blob: 1b5ff81b846670cba3ee2b904a57262aa8dc3ebe [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`itertools` --- Functions creating iterators for efficient looping
3=======================================================================
4
5.. module:: itertools
6 :synopsis: Functions creating iterators for efficient looping.
7.. moduleauthor:: Raymond Hettinger <python@rcn.com>
8.. sectionauthor:: Raymond Hettinger <python@rcn.com>
9
10
Georg Brandl9afde1c2007-11-01 20:32:30 +000011This module implements a number of :term:`iterator` building blocks inspired by
Georg Brandl116aa622007-08-15 14:28:22 +000012constructs from the Haskell and SML programming languages. Each has been recast
13in a form suitable for Python.
14
15The module standardizes a core set of fast, memory efficient tools that are
16useful by themselves or in combination. Standardization helps avoid the
17readability and reliability problems which arise when many different individuals
18create their own slightly varying implementations, each with their own quirks
19and naming conventions.
20
21The tools are designed to combine readily with one another. This makes it easy
22to construct more specialized tools succinctly and efficiently in pure Python.
23
24For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
25sequence ``f(0), f(1), ...``. This toolbox provides :func:`imap` and
26:func:`count` which can be combined to form ``imap(f, count())`` and produce an
27equivalent result.
28
29Likewise, the functional tools are designed to work well with the high-speed
30functions provided by the :mod:`operator` module.
31
32The module author welcomes suggestions for other basic building blocks to be
33added to future versions of the module.
34
35Whether cast in pure python form or compiled code, tools that use iterators are
36more memory efficient (and faster) than their list based counterparts. Adopting
37the principles of just-in-time manufacturing, they create data when and where
38needed instead of consuming memory with the computer equivalent of "inventory".
39
40The performance advantage of iterators becomes more acute as the number of
41elements increases -- at some point, lists grow large enough to severely impact
42memory cache performance and start running slowly.
43
44
45.. seealso::
46
47 The Standard ML Basis Library, `The Standard ML Basis Library
48 <http://www.standardml.org/Basis/>`_.
49
50 Haskell, A Purely Functional Language, `Definition of Haskell and the Standard
51 Libraries <http://www.haskell.org/definition/>`_.
52
53
54.. _itertools-functions:
55
56Itertool functions
57------------------
58
59The following module functions all construct and return iterators. Some provide
60streams of infinite length, so they should only be accessed by functions or
61loops that truncate the stream.
62
63
64.. function:: chain(*iterables)
65
66 Make an iterator that returns elements from the first iterable until it is
67 exhausted, then proceeds to the next iterable, until all of the iterables are
68 exhausted. Used for treating consecutive sequences as a single sequence.
69 Equivalent to::
70
71 def chain(*iterables):
72 for it in iterables:
73 for element in it:
74 yield element
75
76
77.. function:: count([n])
78
79 Make an iterator that returns consecutive integers starting with *n*. If not
Georg Brandl9afde1c2007-11-01 20:32:30 +000080 specified *n* defaults to zero. Often used as an argument to :func:`imap` to
81 generate consecutive data points. Also, used with :func:`izip` to add sequence
82 numbers. Equivalent to::
Georg Brandl116aa622007-08-15 14:28:22 +000083
84 def count(n=0):
85 while True:
86 yield n
87 n += 1
88
Georg Brandl116aa622007-08-15 14:28:22 +000089
90.. function:: cycle(iterable)
91
92 Make an iterator returning elements from the iterable and saving a copy of each.
93 When the iterable is exhausted, return elements from the saved copy. Repeats
94 indefinitely. Equivalent to::
95
96 def cycle(iterable):
97 saved = []
98 for element in iterable:
99 yield element
100 saved.append(element)
101 while saved:
102 for element in saved:
103 yield element
104
105 Note, this member of the toolkit may require significant auxiliary storage
106 (depending on the length of the iterable).
