blob: b577433e3f119057b5404eaaf00322c3f5bd7b1a [file] [log] [blame]
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001"""Test suite for statistics module, including helper NumericTestCase and
2approx_equal function.
3
4"""
5
6import collections
Serhiy Storchaka2e576f52017-04-24 09:05:00 +03007import collections.abc
Larry Hastingsf5e987b2013-10-19 11:50:09 -07008import decimal
9import doctest
10import math
11import random
Serhiy Storchakab12cb6a2013-12-08 18:16:18 +020012import sys
Larry Hastingsf5e987b2013-10-19 11:50:09 -070013import unittest
14
15from decimal import Decimal
16from fractions import Fraction
17
18
19# Module to be tested.
20import statistics
21
22
23# === Helper functions and class ===
24
Steven D'Apranoa474afd2016-08-09 12:49:01 +100025def sign(x):
26 """Return -1.0 for negatives, including -0.0, otherwise +1.0."""
27 return math.copysign(1, x)
28
Steven D'Apranob28c3272015-12-01 19:59:53 +110029def _nan_equal(a, b):
30 """Return True if a and b are both the same kind of NAN.
31
32 >>> _nan_equal(Decimal('NAN'), Decimal('NAN'))
33 True
34 >>> _nan_equal(Decimal('sNAN'), Decimal('sNAN'))
35 True
36 >>> _nan_equal(Decimal('NAN'), Decimal('sNAN'))
37 False
38 >>> _nan_equal(Decimal(42), Decimal('NAN'))
39 False
40
41 >>> _nan_equal(float('NAN'), float('NAN'))
42 True
43 >>> _nan_equal(float('NAN'), 0.5)
44 False
45
46 >>> _nan_equal(float('NAN'), Decimal('NAN'))
47 False
48
49 NAN payloads are not compared.
50 """
51 if type(a) is not type(b):
52 return False
53 if isinstance(a, float):
54 return math.isnan(a) and math.isnan(b)
55 aexp = a.as_tuple()[2]
56 bexp = b.as_tuple()[2]
57 return (aexp == bexp) and (aexp in ('n', 'N')) # Both NAN or both sNAN.
58
59
Larry Hastingsf5e987b2013-10-19 11:50:09 -070060def _calc_errors(actual, expected):
61 """Return the absolute and relative errors between two numbers.
62
63 >>> _calc_errors(100, 75)
64 (25, 0.25)
65 >>> _calc_errors(100, 100)
66 (0, 0.0)
67
68 Returns the (absolute error, relative error) between the two arguments.
69 """
70 base = max(abs(actual), abs(expected))
71 abs_err = abs(actual - expected)
72 rel_err = abs_err/base if base else float('inf')
73 return (abs_err, rel_err)
74
75
76def approx_equal(x, y, tol=1e-12, rel=1e-7):
77 """approx_equal(x, y [, tol [, rel]]) => True|False
78
79 Return True if numbers x and y are approximately equal, to within some
80 margin of error, otherwise return False. Numbers which compare equal
81 will also compare approximately equal.
82
83 x is approximately equal to y if the difference between them is less than
84 an absolute error tol or a relative error rel, whichever is bigger.
85
86 If given, both tol and rel must be finite, non-negative numbers. If not
87 given, default values are tol=1e-12 and rel=1e-7.
88
89 >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0)
90 True
91 >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0)
92 False
93
94 Absolute error is defined as abs(x-y); if that is less than or equal to
95 tol, x and y are considered approximately equal.
96
97 Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is
98 smaller, provided x or y are not zero. If that figure is less than or
99 equal to rel, x and y are considered approximately equal.
100
101 Complex numbers are not directly supported. If you wish to compare to
102 complex numbers, extract their real and imaginary parts and compare them
103 individually.
104
105 NANs always compare unequal, even with themselves. Infinities compare
106 approximately equal if they have the same sign (both positive or both
107 negative). Infinities with different signs compare unequal; so do
108 comparisons of infinities with finite numbers.
109 """
110 if tol < 0 or rel < 0:
111 raise ValueError('error tolerances must be non-negative')
112 # NANs are never equal to anything, approximately or otherwise.
113 if math.isnan(x) or math.isnan(y):
114 return False
115 # Numbers which compare equal also compare approximately equal.
116 if x == y:
117 # This includes the case of two infinities with the same sign.
118 return True
119 if math.isinf(x) or math.isinf(y):
120 # This includes the case of two infinities of opposite sign, or
121 # one infinity and one finite number.
122 return False
123 # Two finite numbers.
124 actual_error = abs(x - y)
125 allowed_error = max(tol, rel*max(abs(x), abs(y)))
126 return actual_error <= allowed_error
127
128
129# This class exists only as somewhere to stick a docstring containing
130# doctests. The following docstring and tests were originally in a separate
131# module. Now that it has been merged in here, I need somewhere to hang the.
132# docstring. Ultimately, this class will die, and the information below will
133# either become redundant, or be moved into more appropriate places.
134class _DoNothing:
135 """
136 When doing numeric work, especially with floats, exact equality is often
137 not what you want. Due to round-off error, it is often a bad idea to try
138 to compare floats with equality. Instead the usual procedure is to test
139 them with some (hopefully small!) allowance for error.
140
141 The ``approx_equal`` function allows you to specify either an absolute
142 error tolerance, or a relative error, or both.
143
144 Absolute error tolerances are simple, but you need to know the magnitude
145 of the quantities being compared:
146
147 >>> approx_equal(12.345, 12.346, tol=1e-3)
148 True
149 >>> approx_equal(12.345e6, 12.346e6, tol=1e-3) # tol is too small.
150 False
151
152 Relative errors are more suitable when the values you are comparing can
153 vary in magnitude:
154
155 >>> approx_equal(12.345, 12.346, rel=1e-4)
156 True
157 >>> approx_equal(12.345e6, 12.346e6, rel=1e-4)
158 True
159
160 but a naive implementation of relative error testing can run into trouble
161 around zero.
162
163 If you supply both an absolute tolerance and a relative error, the
164 comparison succeeds if either individual test succeeds:
165
166 >>> approx_equal(12.345e6, 12.346e6, tol=1e-3, rel=1e-4)
167 True
168
169 """
170 pass
171
172
173
174# We prefer this for testing numeric values that may not be exactly equal,
175# and avoid using TestCase.assertAlmostEqual, because it sucks :-)
176
177class NumericTestCase(unittest.TestCase):
178 """Unit test class for numeric work.
179
180 This subclasses TestCase. In addition to the standard method
181 ``TestCase.assertAlmostEqual``, ``assertApproxEqual`` is provided.
182 """
183 # By default, we expect exact equality, unless overridden.
184 tol = rel = 0
185
186 def assertApproxEqual(
187 self, first, second, tol=None, rel=None, msg=None
188 ):
189 """Test passes if ``first`` and ``second`` are approximately equal.
190
191 This test passes if ``first`` and ``second`` are equal to
192 within ``tol``, an absolute error, or ``rel``, a relative error.
193
194 If either ``tol`` or ``rel`` are None or not given, they default to
195 test attributes of the same name (by default, 0).
196
197 The objects may be either numbers, or sequences of numbers. Sequences
198 are tested element-by-element.
199
200 >>> class MyTest(NumericTestCase):
201 ... def test_number(self):
202 ... x = 1.0/6
203 ... y = sum([x]*6)
204 ... self.assertApproxEqual(y, 1.0, tol=1e-15)
205 ... def test_sequence(self):
206 ... a = [1.001, 1.001e-10, 1.001e10]
207 ... b = [1.0, 1e-10, 1e10]
208 ... self.assertApproxEqual(a, b, rel=1e-3)
209 ...
210 >>> import unittest
211 >>> from io import StringIO # Suppress test runner output.
212 >>> suite = unittest.TestLoader().loadTestsFromTestCase(MyTest)
213 >>> unittest.TextTestRunner(stream=StringIO()).run(suite)
214 <unittest.runner.TextTestResult run=2 errors=0 failures=0>
215
216 """
217 if tol is None:
218 tol = self.tol
219 if rel is None:
220 rel = self.rel
221 if (
Serhiy Storchaka2e576f52017-04-24 09:05:00 +0300222 isinstance(first, collections.abc.Sequence) and
223 isinstance(second, collections.abc.Sequence)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700224 ):
225 check = self._check_approx_seq
226 else:
227 check = self._check_approx_num
228 check(first, second, tol, rel, msg)
229
230 def _check_approx_seq(self, first, second, tol, rel, msg):
231 if len(first) != len(second):
232 standardMsg = (
233 "sequences differ in length: %d items != %d items"
234 % (len(first), len(second))
235 )
236 msg = self._formatMessage(msg, standardMsg)
237 raise self.failureException(msg)
238 for i, (a,e) in enumerate(zip(first, second)):
239 self._check_approx_num(a, e, tol, rel, msg, i)
240
241 def _check_approx_num(self, first, second, tol, rel, msg, idx=None):
242 if approx_equal(first, second, tol, rel):
243 # Test passes. Return early, we are done.
