| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 1 | \section{Built-in Module \sectcode{audioop}} | 
| Guido van Rossum | e47da0a | 1997-07-17 16:34:52 +0000 | [diff] [blame] | 2 | \label{module-audioop} | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 3 | \bimodindex{audioop} | 
 | 4 |  | 
| Guido van Rossum | 6bb1adc | 1995-03-13 10:03:32 +0000 | [diff] [blame] | 5 | The \code{audioop} module contains some useful operations on sound fragments. | 
 | 6 | It operates on sound fragments consisting of signed integer samples | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 7 | 8, 16 or 32 bits wide, stored in Python strings.  This is the same | 
 | 8 | format as used by the \code{al} and \code{sunaudiodev} modules.  All | 
 | 9 | scalar items are integers, unless specified otherwise. | 
 | 10 |  | 
 | 11 | A few of the more complicated operations only take 16-bit samples, | 
 | 12 | otherwise the sample size (in bytes) is always a parameter of the operation. | 
 | 13 |  | 
 | 14 | The module defines the following variables and functions: | 
 | 15 |  | 
 | 16 | \renewcommand{\indexsubitem}{(in module audioop)} | 
 | 17 | \begin{excdesc}{error} | 
 | 18 | This exception is raised on all errors, such as unknown number of bytes | 
 | 19 | per sample, etc. | 
 | 20 | \end{excdesc} | 
 | 21 |  | 
 | 22 | \begin{funcdesc}{add}{fragment1\, fragment2\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 23 | Return a fragment which is the addition of the two samples passed as | 
 | 24 | parameters.  \var{width} is the sample width in bytes, either | 
 | 25 | \code{1}, \code{2} or \code{4}.  Both fragments should have the same | 
 | 26 | length. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 27 | \end{funcdesc} | 
 | 28 |  | 
 | 29 | \begin{funcdesc}{adpcm2lin}{adpcmfragment\, width\, state} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 30 | Decode an Intel/DVI ADPCM coded fragment to a linear fragment.  See | 
 | 31 | the description of \code{lin2adpcm} for details on ADPCM coding. | 
 | 32 | Return a tuple \code{(\var{sample}, \var{newstate})} where the sample | 
 | 33 | has the width specified in \var{width}. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 34 | \end{funcdesc} | 
 | 35 |  | 
 | 36 | \begin{funcdesc}{adpcm32lin}{adpcmfragment\, width\, state} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 37 | Decode an alternative 3-bit ADPCM code.  See \code{lin2adpcm3} for | 
 | 38 | details. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 39 | \end{funcdesc} | 
 | 40 |  | 
 | 41 | \begin{funcdesc}{avg}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 42 | Return the average over all samples in the fragment. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 43 | \end{funcdesc} | 
 | 44 |  | 
 | 45 | \begin{funcdesc}{avgpp}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 46 | Return the average peak-peak value over all samples in the fragment. | 
 | 47 | No filtering is done, so the usefulness of this routine is | 
 | 48 | questionable. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 49 | \end{funcdesc} | 
 | 50 |  | 
 | 51 | \begin{funcdesc}{bias}{fragment\, width\, bias} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 52 | Return a fragment that is the original fragment with a bias added to | 
 | 53 | each sample. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 54 | \end{funcdesc} | 
 | 55 |  | 
 | 56 | \begin{funcdesc}{cross}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 57 | Return the number of zero crossings in the fragment passed as an | 
 | 58 | argument. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 59 | \end{funcdesc} | 
 | 60 |  | 
 | 61 | \begin{funcdesc}{findfactor}{fragment\, reference} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 62 | Return a factor \var{F} such that | 
 | 63 | \code{rms(add(fragment, mul(reference, -F)))} is minimal, i.e., | 
 | 64 | return the factor with which you should multiply \var{reference} to | 
 | 65 | make it match as well as possible to \var{fragment}.  The fragments | 
 | 66 | should both contain 2-byte samples. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 67 |  | 
 | 68 | The time taken by this routine is proportional to \code{len(fragment)}.  | 