107
108
109.. function:: dropwhile(predicate, iterable)
110
111 Make an iterator that drops elements from the iterable as long as the predicate
112 is true; afterwards, returns every element. Note, the iterator does not produce
113 *any* output until the predicate first becomes false, so it may have a lengthy
114 start-up time. Equivalent to::
115
116 def dropwhile(predicate, iterable):
117 iterable = iter(iterable)
118 for x in iterable:
119 if not predicate(x):
120 yield x
121 break
122 for x in iterable:
123 yield x
124
125
126.. function:: groupby(iterable[, key])
127
128 Make an iterator that returns consecutive keys and groups from the *iterable*.
129 The *key* is a function computing a key value for each element. If not
130 specified or is ``None``, *key* defaults to an identity function and returns
131 the element unchanged. Generally, the iterable needs to already be sorted on
132 the same key function.
133
134 The operation of :func:`groupby` is similar to the ``uniq`` filter in Unix. It
135 generates a break or new group every time the value of the key function changes
136 (which is why it is usually necessary to have sorted the data using the same key
137 function). That behavior differs from SQL's GROUP BY which aggregates common
138 elements regardless of their input order.
139
140 The returned group is itself an iterator that shares the underlying iterable
141 with :func:`groupby`. Because the source is shared, when the :func:`groupby`
142 object is advanced, the previous group is no longer visible. So, if that data
143 is needed later, it should be stored as a list::
144
145 groups = []
146 uniquekeys = []
147 data = sorted(data, key=keyfunc)
148 for k, g in groupby(data, keyfunc):
149 groups.append(list(g)) # Store group iterator as a list
150 uniquekeys.append(k)
151
152 :func:`groupby` is equivalent to::
153
154 class groupby(object):
155 def __init__(self, iterable, key=None):
156 if key is None:
157 key = lambda x: x
158 self.keyfunc = key
159 self.it = iter(iterable)
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000160 self.tgtkey = self.currkey = self.currvalue = object()
Georg Brandl116aa622007-08-15 14:28:22 +0000161 def __iter__(self):
162 return self
163 def __next__(self):
164 while self.currkey == self.tgtkey:
165 self.currvalue = next(self.it) # Exit on StopIteration
166 self.currkey = self.keyfunc(self.currvalue)
167 self.tgtkey = self.currkey
168 return (self.currkey, self._grouper(self.tgtkey))
169 def _grouper(self, tgtkey):
170 while self.currkey == tgtkey:
171 yield self.currvalue
172 self.currvalue = next(self.it) # Exit on StopIteration
173 self.currkey = self.keyfunc(self.currvalue)
174
Georg Brandl116aa622007-08-15 14:28:22 +0000175
176.. function:: ifilter(predicate, iterable)
177
178 Make an iterator that filters elements from iterable returning only those for
179 which the predicate is ``True``. If *predicate* is ``None``, return the items
180 that are true. Equivalent to::
181
182 def ifilter(predicate, iterable):
183 if predicate is None:
184 predicate = bool
185 for x in iterable:
186 if predicate(x):
187 yield x
188
189
190.. function:: ifilterfalse(predicate, iterable)
191
192 Make an iterator that filters elements from iterable returning only those for
193 which the predicate is ``False``. If *predicate* is ``None``, return the items
194 that are false. Equivalent to::
195
196 def ifilterfalse(predicate, iterable):
197 if predicate is None:
198 predicate = bool
199 for x in iterable:
200 if not predicate(x):
201 yield x
202
203
204.. function:: imap(function, *iterables)
205
206 Make an iterator that computes the function using arguments from each of the
Raymond Hettinger1dfde1d2008-01-22 23:25:35 +0000207 iterables. Equivalent to::
Georg Brandl116aa622007-08-15 14:28:22 +0000208
209 def imap(function, *iterables):
Raymond Hettinger1dfde1d2008-01-22 23:25:35 +0000210 iterables = [iter(it) for it in iterables)
Georg Brandl116aa622007-08-15 14:28:22 +0000211 while True:
Raymond Hettinger1dfde1d2008-01-22 23:25:35 +0000212 args = [next(it) for it in iterables]
213 yield function(*args)
Georg Brandl116aa622007-08-15 14:28:22 +0000214
215
216.. function:: islice(iterable, [start,] stop [, step])
217
218 Make an iterator that returns selected elements from the iterable. If *start* is
219 non-zero, then elements from the iterable are skipped until start is reached.