244 return None
245 # Otherwise we failed.
246 standardMsg = self._make_std_err_msg(first, second, tol, rel, idx)
247 msg = self._formatMessage(msg, standardMsg)
248 raise self.failureException(msg)
249
250 @staticmethod
251 def _make_std_err_msg(first, second, tol, rel, idx):
252 # Create the standard error message for approx_equal failures.
253 assert first != second
254 template = (
255 ' %r != %r\n'
256 ' values differ by more than tol=%r and rel=%r\n'
257 ' -> absolute error = %r\n'
258 ' -> relative error = %r'
259 )
260 if idx is not None:
261 header = 'numeric sequences first differ at index %d.\n' % idx
262 template = header + template
263 # Calculate actual errors:
264 abs_err, rel_err = _calc_errors(first, second)
265 return template % (first, second, tol, rel, abs_err, rel_err)
266
267
268# ========================
269# === Test the helpers ===
270# ========================
271
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000272class TestSign(unittest.TestCase):
273 """Test that the helper function sign() works correctly."""
274 def testZeroes(self):
275 # Test that signed zeroes report their sign correctly.
276 self.assertEqual(sign(0.0), +1)
277 self.assertEqual(sign(-0.0), -1)
278
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700279
280# --- Tests for approx_equal ---
281
282class ApproxEqualSymmetryTest(unittest.TestCase):
283 # Test symmetry of approx_equal.
284
285 def test_relative_symmetry(self):
286 # Check that approx_equal treats relative error symmetrically.
287 # (a-b)/a is usually not equal to (a-b)/b. Ensure that this
288 # doesn't matter.
289 #
290 # Note: the reason for this test is that an early version
291 # of approx_equal was not symmetric. A relative error test
292 # would pass, or fail, depending on which value was passed
293 # as the first argument.
294 #
295 args1 = [2456, 37.8, -12.45, Decimal('2.54'), Fraction(17, 54)]
296 args2 = [2459, 37.2, -12.41, Decimal('2.59'), Fraction(15, 54)]
297 assert len(args1) == len(args2)
298 for a, b in zip(args1, args2):
299 self.do_relative_symmetry(a, b)
300
301 def do_relative_symmetry(self, a, b):
302 a, b = min(a, b), max(a, b)
303 assert a < b
304 delta = b - a # The absolute difference between the values.
305 rel_err1, rel_err2 = abs(delta/a), abs(delta/b)
306 # Choose an error margin halfway between the two.
307 rel = (rel_err1 + rel_err2)/2
308 # Now see that values a and b compare approx equal regardless of
309 # which is given first.
310 self.assertTrue(approx_equal(a, b, tol=0, rel=rel))
311 self.assertTrue(approx_equal(b, a, tol=0, rel=rel))
312
313 def test_symmetry(self):
314 # Test that approx_equal(a, b) == approx_equal(b, a)
315 args = [-23, -2, 5, 107, 93568]
316 delta = 2
Christian Heimesad393602013-11-26 01:32:15 +0100317 for a in args:
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700318 for type_ in (int, float, Decimal, Fraction):
Christian Heimesad393602013-11-26 01:32:15 +0100319 x = type_(a)*100
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700320 y = x + delta
321 r = abs(delta/max(x, y))
322 # There are five cases to check:
323 # 1) actual error <= tol, <= rel
324 self.do_symmetry_test(x, y, tol=delta, rel=r)
325 self.do_symmetry_test(x, y, tol=delta+1, rel=2*r)
326 # 2) actual error > tol, > rel
327 self.do_symmetry_test(x, y, tol=delta-1, rel=r/2)
328 # 3) actual error <= tol, > rel
329 self.do_symmetry_test(x, y, tol=delta, rel=r/2)
330 # 4) actual error > tol, <= rel
331 self.do_symmetry_test(x, y, tol=delta-1, rel=r)
332 self.do_symmetry_test(x, y, tol=delta-1, rel=2*r)
333 # 5) exact equality test
334 self.do_symmetry_test(x, x, tol=0, rel=0)
335 self.do_symmetry_test(x, y, tol=0, rel=0)
336
337 def do_symmetry_test(self, a, b, tol, rel):
338 template = "approx_equal comparisons don't match for %r"
339 flag1 = approx_equal(a, b, tol, rel)
340 flag2 = approx_equal(b, a, tol, rel)
341 self.assertEqual(flag1, flag2, template.format((a, b, tol, rel)))
342
343
344class ApproxEqualExactTest(unittest.TestCase):
345 # Test the approx_equal function with exactly equal values.
346 # Equal values should compare as approximately equal.
347 # Test cases for exactly equal values, which should compare approx
348 # equal regardless of the error tolerances given.
349
350 def do_exactly_equal_test(self, x, tol, rel):
351 result = approx_equal(x, x, tol=tol, rel=rel)
352 self.assertTrue(result, 'equality failure for x=%r' % x)
353 result = approx_equal(-x, -x, tol=tol, rel=rel)
354 self.assertTrue(result, 'equality failure for x=%r' % -x)
355
356 def test_exactly_equal_ints(self):
357 # Test that equal int values are exactly equal.
358 for n in [42, 19740, 14974, 230, 1795, 700245, 36587]:
359 self.do_exactly_equal_test(n, 0, 0)
360
361 def test_exactly_equal_floats(self):
362 # Test that equal float values are exactly equal.
363 for x in [0.42, 1.9740, 1497.4, 23.0, 179.5, 70.0245, 36.587]:
364 self.do_exactly_equal_test(x, 0, 0)
365
366 def test_exactly_equal_fractions(self):
367 # Test that equal Fraction values are exactly equal.
368 F = Fraction
369 for f in [F(1, 2), F(0), F(5, 3), F(9, 7), F(35, 36), F(3, 7)]:
370 self.do_exactly_equal_test(f, 0, 0)
371
372 def test_exactly_equal_decimals(self):
373 # Test that equal Decimal values are exactly equal.
374 D = Decimal
375 for d in map(D, "8.2 31.274 912.04 16.745 1.2047".split()):
376 self.do_exactly_equal_test(d, 0, 0)
377
378 def test_exactly_equal_absolute(self):
379 # Test that equal values are exactly equal with an absolute error.
380 for n in [16, 1013, 1372, 1198, 971, 4]:
381 # Test as ints.
382 self.do_exactly_equal_test(n, 0.01, 0)
383 # Test as floats.
384 self.do_exactly_equal_test(n/10, 0.01, 0)
385 # Test as Fractions.
386 f = Fraction(n, 1234)
387 self.do_exactly_equal_test(f, 0.01, 0)
388
389 def test_exactly_equal_absolute_decimals(self):
390 # Test equal Decimal values are exactly equal with an absolute error.
391 self.do_exactly_equal_test(Decimal("3.571"), Decimal("0.01"), 0)
392 self.do_exactly_equal_test(-Decimal("81.3971"), Decimal("0.01"), 0)
393
394 def test_exactly_equal_relative(self):
395 # Test that equal values are exactly equal with a relative error.
396 for x in [8347, 101.3, -7910.28, Fraction(5, 21)]:
397 self.do_exactly_equal_test(x, 0, 0.01)
398 self.do_exactly_equal_test(Decimal("11.68"), 0, Decimal("0.01"))
399
400 def test_exactly_equal_both(self):
401 # Test that equal values are equal when both tol and rel are given.
402 for x in [41017, 16.742, -813.02, Fraction(3, 8)]:
403 self.do_exactly_equal_test(x, 0.1, 0.01)
404 D = Decimal
405 self.do_exactly_equal_test(D("7.2"), D("0.1"), D("0.01"))
406
407
408class ApproxEqualUnequalTest(unittest.TestCase):
409 # Unequal values should compare unequal with zero error tolerances.
410 # Test cases for unequal values, with exact equality test.
411
412 def do_exactly_unequal_test(self, x):
413 for a in (x, -x):
414 result = approx_equal(a, a+1, tol=0, rel=0)
415 self.assertFalse(result, 'inequality failure for x=%r' % a)
416
417 def test_exactly_unequal_ints(self):
418 # Test unequal int values are unequal with zero error tolerance.
419 for n in [951, 572305, 478, 917, 17240]:
420 self.do_exactly_unequal_test(n)
421
422 def test_exactly_unequal_floats(self):
423 # Test unequal float values are unequal with zero error tolerance.
424 for x in [9.51, 5723.05, 47.8, 9.17, 17.24]:
425 self.do_exactly_unequal_test(x)
426
427 def test_exactly_unequal_fractions(self):
428 # Test that unequal Fractions are unequal with zero error tolerance.
429 F = Fraction
430 for f in [F(1, 5), F(7, 9), F(12, 11), F(101, 99023)]:
431 self.do_exactly_unequal_test(f)
432
433 def test_exactly_unequal_decimals(self):
434 # Test that unequal Decimals are unequal with zero error tolerance.