 | 69 | \end{funcdesc} | 
 | 70 |  | 
 | 71 | \begin{funcdesc}{findfit}{fragment\, reference} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 72 | This routine (which only accepts 2-byte sample fragments) | 
 | 73 |  | 
 | 74 | Try to match \var{reference} as well as possible to a portion of | 
 | 75 | \var{fragment} (which should be the longer fragment).  This is | 
 | 76 | (conceptually) done by taking slices out of \var{fragment}, using | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 77 | \code{findfactor} to compute the best match, and minimizing the | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 78 | result.  The fragments should both contain 2-byte samples.  Return a | 
 | 79 | tuple \code{(\var{offset}, \var{factor})} where \var{offset} is the | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 80 | (integer) offset into \var{fragment} where the optimal match started | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 81 | and \var{factor} is the (floating-point) factor as per | 
 | 82 | \code{findfactor}. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 83 | \end{funcdesc} | 
 | 84 |  | 
 | 85 | \begin{funcdesc}{findmax}{fragment\, length} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 86 | Search \var{fragment} for a slice of length \var{length} samples (not | 
 | 87 | bytes!)\ with maximum energy, i.e., return \var{i} for which | 
 | 88 | \code{rms(fragment[i*2:(i+length)*2])} is maximal.  The fragments | 
 | 89 | should both contain 2-byte samples. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 90 |  | 
 | 91 | The routine takes time proportional to \code{len(fragment)}. | 
 | 92 | \end{funcdesc} | 
 | 93 |  | 
 | 94 | \begin{funcdesc}{getsample}{fragment\, width\, index} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 95 | Return the value of sample \var{index} from the fragment. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 96 | \end{funcdesc} | 
 | 97 |  | 
 | 98 | \begin{funcdesc}{lin2lin}{fragment\, width\, newwidth} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 99 | Convert samples between 1-, 2- and 4-byte formats. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 100 | \end{funcdesc} | 
 | 101 |  | 
 | 102 | \begin{funcdesc}{lin2adpcm}{fragment\, width\, state} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 103 | Convert samples to 4 bit Intel/DVI ADPCM encoding.  ADPCM coding is an | 
 | 104 | adaptive coding scheme, whereby each 4 bit number is the difference | 
 | 105 | between one sample and the next, divided by a (varying) step.  The | 
 | 106 | Intel/DVI ADPCM algorithm has been selected for use by the IMA, so it | 
 | 107 | may well become a standard. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 108 |  | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 109 | \code{State} is a tuple containing the state of the coder.  The coder | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 110 | returns a tuple \code{(\var{adpcmfrag}, \var{newstate})}, and the | 
 | 111 | \var{newstate} should be passed to the next call of lin2adpcm.  In the | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 112 | initial call \code{None} can be passed as the state.  \var{adpcmfrag} | 
 | 113 | is the ADPCM coded fragment packed 2 4-bit values per byte. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 114 | \end{funcdesc} | 
 | 115 |  | 
 | 116 | \begin{funcdesc}{lin2adpcm3}{fragment\, width\, state} | 
 | 117 | This is an alternative ADPCM coder that uses only 3 bits per sample. | 
 | 118 | It is not compatible with the Intel/DVI ADPCM coder and its output is | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 119 | not packed (due to laziness on the side of the author).  Its use is | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 120 | discouraged. | 
 | 121 | \end{funcdesc} | 
 | 122 |  | 
 | 123 | \begin{funcdesc}{lin2ulaw}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 124 | Convert samples in the audio fragment to U-LAW encoding and return | 
 | 125 | this as a Python string.  U-LAW is an audio encoding format whereby | 
 | 126 | you get a dynamic range of about 14 bits using only 8 bit samples.  It | 
 | 127 | is used by the Sun audio hardware, among others. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 128 | \end{funcdesc} | 