220 Afterward, elements are returned consecutively unless *step* is set higher than
221 one which results in items being skipped. If *stop* is ``None``, then iteration
222 continues until the iterator is exhausted, if at all; otherwise, it stops at the
223 specified position. Unlike regular slicing, :func:`islice` does not support
224 negative values for *start*, *stop*, or *step*. Can be used to extract related
225 fields from data where the internal structure has been flattened (for example, a
226 multi-line report may list a name field on every third line). Equivalent to::
227
228 def islice(iterable, *args):
229 s = slice(*args)
Christian Heimesa37d4c62007-12-04 23:02:19 +0000230 it = iter(range(s.start or 0, s.stop or sys.maxsize, s.step or 1))
Georg Brandl116aa622007-08-15 14:28:22 +0000231 nexti = next(it)
232 for i, element in enumerate(iterable):
233 if i == nexti:
234 yield element
235 nexti = next(it)
236
237 If *start* is ``None``, then iteration starts at zero. If *step* is ``None``,
238 then the step defaults to one.
239
Georg Brandl116aa622007-08-15 14:28:22 +0000240
241.. function:: izip(*iterables)
242
243 Make an iterator that aggregates elements from each of the iterables. Like
244 :func:`zip` except that it returns an iterator instead of a list. Used for
245 lock-step iteration over several iterables at a time. Equivalent to::
246
247 def izip(*iterables):
248 iterables = map(iter, iterables)
249 while iterables:
250 result = [next(it) for it in iterables]
251 yield tuple(result)
252
Georg Brandl55ac8f02007-09-01 13:51:09 +0000253 When no iterables are specified, return a zero length iterator.
Georg Brandl116aa622007-08-15 14:28:22 +0000254
255 Note, the left-to-right evaluation order of the iterables is guaranteed. This
256 makes possible an idiom for clustering a data series into n-length groups using
257 ``izip(*[iter(s)]*n)``. For data that doesn't fit n-length groups exactly, the
258 last tuple can be pre-padded with fill values using ``izip(*[chain(s,
259 [None]*(n-1))]*n)``.
260
261 Note, when :func:`izip` is used with unequal length inputs, subsequent
262 iteration over the longer iterables cannot reliably be continued after
263 :func:`izip` terminates. Potentially, up to one entry will be missing from
264 each of the left-over iterables. This occurs because a value is fetched from
265 each iterator in- turn, but the process ends when one of the iterators
266 terminates. This leaves the last fetched values in limbo (they cannot be
267 returned in a final, incomplete tuple and they are cannot be pushed back into
268 the iterator for retrieval with ``next(it)``). In general, :func:`izip`
269 should only be used with unequal length inputs when you don't care about
270 trailing, unmatched values from the longer iterables.
271
272
273.. function:: izip_longest(*iterables[, fillvalue])
274
275 Make an iterator that aggregates elements from each of the iterables. If the
276 iterables are of uneven length, missing values are filled-in with *fillvalue*.
277 Iteration continues until the longest iterable is exhausted. Equivalent to::
278
279 def izip_longest(*args, **kwds):
280 fillvalue = kwds.get('fillvalue')
281 def sentinel(counter = ([fillvalue]*(len(args)-1)).pop):
282 yield counter() # yields the fillvalue, or raises IndexError
283 fillers = repeat(fillvalue)
284 iters = [chain(it, sentinel(), fillers) for it in args]
285 try:
286 for tup in izip(*iters):
287 yield tup
288 except IndexError:
289 pass
290
291 If one of the iterables is potentially infinite, then the :func:`izip_longest`
292 function should be wrapped with something that limits the number of calls (for
293 example :func:`islice` or :func:`takewhile`).