435 for d in map(Decimal, "3.1415 298.12 3.47 18.996 0.00245".split()):
436 self.do_exactly_unequal_test(d)
437
438
439class ApproxEqualInexactTest(unittest.TestCase):
440 # Inexact test cases for approx_error.
441 # Test cases when comparing two values that are not exactly equal.
442
443 # === Absolute error tests ===
444
445 def do_approx_equal_abs_test(self, x, delta):
446 template = "Test failure for x={!r}, y={!r}"
447 for y in (x + delta, x - delta):
448 msg = template.format(x, y)
449 self.assertTrue(approx_equal(x, y, tol=2*delta, rel=0), msg)
450 self.assertFalse(approx_equal(x, y, tol=delta/2, rel=0), msg)
451
452 def test_approx_equal_absolute_ints(self):
453 # Test approximate equality of ints with an absolute error.
454 for n in [-10737, -1975, -7, -2, 0, 1, 9, 37, 423, 9874, 23789110]:
455 self.do_approx_equal_abs_test(n, 10)
456 self.do_approx_equal_abs_test(n, 2)
457
458 def test_approx_equal_absolute_floats(self):
459 # Test approximate equality of floats with an absolute error.
460 for x in [-284.126, -97.1, -3.4, -2.15, 0.5, 1.0, 7.8, 4.23, 3817.4]:
461 self.do_approx_equal_abs_test(x, 1.5)
462 self.do_approx_equal_abs_test(x, 0.01)
463 self.do_approx_equal_abs_test(x, 0.0001)
464
465 def test_approx_equal_absolute_fractions(self):
466 # Test approximate equality of Fractions with an absolute error.
467 delta = Fraction(1, 29)
468 numerators = [-84, -15, -2, -1, 0, 1, 5, 17, 23, 34, 71]
469 for f in (Fraction(n, 29) for n in numerators):
470 self.do_approx_equal_abs_test(f, delta)
471 self.do_approx_equal_abs_test(f, float(delta))
472
473 def test_approx_equal_absolute_decimals(self):
474 # Test approximate equality of Decimals with an absolute error.
475 delta = Decimal("0.01")
476 for d in map(Decimal, "1.0 3.5 36.08 61.79 7912.3648".split()):
477 self.do_approx_equal_abs_test(d, delta)
478 self.do_approx_equal_abs_test(-d, delta)
479
480 def test_cross_zero(self):
481 # Test for the case of the two values having opposite signs.
482 self.assertTrue(approx_equal(1e-5, -1e-5, tol=1e-4, rel=0))
483
484 # === Relative error tests ===
485
486 def do_approx_equal_rel_test(self, x, delta):
487 template = "Test failure for x={!r}, y={!r}"
488 for y in (x*(1+delta), x*(1-delta)):
489 msg = template.format(x, y)
490 self.assertTrue(approx_equal(x, y, tol=0, rel=2*delta), msg)
491 self.assertFalse(approx_equal(x, y, tol=0, rel=delta/2), msg)
492
493 def test_approx_equal_relative_ints(self):
494 # Test approximate equality of ints with a relative error.
495 self.assertTrue(approx_equal(64, 47, tol=0, rel=0.36))
496 self.assertTrue(approx_equal(64, 47, tol=0, rel=0.37))
497 # ---
498 self.assertTrue(approx_equal(449, 512, tol=0, rel=0.125))
499 self.assertTrue(approx_equal(448, 512, tol=0, rel=0.125))
500 self.assertFalse(approx_equal(447, 512, tol=0, rel=0.125))
501
502 def test_approx_equal_relative_floats(self):
503 # Test approximate equality of floats with a relative error.
504 for x in [-178.34, -0.1, 0.1, 1.0, 36.97, 2847.136, 9145.074]:
505 self.do_approx_equal_rel_test(x, 0.02)
506 self.do_approx_equal_rel_test(x, 0.0001)
507
508 def test_approx_equal_relative_fractions(self):
509 # Test approximate equality of Fractions with a relative error.
510 F = Fraction
511 delta = Fraction(3, 8)
512 for f in [F(3, 84), F(17, 30), F(49, 50), F(92, 85)]:
513 for d in (delta, float(delta)):
514 self.do_approx_equal_rel_test(f, d)
515 self.do_approx_equal_rel_test(-f, d)
516
517 def test_approx_equal_relative_decimals(self):
518 # Test approximate equality of Decimals with a relative error.
519 for d in map(Decimal, "0.02 1.0 5.7 13.67 94.138 91027.9321".split()):
520 self.do_approx_equal_rel_test(d, Decimal("0.001"))
521 self.do_approx_equal_rel_test(-d, Decimal("0.05"))
522
523 # === Both absolute and relative error tests ===
524
525 # There are four cases to consider:
526 # 1) actual error <= both absolute and relative error
527 # 2) actual error <= absolute error but > relative error
528 # 3) actual error <= relative error but > absolute error
529 # 4) actual error > both absolute and relative error
530
531 def do_check_both(self, a, b, tol, rel, tol_flag, rel_flag):
532 check = self.assertTrue if tol_flag else self.assertFalse
533 check(approx_equal(a, b, tol=tol, rel=0))
534 check = self.assertTrue if rel_flag else self.assertFalse
535 check(approx_equal(a, b, tol=0, rel=rel))
536 check = self.assertTrue if (tol_flag or rel_flag) else self.assertFalse
537 check(approx_equal(a, b, tol=tol, rel=rel))
538
539 def test_approx_equal_both1(self):
540 # Test actual error <= both absolute and relative error.
541 self.do_check_both(7.955, 7.952, 0.004, 3.8e-4, True, True)
542 self.do_check_both(-7.387, -7.386, 0.002, 0.0002, True, True)
543
544 def test_approx_equal_both2(self):
545 # Test actual error <= absolute error but > relative error.
546 self.do_check_both(7.955, 7.952, 0.004, 3.7e-4, True, False)
547
548 def test_approx_equal_both3(self):
549 # Test actual error <= relative error but > absolute error.
550 self.do_check_both(7.955, 7.952, 0.001, 3.8e-4, False, True)
551
552 def test_approx_equal_both4(self):
553 # Test actual error > both absolute and relative error.
554 self.do_check_both(2.78, 2.75, 0.01, 0.001, False, False)
555 self.do_check_both(971.44, 971.47, 0.02, 3e-5, False, False)
556
557
558class ApproxEqualSpecialsTest(unittest.TestCase):
559 # Test approx_equal with NANs and INFs and zeroes.
560
561 def test_inf(self):
562 for type_ in (float, Decimal):
563 inf = type_('inf')
564 self.assertTrue(approx_equal(inf, inf))
565 self.assertTrue(approx_equal(inf, inf, 0, 0))
566 self.assertTrue(approx_equal(inf, inf, 1, 0.01))
567 self.assertTrue(approx_equal(-inf, -inf))
568 self.assertFalse(approx_equal(inf, -inf))
569 self.assertFalse(approx_equal(inf, 1000))
570
571 def test_nan(self):
572 for type_ in (float, Decimal):
573 nan = type_('nan')
574 for other in (nan, type_('inf'), 1000):
575 self.assertFalse(approx_equal(nan, other))
576
577 def test_float_zeroes(self):
578 nzero = math.copysign(0.0, -1)
579 self.assertTrue(approx_equal(nzero, 0.0, tol=0.1, rel=0.1))
580
581 def test_decimal_zeroes(self):
582 nzero = Decimal("-0.0")
583 self.assertTrue(approx_equal(nzero, Decimal(0), tol=0.1, rel=0.1))
584
585
586class TestApproxEqualErrors(unittest.TestCase):
587 # Test error conditions of approx_equal.
588
589 def test_bad_tol(self):
590 # Test negative tol raises.
591 self.assertRaises(ValueError, approx_equal, 100, 100, -1, 0.1)
592
593 def test_bad_rel(self):
594 # Test negative rel raises.
595 self.assertRaises(ValueError, approx_equal, 100, 100, 1, -0.1)
596
597
598# --- Tests for NumericTestCase ---
599
600# The formatting routine that generates the error messages is complex enough
601# that it too needs testing.
602
603class TestNumericTestCase(unittest.TestCase):
604 # The exact wording of NumericTestCase error messages is *not* guaranteed,
605 # but we need to give them some sort of test to ensure that they are
606 # generated correctly. As a compromise, we look for specific substrings
607 # that are expected to be found even if the overall error message changes.
608
609 def do_test(self, args):
610 actual_msg = NumericTestCase._make_std_err_msg(*args)
611 expected = self.generate_substrings(*args)
612 for substring in expected:
613 self.assertIn(substring, actual_msg)
614
615 def test_numerictestcase_is_testcase(self):
616 # Ensure that NumericTestCase actually is a TestCase.