 | 129 |  | 
 | 130 | \begin{funcdesc}{minmax}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 131 | Return a tuple consisting of the minimum and maximum values of all | 
 | 132 | samples in the sound fragment. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 133 | \end{funcdesc} | 
 | 134 |  | 
 | 135 | \begin{funcdesc}{max}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 136 | Return the maximum of the {\em absolute value} of all samples in a | 
 | 137 | fragment. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 138 | \end{funcdesc} | 
 | 139 |  | 
 | 140 | \begin{funcdesc}{maxpp}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 141 | Return the maximum peak-peak value in the sound fragment. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 142 | \end{funcdesc} | 
 | 143 |  | 
 | 144 | \begin{funcdesc}{mul}{fragment\, width\, factor} | 
| Guido van Rossum | 6bb1adc | 1995-03-13 10:03:32 +0000 | [diff] [blame] | 145 | Return a fragment that has all samples in the original framgent | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 146 | multiplied by the floating-point value \var{factor}.  Overflow is | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 147 | silently ignored. | 
 | 148 | \end{funcdesc} | 
 | 149 |  | 
| Guido van Rossum | 6fb6f10 | 1997-02-14 15:59:49 +0000 | [diff] [blame] | 150 | \begin{funcdesc}{ratecv}{fragment\, width\, nchannels\, inrate\, outrate\, state\optional{\, weightA\, weightB}} | 
 | 151 | Convert the frame rate of the input fragment. | 
 | 152 |  | 
 | 153 | \code{State} is a tuple containing the state of the converter.  The | 
 | 154 | converter returns a tupl \code{(\var{newfragment}, \var{newstate})}, | 
 | 155 | and \var{newstate} should be passed to the next call of ratecv. | 
 | 156 |  | 
| Guido van Rossum | 3ff7317 | 1997-03-03 16:02:32 +0000 | [diff] [blame] | 157 | The \code{weightA} and \code{weightB} arguments are parameters for a | 
| Guido van Rossum | 6fb6f10 | 1997-02-14 15:59:49 +0000 | [diff] [blame] | 158 | simple digital filter and default to 1 and 0 respectively. | 
 | 159 | \end{funcdesc} | 
 | 160 |  | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 161 | \begin{funcdesc}{reverse}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 162 | Reverse the samples in a fragment and returns the modified fragment. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 163 | \end{funcdesc} | 
 | 164 |  | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 165 | \begin{funcdesc}{rms}{fragment\, width} | 
 | 166 | Return the root-mean-square of the fragment, i.e. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 167 | \iftexi | 
 | 168 | the square root of the quotient of the sum of all squared sample value, | 
 | 169 | divided by the sumber of samples. | 
 | 170 | \else | 
 | 171 | % in eqn: sqrt { sum S sub i sup 2  over n } | 
 | 172 | \begin{displaymath} | 
 | 173 | \catcode`_=8 | 
 | 174 | \sqrt{\frac{\sum{{S_{i}}^{2}}}{n}} | 
 | 175 | \end{displaymath} | 
 | 176 | \fi | 
 | 177 | This is a measure of the power in an audio signal. | 
 | 178 | \end{funcdesc} | 
 | 179 |  | 
| Guido van Rossum | 6bb1adc | 1995-03-13 10:03:32 +0000 | [diff] [blame] | 180 | \begin{funcdesc}{tomono}{fragment\, width\, lfactor\, rfactor}  | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 181 | Convert a stereo fragment to a mono fragment.  The left channel is | 
 | 182 | multiplied by \var{lfactor} and the right channel by \var{rfactor} | 
 | 183 | before adding the two channels to give a mono signal. | 
| Guido van Rossum | 6bb1adc | 1995-03-13 10:03:32 +0000 | [diff] [blame] | 184 | \end{funcdesc} | 
 | 185 |  | 
 | 186 | \begin{funcdesc}{tostereo}{fragment\, width\, lfactor\, rfactor} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 187 | Generate a stereo fragment from a mono fragment.  Each pair of samples | 
 | 188 | in the stereo fragment are computed from the mono sample, whereby left | 
 | 189 | channel samples are multiplied by \var{lfactor} and right channel | 
 | 190 | samples by \var{rfactor}. | 
| Guido van Rossum | 6bb1adc | 1995-03-13 10:03:32 +0000 | [diff] [blame] | 191 | \end{funcdesc} | 