294
Georg Brandl116aa622007-08-15 14:28:22 +0000295
296.. function:: repeat(object[, times])
297
298 Make an iterator that returns *object* over and over again. Runs indefinitely
299 unless the *times* argument is specified. Used as argument to :func:`imap` for
300 invariant parameters to the called function. Also used with :func:`izip` to
301 create an invariant part of a tuple record. Equivalent to::
302
303 def repeat(object, times=None):
304 if times is None:
305 while True:
306 yield object
307 else:
308 for i in range(times):
309 yield object
310
311
312.. function:: starmap(function, iterable)
313
Christian Heimes679db4a2008-01-18 09:56:22 +0000314 Make an iterator that computes the function using arguments obtained from
Georg Brandl116aa622007-08-15 14:28:22 +0000315 the iterable. Used instead of :func:`imap` when argument parameters are already
316 grouped in tuples from a single iterable (the data has been "pre-zipped"). The
317 difference between :func:`imap` and :func:`starmap` parallels the distinction
318 between ``function(a,b)`` and ``function(*c)``. Equivalent to::
319
320 def starmap(function, iterable):
Christian Heimes679db4a2008-01-18 09:56:22 +0000321 for args in iterable:
322 yield function(*args)
323
324 .. versionchanged:: 2.6
325 Previously, :func:`starmap` required the function arguments to be tuples.
326 Now, any iterable is allowed.
Georg Brandl116aa622007-08-15 14:28:22 +0000327
328
329.. function:: takewhile(predicate, iterable)
330
331 Make an iterator that returns elements from the iterable as long as the
332 predicate is true. Equivalent to::
333
334 def takewhile(predicate, iterable):
335 for x in iterable:
336 if predicate(x):
337 yield x
338 else:
339 break
340
341
342.. function:: tee(iterable[, n=2])
343
344 Return *n* independent iterators from a single iterable. The case where ``n==2``
345 is equivalent to::
346
347 def tee(iterable):
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000348 def gen(next, data={}):
Georg Brandl116aa622007-08-15 14:28:22 +0000349 for i in count():
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000350 if i in data:
351 yield data.pop(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000352 else:
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000353 data[i] = next()
354 yield data[i]
Georg Brandl116aa622007-08-15 14:28:22 +0000355 it = iter(iterable)
356 return (gen(it.__next__), gen(it.__next__))
357
358 Note, once :func:`tee` has made a split, the original *iterable* should not be
359 used anywhere else; otherwise, the *iterable* could get advanced without the tee
360 objects being informed.
361
362 Note, this member of the toolkit may require significant auxiliary storage
363 (depending on how much temporary data needs to be stored). In general, if one
364 iterator is going to use most or all of the data before the other iterator, it
365 is faster to use :func:`list` instead of :func:`tee`.
366
Georg Brandl116aa622007-08-15 14:28:22 +0000367
368.. _itertools-example:
369
370Examples
371--------
372
373The following examples show common uses for each tool and demonstrate ways they
374can be combined. ::
375
376 >>> amounts = [120.15, 764.05, 823.14]
377 >>> for checknum, amount in izip(count(1200), amounts):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000378 ... print('Check %d is for $%.2f' % (checknum, amount))
Georg Brandl116aa622007-08-15 14:28:22 +0000379 ...
380 Check 1200 is for $120.15
381 Check 1201 is for $764.05
382 Check 1202 is for $823.14
383
384 >>> import operator
385 >>> for cube in imap(operator.pow, range(1,5), repeat(3)):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000386 ... print(cube)
Georg Brandl116aa622007-08-15 14:28:22 +0000387 ...
388 1
389 8
390 27
391 64
392
393 >>> reportlines = ['EuroPython', 'Roster', '', 'alex', '', 'laura',
394 ... '', 'martin', '', 'walter', '', 'mark']
395 >>> for name in islice(reportlines, 3, None, 2):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000396 ... print(name.title())
Georg Brandl116aa622007-08-15 14:28:22 +0000397 ...
398 Alex
399 Laura
400 Martin
401 Walter
402 Mark
403
404 # Show a dictionary sorted and grouped by value
405 >>> from operator import itemgetter
406 >>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)
Fred Drake2e748782007-09-04 17:33:11 +0000407 >>> di = sorted(d.items(), key=itemgetter(1))
Georg Brandl116aa622007-08-15 14:28:22 +0000408 >>> for k, g in groupby(di, key=itemgetter(1)):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000409 ... print(k, map(itemgetter(0), g))
Georg Brandl116aa622007-08-15 14:28:22 +0000410 ...