617 self.assertTrue(issubclass(NumericTestCase, unittest.TestCase))
618
619 def test_error_msg_numeric(self):
620 # Test the error message generated for numeric comparisons.
621 args = (2.5, 4.0, 0.5, 0.25, None)
622 self.do_test(args)
623
624 def test_error_msg_sequence(self):
625 # Test the error message generated for sequence comparisons.
626 args = (3.75, 8.25, 1.25, 0.5, 7)
627 self.do_test(args)
628
629 def generate_substrings(self, first, second, tol, rel, idx):
630 """Return substrings we expect to see in error messages."""
631 abs_err, rel_err = _calc_errors(first, second)
632 substrings = [
633 'tol=%r' % tol,
634 'rel=%r' % rel,
635 'absolute error = %r' % abs_err,
636 'relative error = %r' % rel_err,
637 ]
638 if idx is not None:
639 substrings.append('differ at index %d' % idx)
640 return substrings
641
642
643# =======================================
644# === Tests for the statistics module ===
645# =======================================
646
647
648class GlobalsTest(unittest.TestCase):
649 module = statistics
650 expected_metadata = ["__doc__", "__all__"]
651
652 def test_meta(self):
653 # Test for the existence of metadata.
654 for meta in self.expected_metadata:
655 self.assertTrue(hasattr(self.module, meta),
656 "%s not present" % meta)
657
658 def test_check_all(self):
659 # Check everything in __all__ exists and is public.
660 module = self.module
661 for name in module.__all__:
662 # No private names in __all__:
663 self.assertFalse(name.startswith("_"),
664 'private name "%s" in __all__' % name)
665 # And anything in __all__ must exist:
666 self.assertTrue(hasattr(module, name),
667 'missing name "%s" in __all__' % name)
668
669
670class DocTests(unittest.TestCase):
Serhiy Storchakab12cb6a2013-12-08 18:16:18 +0200671 @unittest.skipIf(sys.flags.optimize >= 2,
672 "Docstrings are omitted with -OO and above")
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700673 def test_doc_tests(self):
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000674 failed, tried = doctest.testmod(statistics, optionflags=doctest.ELLIPSIS)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700675 self.assertGreater(tried, 0)
676 self.assertEqual(failed, 0)
677
678class StatisticsErrorTest(unittest.TestCase):
679 def test_has_exception(self):
680 errmsg = (
681 "Expected StatisticsError to be a ValueError, but got a"
682 " subclass of %r instead."
683 )
684 self.assertTrue(hasattr(statistics, 'StatisticsError'))
685 self.assertTrue(
686 issubclass(statistics.StatisticsError, ValueError),
687 errmsg % statistics.StatisticsError.__base__
688 )
689
690
691# === Tests for private utility functions ===
692
693class ExactRatioTest(unittest.TestCase):
694 # Test _exact_ratio utility.
695
696 def test_int(self):
697 for i in (-20, -3, 0, 5, 99, 10**20):
698 self.assertEqual(statistics._exact_ratio(i), (i, 1))
699
700 def test_fraction(self):
701 numerators = (-5, 1, 12, 38)
702 for n in numerators:
703 f = Fraction(n, 37)
704 self.assertEqual(statistics._exact_ratio(f), (n, 37))
705
706 def test_float(self):
707 self.assertEqual(statistics._exact_ratio(0.125), (1, 8))
708 self.assertEqual(statistics._exact_ratio(1.125), (9, 8))
709 data = [random.uniform(-100, 100) for _ in range(100)]
710 for x in data:
711 num, den = statistics._exact_ratio(x)
712 self.assertEqual(x, num/den)
713
714 def test_decimal(self):
715 D = Decimal
716 _exact_ratio = statistics._exact_ratio
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000717 self.assertEqual(_exact_ratio(D("0.125")), (1, 8))
718 self.assertEqual(_exact_ratio(D("12.345")), (2469, 200))
719 self.assertEqual(_exact_ratio(D("-1.98")), (-99, 50))
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700720
Steven D'Apranob28c3272015-12-01 19:59:53 +1100721 def test_inf(self):
722 INF = float("INF")
723 class MyFloat(float):
724 pass
725 class MyDecimal(Decimal):
726 pass
727 for inf in (INF, -INF):
728 for type_ in (float, MyFloat, Decimal, MyDecimal):
729 x = type_(inf)
730 ratio = statistics._exact_ratio(x)
731 self.assertEqual(ratio, (x, None))
732 self.assertEqual(type(ratio[0]), type_)
733 self.assertTrue(math.isinf(ratio[0]))
734
735 def test_float_nan(self):
736 NAN = float("NAN")
737 class MyFloat(float):
738 pass
739 for nan in (NAN, MyFloat(NAN)):
740 ratio = statistics._exact_ratio(nan)
741 self.assertTrue(math.isnan(ratio[0]))
742 self.assertIs(ratio[1], None)
743 self.assertEqual(type(ratio[0]), type(nan))
744
745 def test_decimal_nan(self):
746 NAN = Decimal("NAN")
747 sNAN = Decimal("sNAN")
748 class MyDecimal(Decimal):
749 pass
750 for nan in (NAN, MyDecimal(NAN), sNAN, MyDecimal(sNAN)):
751 ratio = statistics._exact_ratio(nan)
752 self.assertTrue(_nan_equal(ratio[0], nan))
753 self.assertIs(ratio[1], None)
754 self.assertEqual(type(ratio[0]), type(nan))
755
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700756
757class DecimalToRatioTest(unittest.TestCase):
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000758 # Test _exact_ratio private function.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700759
Steven D'Apranob28c3272015-12-01 19:59:53 +1100760 def test_infinity(self):
761 # Test that INFs are handled correctly.
762 inf = Decimal('INF')
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000763 self.assertEqual(statistics._exact_ratio(inf), (inf, None))
764 self.assertEqual(statistics._exact_ratio(-inf), (-inf, None))
Steven D'Apranob28c3272015-12-01 19:59:53 +1100765
766 def test_nan(self):
767 # Test that NANs are handled correctly.
768 for nan in (Decimal('NAN'), Decimal('sNAN')):
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000769 num, den = statistics._exact_ratio(nan)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100770 # Because NANs always compare non-equal, we cannot use assertEqual.
771 # Nor can we use an identity test, as we don't guarantee anything
772 # about the object identity.
773 self.assertTrue(_nan_equal(num, nan))
774 self.assertIs(den, None)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700775
Nick Coghlan4a7668a2014-02-08 23:55:14 +1000776 def test_sign(self):
777 # Test sign is calculated correctly.
778 numbers = [Decimal("9.8765e12"), Decimal("9.8765e-12")]
779 for d in numbers:
780 # First test positive decimals.
781 assert d > 0
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000782 num, den = statistics._exact_ratio(d)
Nick Coghlan4a7668a2014-02-08 23:55:14 +1000783 self.assertGreaterEqual(num, 0)
784 self.assertGreater(den, 0)
785 # Then test negative decimals.
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000786 num, den = statistics._exact_ratio(-d)
Nick Coghlan4a7668a2014-02-08 23:55:14 +1000787 self.assertLessEqual(num, 0)
788 self.assertGreater(den, 0)
789
790 def test_negative_exponent(self):
791 # Test result when the exponent is negative.
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000792 t = statistics._exact_ratio(Decimal("0.1234"))
793 self.assertEqual(t, (617, 5000))
Nick Coghlan4a7668a2014-02-08 23:55:14 +1000794
795 def test_positive_exponent(self):
796 # Test results when the exponent is positive.
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000797 t = statistics._exact_ratio(Decimal("1.234e7"))
Nick Coghlan4a7668a2014-02-08 23:55:14 +1000798 self.assertEqual(t, (12340000, 1))
799
800 def test_regression_20536(self):
801 # Regression test for issue 20536.
802 # See http://bugs.python.org/issue20536
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000803 t = statistics._exact_ratio(Decimal("1e2"))
Nick Coghlan4a7668a2014-02-08 23:55:14 +1000804 self.assertEqual(t, (100, 1))
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000805 t = statistics._exact_ratio(Decimal("1.47e5"))
Nick Coghlan4a7668a2014-02-08 23:55:14 +1000806 self.assertEqual(t, (147000, 1))
807
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700808
Steven D'Apranob28c3272015-12-01 19:59:53 +1100809class IsFiniteTest(unittest.TestCase):
810 # Test _isfinite private function.
Nick Coghlan73afe2a2014-02-08 19:58:04 +1000811
Steven D'Apranob28c3272015-12-01 19:59:53 +1100812 def test_finite(self):
813 # Test that finite numbers are recognised as finite.
814 for x in (5, Fraction(1, 3), 2.5, Decimal("5.5")):
815 self.assertTrue(statistics._isfinite(x))
Nick Coghlan73afe2a2014-02-08 19:58:04 +1000816
Steven D'Apranob28c3272015-12-01 19:59:53 +1100817 def test_infinity(self):
818 # Test that INFs are not recognised as finite.
