -> 480272081
486pwmx307 power 9722256633509177930 7276568791860505790 792675321 -> 182879752
487pwmx308 power 8689899484830064228 429082967129615261 -844555637 -> 270374557
488
489-- All inputs must be integers
490pwmx309 power 2.1 3 1 -> NaN Invalid_operation
491pwmx310 power 0.4 1 5 -> NaN Invalid_operation
492pwmx311 power 2 3.1 5 -> NaN Invalid_operation
493pwmx312 power 13 -1.2 10 -> NaN Invalid_operation
494pwmx313 power 2 3 5.1 -> NaN Invalid_operation
495
496-- Second argument must be nonnegative (-0 is okay)
497pwmx314 power 2 -3 5 -> NaN Invalid_operation
498pwmx315 power 7 -1 1 -> NaN Invalid_operation
499pwmx316 power 0 -2 6 -> NaN Invalid_operation
500
501-- Third argument must be nonzero
502pwmx317 power 13 1003 0 -> NaN Invalid_operation
503pwmx318 power 1 0 0E+987 -> NaN Invalid_operation
504pwmx319 power 0 2 -0 -> NaN Invalid_operation
505
506-- Integers are fine, no matter how they're expressed
507pwmx320 power 13.0 117.00 1E+2 -> 33
508pwmx321 power -2E+3 1.1E+10 -12323 -> 4811
509pwmx322 power 20 0E-300 143 -> 1
510pwmx323 power -20 -0E+1005 1179 -> 1
511pwmx324 power 0E-1001 17 5.6E+4 -> 0
512
513-- Modulus must not exceed precision
514pwmx325 power 0 1 1234567890 -> NaN Invalid_operation
515pwmx326 power 1 0 1000000000 -> NaN Invalid_operation
516pwmx327 power -23 5 -1000000000 -> NaN Invalid_operation
517pwmx328 power 41557 213 -999999999 -> 47650456
518pwmx329 power -2134 199 999999997 -> -946957912
519
520-- Huge base shouldn't present any problems
521pwmx330 power 1.23E+123456791 10123898 17291065 -> 5674045
522
523-- Large exponent, may be slow
524-- (if second argument is 1En then expect O(n) running time)
525pwmx331 power 1000288896 9.87E+12347 93379908 -> 43224924
526
527-- Triple NaN propagation (adapted from examples in fma.decTest)
528pwmx400 power NaN2 NaN3 NaN5 -> NaN2
529pwmx401 power 1 NaN3 NaN5 -> NaN3
530pwmx402 power 1 1 NaN5 -> NaN5
531pwmx403 power sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
532pwmx404 power 1 sNaN2 sNaN3 -> NaN2 Invalid_operation
533pwmx405 power 1 1 sNaN3 -> NaN3 Invalid_operation
534pwmx406 power sNaN1 sNaN2 sNaN3 -> NaN1 Invalid_operation
535pwmx407 power NaN7 sNaN2 sNaN3 -> NaN2 Invalid_operation
536pwmx408 power NaN7 NaN5 sNaN3 -> NaN3 Invalid_operation
537
538-- Infinities not allowed
539pwmx410 power Inf 1 1 -> NaN Invalid_operation
540pwmx411 power 1 Inf 1 -> NaN Invalid_operation
541pwmx412 power 1 1 Inf -> NaN Invalid_operation
542pwmx413 power -Inf 1 1 -> NaN Invalid_operation
543pwmx414 power 1 -Inf 1 -> NaN Invalid_operation
544pwmx415 power 1 1 -Inf -> NaN Invalid_operation
545
546-- Just for fun: 1729 is a Carmichael number
547pwmx420 power 0 1728 1729 -> 0
548pwmx421 power 1 1728 1729 -> 1
549pwmx422 power 2 1728 1729 -> 1
550pwmx423 power 3 1728 1729 -> 1
551pwmx424 power 4 1728 1729 -> 1
552pwmx425 power 5 1728 1729 -> 1
553pwmx426 power 6 1728 1729 -> 1
554pwmx427 power 7 1728 1729 -> 742
555pwmx428 power 8 1728 1729 -> 1
556pwmx429 power 9 1728 1729 -> 1
557pwmx430 power 10 1728 1729 -> 1
558pwmx431 power 11 1728 1729 -> 1
559pwmx432 power 12 1728 1729 -> 1
560pwmx433 power 13 1728 1729 -> 533
561pwmx434 power 14 1728 1729 -> 742
562pwmx435 power 15 1728 1729 -> 1
563pwmx436 power 16 1728 1729 -> 1
564pwmx437 power 17 1728 1729 -> 1
565pwmx438 power 18 1728 1729 -> 1
566pwmx439 power 19 1728 1729 -> 456
567pwmx440 power 20 1728 1729 -> 1