 | 192 |  | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 193 | \begin{funcdesc}{ulaw2lin}{fragment\, width} | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 194 | Convert sound fragments in ULAW encoding to linearly encoded sound | 
 | 195 | fragments.  ULAW encoding always uses 8 bits samples, so \var{width} | 
 | 196 | refers only to the sample width of the output fragment here. | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 197 | \end{funcdesc} | 
 | 198 |  | 
 | 199 | Note that operations such as \code{mul} or \code{max} make no | 
| Guido van Rossum | 6bb1adc | 1995-03-13 10:03:32 +0000 | [diff] [blame] | 200 | distinction between mono and stereo fragments, i.e.\ all samples are | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 201 | treated equal.  If this is a problem the stereo fragment should be split | 
 | 202 | into two mono fragments first and recombined later.  Here is an example | 
 | 203 | of how to do that: | 
 | 204 | \bcode\begin{verbatim} | 
 | 205 | def mul_stereo(sample, width, lfactor, rfactor): | 
 | 206 |     lsample = audioop.tomono(sample, width, 1, 0) | 
 | 207 |     rsample = audioop.tomono(sample, width, 0, 1) | 
 | 208 |     lsample = audioop.mul(sample, width, lfactor) | 
 | 209 |     rsample = audioop.mul(sample, width, rfactor) | 
 | 210 |     lsample = audioop.tostereo(lsample, width, 1, 0) | 
 | 211 |     rsample = audioop.tostereo(rsample, width, 0, 1) | 
 | 212 |     return audioop.add(lsample, rsample, width) | 
 | 213 | \end{verbatim}\ecode | 
| Guido van Rossum | e47da0a | 1997-07-17 16:34:52 +0000 | [diff] [blame] | 214 | % | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 215 | If you use the ADPCM coder to build network packets and you want your | 
| Guido van Rossum | 6bb1adc | 1995-03-13 10:03:32 +0000 | [diff] [blame] | 216 | protocol to be stateless (i.e.\ to be able to tolerate packet loss) | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 217 | you should not only transmit the data but also the state.  Note that | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 218 | you should send the \var{initial} state (the one you passed to | 
| Guido van Rossum | 6bb1adc | 1995-03-13 10:03:32 +0000 | [diff] [blame] | 219 | \code{lin2adpcm}) along to the decoder, not the final state (as returned by | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 220 | the coder).  If you want to use \code{struct} to store the state in | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 221 | binary you can code the first element (the predicted value) in 16 bits | 
 | 222 | and the second (the delta index) in 8. | 
 | 223 |  | 
 | 224 | The ADPCM coders have never been tried against other ADPCM coders, | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 225 | only against themselves.  It could well be that I misinterpreted the | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 226 | standards in which case they will not be interoperable with the | 
 | 227 | respective standards. | 
 | 228 |  | 
 | 229 | The \code{find...} routines might look a bit funny at first sight. | 
| Guido van Rossum | 470be14 | 1995-03-17 16:07:09 +0000 | [diff] [blame] | 230 | They are primarily meant to do echo cancellation.  A reasonably | 
| Guido van Rossum | 5fdeeea | 1994-01-02 01:22:07 +0000 | [diff] [blame] | 231 | fast way to do this is to pick the most energetic piece of the output | 
 | 232 | sample, locate that in the input sample and subtract the whole output | 
 | 233 | sample from the input sample: | 
 | 234 | \bcode\begin{verbatim} | 
 | 235 | def echocancel(outputdata, inputdata): | 
 | 236 |     pos = audioop.findmax(outputdata, 800)    # one tenth second | 
 | 237 |     out_test = outputdata[pos*2:] | 
 | 238 |     in_test = inputdata[pos*2:] | 
 | 239 |     ipos, factor = audioop.findfit(in_test, out_test) | 
 | 240 |     # Optional (for better cancellation): | 
 | 241 |     # factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],  | 
 | 242 |     #              out_test) | 
 | 243 |     prefill = '\0'*(pos+ipos)*2 | 
 | 244 |     postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata)) | 
 | 245 |     outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill | 
 | 246 |     return audioop.add(inputdata, outputdata, 2) | 
 | 247 | \end{verbatim}\ecode |