819 for x in (float("inf"), Decimal("inf")):
820 self.assertFalse(statistics._isfinite(x))
Nick Coghlan73afe2a2014-02-08 19:58:04 +1000821
Steven D'Apranob28c3272015-12-01 19:59:53 +1100822 def test_nan(self):
823 # Test that NANs are not recognised as finite.
824 for x in (float("nan"), Decimal("NAN"), Decimal("sNAN")):
825 self.assertFalse(statistics._isfinite(x))
826
827
828class CoerceTest(unittest.TestCase):
829 # Test that private function _coerce correctly deals with types.
830
831 # The coercion rules are currently an implementation detail, although at
832 # some point that should change. The tests and comments here define the
833 # correct implementation.
834
835 # Pre-conditions of _coerce:
836 #
837 # - The first time _sum calls _coerce, the
838 # - coerce(T, S) will never be called with bool as the first argument;
839 # this is a pre-condition, guarded with an assertion.
840
841 #
842 # - coerce(T, T) will always return T; we assume T is a valid numeric
843 # type. Violate this assumption at your own risk.
844 #
845 # - Apart from as above, bool is treated as if it were actually int.
846 #
847 # - coerce(int, X) and coerce(X, int) return X.
848 # -
849 def test_bool(self):
850 # bool is somewhat special, due to the pre-condition that it is
851 # never given as the first argument to _coerce, and that it cannot
852 # be subclassed. So we test it specially.
853 for T in (int, float, Fraction, Decimal):
854 self.assertIs(statistics._coerce(T, bool), T)
855 class MyClass(T): pass
856 self.assertIs(statistics._coerce(MyClass, bool), MyClass)
857
858 def assertCoerceTo(self, A, B):
859 """Assert that type A coerces to B."""
860 self.assertIs(statistics._coerce(A, B), B)
861 self.assertIs(statistics._coerce(B, A), B)
862
863 def check_coerce_to(self, A, B):
864 """Checks that type A coerces to B, including subclasses."""
865 # Assert that type A is coerced to B.
866 self.assertCoerceTo(A, B)
867 # Subclasses of A are also coerced to B.
868 class SubclassOfA(A): pass
869 self.assertCoerceTo(SubclassOfA, B)
870 # A, and subclasses of A, are coerced to subclasses of B.
871 class SubclassOfB(B): pass
872 self.assertCoerceTo(A, SubclassOfB)
873 self.assertCoerceTo(SubclassOfA, SubclassOfB)
874
875 def assertCoerceRaises(self, A, B):
876 """Assert that coercing A to B, or vice versa, raises TypeError."""
877 self.assertRaises(TypeError, statistics._coerce, (A, B))
878 self.assertRaises(TypeError, statistics._coerce, (B, A))
879
880 def check_type_coercions(self, T):
881 """Check that type T coerces correctly with subclasses of itself."""
882 assert T is not bool
883 # Coercing a type with itself returns the same type.
884 self.assertIs(statistics._coerce(T, T), T)
885 # Coercing a type with a subclass of itself returns the subclass.
886 class U(T): pass
887 class V(T): pass
888 class W(U): pass
889 for typ in (U, V, W):
890 self.assertCoerceTo(T, typ)
891 self.assertCoerceTo(U, W)
892 # Coercing two subclasses that aren't parent/child is an error.
893 self.assertCoerceRaises(U, V)
894 self.assertCoerceRaises(V, W)
895
896 def test_int(self):
897 # Check that int coerces correctly.
898 self.check_type_coercions(int)
899 for typ in (float, Fraction, Decimal):
900 self.check_coerce_to(int, typ)
901
902 def test_fraction(self):
903 # Check that Fraction coerces correctly.
904 self.check_type_coercions(Fraction)
905 self.check_coerce_to(Fraction, float)
906
907 def test_decimal(self):
908 # Check that Decimal coerces correctly.
909 self.check_type_coercions(Decimal)
910
911 def test_float(self):
912 # Check that float coerces correctly.
913 self.check_type_coercions(float)
914
915 def test_non_numeric_types(self):
916 for bad_type in (str, list, type(None), tuple, dict):
917 for good_type in (int, float, Fraction, Decimal):
918 self.assertCoerceRaises(good_type, bad_type)
919
920 def test_incompatible_types(self):
921 # Test that incompatible types raise.
922 for T in (float, Fraction):
923 class MySubclass(T): pass
924 self.assertCoerceRaises(T, Decimal)
925 self.assertCoerceRaises(MySubclass, Decimal)
926
927
928class ConvertTest(unittest.TestCase):
929 # Test private _convert function.
930
931 def check_exact_equal(self, x, y):
932 """Check that x equals y, and has the same type as well."""
933 self.assertEqual(x, y)
934 self.assertIs(type(x), type(y))
935
936 def test_int(self):
937 # Test conversions to int.
938 x = statistics._convert(Fraction(71), int)
939 self.check_exact_equal(x, 71)
940 class MyInt(int): pass
941 x = statistics._convert(Fraction(17), MyInt)
942 self.check_exact_equal(x, MyInt(17))
943
944 def test_fraction(self):
945 # Test conversions to Fraction.
946 x = statistics._convert(Fraction(95, 99), Fraction)
947 self.check_exact_equal(x, Fraction(95, 99))
948 class MyFraction(Fraction):
949 def __truediv__(self, other):
950 return self.__class__(super().__truediv__(other))
951 x = statistics._convert(Fraction(71, 13), MyFraction)
952 self.check_exact_equal(x, MyFraction(71, 13))
953
954 def test_float(self):
955 # Test conversions to float.
956 x = statistics._convert(Fraction(-1, 2), float)
957 self.check_exact_equal(x, -0.5)
958 class MyFloat(float):
959 def __truediv__(self, other):
960 return self.__class__(super().__truediv__(other))
961 x = statistics._convert(Fraction(9, 8), MyFloat)
962 self.check_exact_equal(x, MyFloat(1.125))
963
964 def test_decimal(self):
965 # Test conversions to Decimal.
966 x = statistics._convert(Fraction(1, 40), Decimal)
967 self.check_exact_equal(x, Decimal("0.025"))
968 class MyDecimal(Decimal):
969 def __truediv__(self, other):
970 return self.__class__(super().__truediv__(other))
971 x = statistics._convert(Fraction(-15, 16), MyDecimal)
972 self.check_exact_equal(x, MyDecimal("-0.9375"))
973
974 def test_inf(self):
975 for INF in (float('inf'), Decimal('inf')):
976 for inf in (INF, -INF):
977 x = statistics._convert(inf, type(inf))
978 self.check_exact_equal(x, inf)
979
980 def test_nan(self):
981 for nan in (float('nan'), Decimal('NAN'), Decimal('sNAN')):
982 x = statistics._convert(nan, type(nan))
983 self.assertTrue(_nan_equal(x, nan))
Nick Coghlan73afe2a2014-02-08 19:58:04 +1000984
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700985
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000986class FailNegTest(unittest.TestCase):
987 """Test _fail_neg private function."""
988
989 def test_pass_through(self):
990 # Test that values are passed through unchanged.
991 values = [1, 2.0, Fraction(3), Decimal(4)]
992 new = list(statistics._fail_neg(values))
993 self.assertEqual(values, new)
994
995 def test_negatives_raise(self):
996 # Test that negatives raise an exception.
997 for x in [1, 2.0, Fraction(3), Decimal(4)]:
998 seq = [-x]
999 it = statistics._fail_neg(seq)
1000 self.assertRaises(statistics.StatisticsError, next, it)
1001
1002 def test_error_msg(self):
1003 # Test that a given error message is used.
1004 msg = "badness #%d" % random.randint(10000, 99999)
1005 try:
1006 next(statistics._fail_neg([-1], msg))
1007 except statistics.StatisticsError as e:
1008 errmsg = e.args[0]
1009 else:
1010 self.fail("expected exception, but it didn't happen")
1011 self.assertEqual(errmsg, msg)
1012
1013
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001014# === Tests for public functions ===
1015
1016class UnivariateCommonMixin:
1017 # Common tests for most univariate functions that take a data argument.
1018
1019 def test_no_args(self):
1020 # Fail if given no arguments.
1021 self.assertRaises(TypeError, self.func)
1022
1023 def test_empty_data(self):
1024 # Fail when the data argument (first argument) is empty.
1025 for empty in ([], (), iter([])):
1026 self.assertRaises(statistics.StatisticsError, self.func, empty)
1027
1028 def prepare_data(self):
1029 """Return int data for various tests."""
1030 data = list(range(10))
1031 while data == sorted(data):
1032 random.shuffle(data)
1033 return data
1034
1035 def test_no_inplace_modifications(self):
1036 # Test that the function does not modify its input data.
1037 data = self.prepare_data()
1038 assert len(data) != 1 # Necessary to avoid infinite loop.