411 1 ['a', 'c', 'e']
412 2 ['b', 'd', 'f']
413 3 ['g']
414
415 # Find runs of consecutive numbers using groupby. The key to the solution
416 # is differencing with a range so that consecutive numbers all appear in
417 # same group.
418 >>> data = [ 1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
419 >>> for k, g in groupby(enumerate(data), lambda t:t[0]-t[1]):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000420 ... print(map(operator.itemgetter(1), g))
Georg Brandl116aa622007-08-15 14:28:22 +0000421 ...
422 [1]
423 [4, 5, 6]
424 [10]
425 [15, 16, 17, 18]
426 [22]
427 [25, 26, 27, 28]
428
429
430
431.. _itertools-recipes:
432
433Recipes
434-------
435
436This section shows recipes for creating an extended toolset using the existing
437itertools as building blocks.
438
439The extended tools offer the same high performance as the underlying toolset.
440The superior memory performance is kept by processing elements one at a time
441rather than bringing the whole iterable into memory all at once. Code volume is
442kept small by linking the tools together in a functional style which helps
443eliminate temporary variables. High speed is retained by preferring
Georg Brandl9afde1c2007-11-01 20:32:30 +0000444"vectorized" building blocks over the use of for-loops and :term:`generator`\s
445which incur interpreter overhead. ::
Georg Brandl116aa622007-08-15 14:28:22 +0000446
447 def take(n, seq):
448 return list(islice(seq, n))
449
450 def enumerate(iterable):
451 return izip(count(), iterable)
452
453 def tabulate(function):
454 "Return function(0), function(1), ..."
455 return imap(function, count())
456
Georg Brandl116aa622007-08-15 14:28:22 +0000457 def nth(iterable, n):
458 "Returns the nth item or raise StopIteration"
459 return islice(iterable, n, None).next()
460
461 def all(seq, pred=None):
462 "Returns True if pred(x) is true for every element in the iterable"
463 for elem in ifilterfalse(pred, seq):
464 return False
465 return True
466
467 def any(seq, pred=None):
468 "Returns True if pred(x) is true for at least one element in the iterable"
469 for elem in ifilter(pred, seq):
470 return True
471 return False
472
473 def no(seq, pred=None):
474 "Returns True if pred(x) is false for every element in the iterable"
475 for elem in ifilter(pred, seq):
476 return False
477 return True
478
479 def quantify(seq, pred=None):
480 "Count how many times the predicate is true in the sequence"
481 return sum(imap(pred, seq))
482
483 def padnone(seq):
484 """Returns the sequence elements and then returns None indefinitely.
485
486 Useful for emulating the behavior of the built-in map() function.
487 """
488 return chain(seq, repeat(None))
489
490 def ncycles(seq, n):
491 "Returns the sequence elements n times"
492 return chain(*repeat(seq, n))
493
494 def dotproduct(vec1, vec2):
495 return sum(imap(operator.mul, vec1, vec2))
496
497 def flatten(listOfLists):
498 return list(chain(*listOfLists))
499
500 def repeatfunc(func, times=None, *args):
501 """Repeat calls to func with specified arguments.
502
503 Example: repeatfunc(random.random)
504 """
505 if times is None:
506 return starmap(func, repeat(args))
507 else:
508 return starmap(func, repeat(args, times))
509
510 def pairwise(iterable):
511 "s -> (s0,s1), (s1,s2), (s2, s3), ..."
512 a, b = tee(iterable)
513 next(b, None)
514 return izip(a, b)
515
516 def grouper(n, iterable, padvalue=None):
517 "grouper(3, 'abcdefg', 'x') --> ('a','b','c'), ('d','e','f'), ('g','x','x')"
518 return izip(*[chain(iterable, repeat(padvalue, n-1))]*n)
519
520
521