1039 assert data != sorted(data)
1040 saved = data[:]
1041 assert data is not saved
1042 _ = self.func(data)
1043 self.assertListEqual(data, saved, "data has been modified")
1044
1045 def test_order_doesnt_matter(self):
1046 # Test that the order of data points doesn't change the result.
1047
1048 # CAUTION: due to floating point rounding errors, the result actually
1049 # may depend on the order. Consider this test representing an ideal.
1050 # To avoid this test failing, only test with exact values such as ints
1051 # or Fractions.
1052 data = [1, 2, 3, 3, 3, 4, 5, 6]*100
1053 expected = self.func(data)
1054 random.shuffle(data)
1055 actual = self.func(data)
1056 self.assertEqual(expected, actual)
1057
1058 def test_type_of_data_collection(self):
1059 # Test that the type of iterable data doesn't effect the result.
1060 class MyList(list):
1061 pass
1062 class MyTuple(tuple):
1063 pass
1064 def generator(data):
1065 return (obj for obj in data)
1066 data = self.prepare_data()
1067 expected = self.func(data)
1068 for kind in (list, tuple, iter, MyList, MyTuple, generator):
1069 result = self.func(kind(data))
1070 self.assertEqual(result, expected)
1071
1072 def test_range_data(self):
1073 # Test that functions work with range objects.
1074 data = range(20, 50, 3)
1075 expected = self.func(list(data))
1076 self.assertEqual(self.func(data), expected)
1077
1078 def test_bad_arg_types(self):
1079 # Test that function raises when given data of the wrong type.
1080
1081 # Don't roll the following into a loop like this:
1082 # for bad in list_of_bad:
1083 # self.check_for_type_error(bad)
1084 #
1085 # Since assertRaises doesn't show the arguments that caused the test
1086 # failure, it is very difficult to debug these test failures when the
1087 # following are in a loop.
1088 self.check_for_type_error(None)
1089 self.check_for_type_error(23)
1090 self.check_for_type_error(42.0)
1091 self.check_for_type_error(object())
1092
1093 def check_for_type_error(self, *args):
1094 self.assertRaises(TypeError, self.func, *args)
1095
1096 def test_type_of_data_element(self):
1097 # Check the type of data elements doesn't affect the numeric result.
1098 # This is a weaker test than UnivariateTypeMixin.testTypesConserved,
1099 # because it checks the numeric result by equality, but not by type.
1100 class MyFloat(float):
1101 def __truediv__(self, other):
1102 return type(self)(super().__truediv__(other))
1103 def __add__(self, other):
1104 return type(self)(super().__add__(other))
1105 __radd__ = __add__
1106
1107 raw = self.prepare_data()
1108 expected = self.func(raw)
1109 for kind in (float, MyFloat, Decimal, Fraction):
1110 data = [kind(x) for x in raw]
1111 result = type(expected)(self.func(data))
1112 self.assertEqual(result, expected)
1113
1114
1115class UnivariateTypeMixin:
1116 """Mixin class for type-conserving functions.
1117
1118 This mixin class holds test(s) for functions which conserve the type of
1119 individual data points. E.g. the mean of a list of Fractions should itself
1120 be a Fraction.
1121
1122 Not all tests to do with types need go in this class. Only those that
1123 rely on the function returning the same type as its input data.
1124 """
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001125 def prepare_types_for_conservation_test(self):
1126 """Return the types which are expected to be conserved."""
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001127 class MyFloat(float):
1128 def __truediv__(self, other):
1129 return type(self)(super().__truediv__(other))
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001130 def __rtruediv__(self, other):
1131 return type(self)(super().__rtruediv__(other))
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001132 def __sub__(self, other):
1133 return type(self)(super().__sub__(other))
1134 def __rsub__(self, other):
1135 return type(self)(super().__rsub__(other))
1136 def __pow__(self, other):
1137 return type(self)(super().__pow__(other))
1138 def __add__(self, other):
1139 return type(self)(super().__add__(other))
1140 __radd__ = __add__
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001141 return (float, Decimal, Fraction, MyFloat)
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001142
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001143 def test_types_conserved(self):
1144 # Test that functions keeps the same type as their data points.
1145 # (Excludes mixed data types.) This only tests the type of the return
1146 # result, not the value.
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001147 data = self.prepare_data()
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001148 for kind in self.prepare_types_for_conservation_test():
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001149 d = [kind(x) for x in data]
1150 result = self.func(d)
1151 self.assertIs(type(result), kind)
1152
1153
Steven D'Apranob28c3272015-12-01 19:59:53 +11001154class TestSumCommon(UnivariateCommonMixin, UnivariateTypeMixin):
1155 # Common test cases for statistics._sum() function.
1156
1157 # This test suite looks only at the numeric value returned by _sum,
1158 # after conversion to the appropriate type.
1159 def setUp(self):
1160 def simplified_sum(*args):
1161 T, value, n = statistics._sum(*args)
1162 return statistics._coerce(value, T)
1163 self.func = simplified_sum
1164
1165
1166class TestSum(NumericTestCase):
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001167 # Test cases for statistics._sum() function.
1168
Steven D'Apranob28c3272015-12-01 19:59:53 +11001169 # These tests look at the entire three value tuple returned by _sum.
1170
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001171 def setUp(self):
1172 self.func = statistics._sum
1173
1174 def test_empty_data(self):
1175 # Override test for empty data.
1176 for data in ([], (), iter([])):
Steven D'Apranob28c3272015-12-01 19:59:53 +11001177 self.assertEqual(self.func(data), (int, Fraction(0), 0))
1178 self.assertEqual(self.func(data, 23), (int, Fraction(23), 0))
1179 self.assertEqual(self.func(data, 2.3), (float, Fraction(2.3), 0))
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001180
1181 def test_ints(self):
Steven D'Apranob28c3272015-12-01 19:59:53 +11001182 self.assertEqual(self.func([1, 5, 3, -4, -8, 20, 42, 1]),
1183 (int, Fraction(60), 8))
1184 self.assertEqual(self.func([4, 2, 3, -8, 7], 1000),
1185 (int, Fraction(1008), 5))
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001186
1187 def test_floats(self):
Steven D'Apranob28c3272015-12-01 19:59:53 +11001188 self.assertEqual(self.func([0.25]*20),
1189 (float, Fraction(5.0), 20))
1190 self.assertEqual(self.func([0.125, 0.25, 0.5, 0.75], 1.5),
1191 (float, Fraction(3.125), 4))
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001192
1193 def test_fractions(self):
Steven D'Apranob28c3272015-12-01 19:59:53 +11001194 self.assertEqual(self.func([Fraction(1, 1000)]*500),
1195 (Fraction, Fraction(1, 2), 500))
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001196
1197 def test_decimals(self):
1198 D = Decimal
1199 data = [D("0.001"), D("5.246"), D("1.702"), D("-0.025"),
1200 D("3.974"), D("2.328"), D("4.617"), D("2.843"),
1201 ]
Steven D'Apranob28c3272015-12-01 19:59:53 +11001202 self.assertEqual(self.func(data),
1203 (Decimal, Decimal("20.686"), 8))
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001204
1205 def test_compare_with_math_fsum(self):
1206 # Compare with the math.fsum function.
1207 # Ideally we ought to get the exact same result, but sometimes
1208 # we differ by a very slight amount :-(
1209 data = [random.uniform(-100, 1000) for _ in range(1000)]
Steven D'Apranob28c3272015-12-01 19:59:53 +11001210 self.assertApproxEqual(float(self.func(data)[1]), math.fsum(data), rel=2e-16)
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001211
1212 def test_start_argument(self):
1213 # Test that the optional start argument works correctly.
1214 data = [random.uniform(1, 1000) for _ in range(100)]
Steven D'Apranob28c3272015-12-01 19:59:53 +11001215 t = self.func(data)[1]
1216 self.assertEqual(t+42, self.func(data, 42)[1])
1217 self.assertEqual(t-23, self.func(data, -23)[1])
1218 self.assertEqual(t+Fraction(1e20), self.func(data, 1e20)[1])
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001219
1220 def test_strings_fail(self):
1221 # Sum of strings should fail.
1222 self.assertRaises(TypeError, self.func, [1, 2, 3], '999')
1223 self.assertRaises(TypeError, self.func, [1, 2, 3, '999'])
1224
1225 def test_bytes_fail(self):
1226 # Sum of bytes should fail.
1227 self.assertRaises(TypeError, self.func, [1, 2, 3], b'999')
1228 self.assertRaises(TypeError, self.func, [1, 2, 3, b'999'])
1229
1230 def test_mixed_sum(self):
Nick Coghlan73afe2a2014-02-08 19:58:04 +10001231 # Mixed input types are not (currently) allowed.
1232 # Check that mixed data types fail.
Steven D'Apranob28c3272015-12-01 19:59:53 +11001233 self.assertRaises(TypeError, self.func, [1, 2.0, Decimal(1)])
Nick Coghlan73afe2a2014-02-08 19:58:04 +10001234 # And so does mixed start argument.
1235 self.assertRaises(TypeError, self.func, [1, 2.0], Decimal(1))
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001236
1237
1238class SumTortureTest(NumericTestCase):
1239 def test_torture(self):
1240 # Tim Peters' torture test for sum, and variants of same.
Steven D'Apranob28c3272015-12-01 19:59:53 +11001241 self.assertEqual(statistics._sum([1, 1e100, 1, -1e100]*10000),
1242 (float, Fraction(20000.0), 40000))
1243 self.assertEqual(statistics._sum([1e100, 1, 1, -1e100]*10000),
1244 (float, Fraction(20000.0), 40000))
1245 T, num, count = statistics._sum([1e-100, 1, 1e-100, -1]*10000)
1246 self.assertIs(T, float)
1247 self.assertEqual(count, 40000)
1248 self.assertApproxEqual(float(num), 2.0e-96, rel=5e-16)
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001249
1250
1251class SumSpecialValues(NumericTestCase):
1252 # Test that sum works correctly with IEEE-754 special values.
1253
1254 def test_nan(self):
1255 for type_ in (float, Decimal):
1256 nan = type_('nan')
Steven D'Apranob28c3272015-12-01 19:59:53 +11001257 result = statistics._sum([1, nan, 2])[1]
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001258 self.assertIs(type(result), type_)
1259 self.assertTrue(math.isnan(result))
1260
1261 def check_infinity(self, x, inf):
1262 """Check x is an infinity of the same type and sign as inf."""
1263 self.assertTrue(math.isinf(x))
1264 self.assertIs(type(x), type(inf))
1265 self.assertEqual(x > 0, inf > 0)
1266 assert x == inf
1267
1268 def do_test_inf(self, inf):
1269 # Adding a single infinity gives infinity.
Steven D'Apranob28c3272015-12-01 19:59:53 +11001270 result = statistics._sum([1, 2, inf, 3])[1]
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001271 self.check_infinity(result, inf)
1272 # Adding two infinities of the same sign also gives infinity.
Steven D'Apranob28c3272015-12-01 19:59:53 +11001273 result = statistics._sum([1, 2, inf, 3, inf, 4])[1]
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001274 self.check_infinity(result, inf)
1275
1276 def test_float_inf(self):
1277 inf = float('inf')
1278 for sign in (+1, -1):
1279 self.do_test_inf(sign*inf)
1280
1281 def test_decimal_inf(self):
1282 inf = Decimal('inf')
1283 for sign in (+1, -1):
1284 self.do_test_inf(sign*inf)
1285
1286 def test_float_mismatched_infs(self):
1287 # Test that adding two infinities of opposite sign gives a NAN.
1288 inf = float('inf')
Steven D'Apranob28c3272015-12-01 19:59:53 +11001289 result = statistics._sum([1, 2, inf, 3, -inf, 4])[1]
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001290 self.assertTrue(math.isnan(result))
1291
Berker Peksagf8c111d2014-09-24 15:03:25 +03001292 def test_decimal_extendedcontext_mismatched_infs_to_nan(self):
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001293 # Test adding Decimal INFs with opposite sign returns NAN.
1294 inf = Decimal('inf')
1295 data = [1, 2, inf, 3, -inf, 4]
1296 with decimal.localcontext(decimal.ExtendedContext):
Steven D'Apranob28c3272015-12-01 19:59:53 +11001297 self.assertTrue(math.isnan(statistics._sum(data)[1]))
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001298
Berker Peksagf8c111d2014-09-24 15:03:25 +03001299 def test_decimal_basiccontext_mismatched_infs_to_nan(self):
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001300 # Test adding Decimal INFs with opposite sign raises InvalidOperation.
1301 inf = Decimal('inf')
1302 data = [1, 2, inf, 3, -inf, 4]
1303 with decimal.localcontext(decimal.BasicContext):
1304 self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
1305
1306 def test_decimal_snan_raises(self):
1307 # Adding sNAN should raise InvalidOperation.
1308 sNAN = Decimal('sNAN')
1309 data = [1, sNAN, 2]
1310 self.assertRaises(decimal.InvalidOperation, statistics._sum, data)
1311
1312
1313# === Tests for averages ===
1314
1315class AverageMixin(UnivariateCommonMixin):
1316 # Mixin class holding common tests for averages.
1317
1318 def test_single_value(self):
1319 # Average of a single value is the value itself.
1320 for x in (23, 42.5, 1.3e15, Fraction(15, 19), Decimal('0.28')):
1321 self.assertEqual(self.func([x]), x)
1322
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001323 def prepare_values_for_repeated_single_test(self):
1324 return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.9712'))
1325
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001326 def test_repeated_single_value(self):
1327 # The average of a single repeated value is the value itself.
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001328 for x in self.prepare_values_for_repeated_single_test():
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001329 for count in (2, 5, 10, 20):
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001330 with self.subTest(x=x, count=count):
1331 data = [x]*count
1332 self.assertEqual(self.func(data), x)
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001333
1334
1335class TestMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
1336 def setUp(self):
1337 self.func = statistics.mean
1338
1339 def test_torture_pep(self):
1340 # "Torture Test" from PEP-450.
1341 self.assertEqual(self.func([1e100, 1, 3, -1e100]), 1)
1342
1343 def test_ints(self):
1344 # Test mean with ints.
1345 data = [0, 1, 2, 3, 3, 3, 4, 5, 5, 6, 7, 7, 7, 7, 8, 9]
1346 random.shuffle(data)
1347 self.assertEqual(self.func(data), 4.8125)
1348
1349 def test_floats(self):
1350 # Test mean with floats.
1351 data = [17.25, 19.75, 20.0, 21.5, 21.75, 23.25, 25.125, 27.5]
1352 random.shuffle(data)
1353 self.assertEqual(self.func(data), 22.015625)
1354
1355 def test_decimals(self):
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001356 # Test mean with Decimals.
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001357 D = Decimal
1358 data = [D("1.634"), D("2.517"), D("3.912"), D("4.072"), D("5.813")]
1359 random.shuffle(data)
1360 self.assertEqual(self.func(data), D("3.5896"))
1361
1362 def test_fractions(self):
1363 # Test mean with Fractions.
1364 F = Fraction
1365 data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
1366 random.shuffle(data)
1367 self.assertEqual(self.func(data), F(1479, 1960))
1368
1369 def test_inf(self):
1370 # Test mean with infinities.
1371 raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later.
1372 for kind in (float, Decimal):
1373 for sign in (1, -1):
1374 inf = kind("inf")*sign
1375 data = raw + [inf]
1376 result = self.func(data)
1377 self.assertTrue(math.isinf(result))
1378 self.assertEqual(result, inf)
1379
1380 def test_mismatched_infs(self):
1381 # Test mean with infinities of opposite sign.
1382 data = [2, 4, 6, float('inf'), 1, 3, 5, float('-inf')]
1383 result = self.func(data)
1384 self.assertTrue(math.isnan(result))
1385
1386 def test_nan(self):
1387 # Test mean with NANs.
1388 raw = [1, 3, 5, 7, 9] # Use only ints, to avoid TypeError later.
1389 for kind in (float, Decimal):
1390 inf = kind("nan")
1391 data = raw + [inf]
1392 result = self.func(data)
1393 self.assertTrue(math.isnan(result))
1394
1395 def test_big_data(self):
1396 # Test adding a large constant to every data point.
1397 c = 1e9
1398 data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
1399 expected = self.func(data) + c
1400 assert expected != c
1401 result = self.func([x+c for x in data])
1402 self.assertEqual(result, expected)
1403
1404 def test_doubled_data(self):
1405 # Mean of [a,b,c...z] should be same as for [a,a,b,b,c,c...z,z].
1406 data = [random.uniform(-3, 5) for _ in range(1000)]
1407 expected = self.func(data)
1408 actual = self.func(data*2)
1409 self.assertApproxEqual(actual, expected)
1410
Nick Coghlan4a7668a2014-02-08 23:55:14 +10001411 def test_regression_20561(self):
1412 # Regression test for issue 20561.
1413 # See http://bugs.python.org/issue20561
1414 d = Decimal('1e4')
1415 self.assertEqual(statistics.mean([d]), d)
1416
Steven D'Apranob28c3272015-12-01 19:59:53 +11001417 def test_regression_25177(self):
1418 # Regression test for issue 25177.
1419 # Ensure very big and very small floats don't overflow.
1420 # See http://bugs.python.org/issue25177.
1421 self.assertEqual(statistics.mean(
1422 [8.988465674311579e+307, 8.98846567431158e+307]),
1423 8.98846567431158e+307)
1424 big = 8.98846567431158e+307
1425 tiny = 5e-324
1426 for n in (2, 3, 5, 200):
1427 self.assertEqual(statistics.mean([big]*n), big)
1428 self.assertEqual(statistics.mean([tiny]*n), tiny)
1429
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001430
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001431class TestHarmonicMean(NumericTestCase, AverageMixin, UnivariateTypeMixin):
1432 def setUp(self):
1433 self.func = statistics.harmonic_mean
1434
1435 def prepare_data(self):
1436 # Override mixin method.
1437 values = super().prepare_data()
1438 values.remove(0)
1439 return values
1440
1441 def prepare_values_for_repeated_single_test(self):
1442 # Override mixin method.
1443 return (3.5, 17, 2.5e15, Fraction(61, 67), Decimal('4.125'))
1444
1445 def test_zero(self):
1446 # Test that harmonic mean returns zero when given zero.
1447 values = [1, 0, 2]
1448 self.assertEqual(self.func(values), 0)
1449
1450 def test_negative_error(self):
1451 # Test that harmonic mean raises when given a negative value.
1452 exc = statistics.StatisticsError
1453 for values in ([-1], [1, -2, 3]):
1454 with self.subTest(values=values):
1455 self.assertRaises(exc, self.func, values)
1456
1457 def test_ints(self):
1458 # Test harmonic mean with ints.
1459 data = [2, 4, 4, 8, 16, 16]
1460 random.shuffle(data)
1461 self.assertEqual(self.func(data), 6*4/5)
1462
1463 def test_floats_exact(self):
1464 # Test harmonic mean with some carefully chosen floats.
1465 data = [1/8, 1/4, 1/4, 1/2, 1/2]
1466 random.shuffle(data)
1467 self.assertEqual(self.func(data), 1/4)
1468 self.assertEqual(self.func([0.25, 0.5, 1.0, 1.0]), 0.5)
1469
1470 def test_singleton_lists(self):
1471 # Test that harmonic mean([x]) returns (approximately) x.
1472 for x in range(1, 101):
Steven D'Apranoe7fef522016-08-09 13:19:48 +10001473 self.assertEqual(self.func([x]), x)
Steven D'Apranoa474afd2016-08-09 12:49:01 +10001474
1475 def test_decimals_exact(self):
1476 # Test harmonic mean with some carefully chosen Decimals.
1477 D = Decimal
1478 self.assertEqual(self.func([D(15), D(30), D(60), D(60)]), D(30))
1479 data = [D("0.05"), D("0.10"), D("0.20"), D("0.20")]
1480 random.shuffle(data)
1481 self.assertEqual(self.func(data), D("0.10"))
1482 data = [D("1.68"), D("0.32"), D("5.94"), D("2.75")]
1483 random.shuffle(data)
1484 self.assertEqual(self.func(data), D(66528)/70723)
1485
1486 def test_fractions(self):
1487 # Test harmonic mean with Fractions.
1488 F = Fraction
1489 data = [F(1, 2), F(2, 3), F(3, 4), F(4, 5), F(5, 6), F(6, 7), F(7, 8)]
1490 random.shuffle(data)
1491 self.assertEqual(self.func(data), F(7*420, 4029))
1492
1493 def test_inf(self):
1494 # Test harmonic mean with infinity.
1495 values = [2.0, float('inf'), 1.0]
1496 self.assertEqual(self.func(values), 2.0)
1497
1498 def test_nan(self):
1499 # Test harmonic mean with NANs.
1500 values = [2.0, float('nan'), 1.0]
1501 self.assertTrue(math.isnan(self.func(values)))
1502
1503 def test_multiply_data_points(self):
1504 # Test multiplying every data point by a constant.
1505 c = 111
1506 data = [3.4, 4.5, 4.9, 6.7, 6.8, 7.2, 8.0, 8.1, 9.4]
1507 expected = self.func(data)*c
1508 result = self.func([x*c for x in data])
1509 self.assertEqual(result, expected)
1510
1511 def test_doubled_data(self):
1512 # Harmonic mean of [a,b...z] should be same as for [a,a,b,b...z,z].
1513 data = [random.uniform(1, 5) for _ in range(1000)]
1514 expected = self.func(data)
1515 actual = self.func(data*2)
1516 self.assertApproxEqual(actual, expected)
1517
1518
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001519class TestMedian(NumericTestCase, AverageMixin):
1520 # Common tests for median and all median.* functions.
1521 def setUp(self):
1522 self.func = statistics.median
1523
1524 def prepare_data(self):
1525 """Overload method from UnivariateCommonMixin."""
1526 data = super().prepare_data()
1527 if len(data)%2 != 1:
1528 data.append(2)
1529 return data
1530
1531 def test_even_ints(self):
1532 # Test median with an even number of int data points.
1533 data = [1, 2, 3, 4, 5, 6]
1534 assert len(data)%2 == 0
1535 self.assertEqual(self.func(data), 3.5)
1536
1537 def test_odd_ints(self):
1538 # Test median with an odd number of int data points.
1539 data = [1, 2, 3, 4, 5, 6, 9]
1540 assert len(data)%2 == 1
1541 self.assertEqual(self.func(data), 4)
1542
1543 def test_odd_fractions(self):
1544 # Test median works with an odd number of Fractions.
1545 F = Fraction
1546 data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7)]
1547 assert len(data)%2 == 1
1548 random.shuffle(data)
1549 self.assertEqual(self.func(data), F(3, 7))
1550
1551 def test_even_fractions(self):
1552 # Test median works with an even number of Fractions.
1553 F = Fraction
1554 data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
1555 assert len(data)%2 == 0
1556 random.shuffle(data)
1557 self.assertEqual(self.func(data), F(1, 2))
1558
1559 def test_odd_decimals(self):
1560 # Test median works with an odd number of Decimals.
1561 D = Decimal
1562 data = [D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
1563 assert len(data)%2 == 1
1564 random.shuffle(data)
1565 self.assertEqual(self.func(data), D('4.2'))
1566
1567 def test_even_decimals(self):
1568 # Test median works with an even number of Decimals.
1569 D = Decimal
1570 data = [D('1.2'), D('2.5'), D('3.1'), D('4.2'), D('5.7'), D('5.8')]
1571 assert len(data)%2 == 0
1572 random.shuffle(data)
1573 self.assertEqual(self.func(data), D('3.65'))
1574
1575
1576class TestMedianDataType(NumericTestCase, UnivariateTypeMixin):
1577 # Test conservation of data element type for median.
1578 def setUp(self):
1579 self.func = statistics.median
1580
1581 def prepare_data(self):
1582 data = list(range(15))
1583 assert len(data)%2 == 1
1584 while data == sorted(data):
1585 random.shuffle(data)
1586 return data
1587
1588
1589class TestMedianLow(TestMedian, UnivariateTypeMixin):
1590 def setUp(self):
1591 self.func = statistics.median_low
1592
1593 def test_even_ints(self):
1594 # Test median_low with an even number of ints.
1595 data = [1, 2, 3, 4, 5, 6]
1596 assert len(data)%2 == 0
1597 self.assertEqual(self.func(data), 3)
1598
1599 def test_even_fractions(self):
1600 # Test median_low works with an even number of Fractions.
1601 F = Fraction
1602 data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
1603 assert len(data)%2 == 0
1604 random.shuffle(data)
1605 self.assertEqual(self.func(data), F(3, 7))
1606
1607 def test_even_decimals(self):
1608 # Test median_low works with an even number of Decimals.
1609 D = Decimal
1610 data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
1611 assert len(data)%2 == 0
1612 random.shuffle(data)
1613 self.assertEqual(self.func(data), D('3.3'))
1614
1615
1616class TestMedianHigh(TestMedian, UnivariateTypeMixin):
1617 def setUp(self):
1618 self.func = statistics.median_high
1619
1620 def test_even_ints(self):
1621 # Test median_high with an even number of ints.
1622 data = [1, 2, 3, 4, 5, 6]
1623 assert len(data)%2 == 0
1624 self.assertEqual(self.func(data), 4)
1625
1626 def test_even_fractions(self):
1627 # Test median_high works with an even number of Fractions.
1628 F = Fraction
1629 data = [F(1, 7), F(2, 7), F(3, 7), F(4, 7), F(5, 7), F(6, 7)]
1630 assert len(data)%2 == 0
1631 random.shuffle(data)
1632 self.assertEqual(self.func(data), F(4, 7))
1633
1634 def test_even_decimals(self):
1635 # Test median_high works with an even number of Decimals.
1636 D = Decimal
1637 data = [D('1.1'), D('2.2'), D('3.3'), D('4.4'), D('5.5'), D('6.6')]
1638 assert len(data)%2 == 0
1639 random.shuffle(data)
1640 self.assertEqual(self.func(data), D('4.4'))
1641
1642
1643class TestMedianGrouped(TestMedian):
1644 # Test median_grouped.
1645 # Doesn't conserve data element types, so don't use TestMedianType.
1646 def setUp(self):
1647 self.func = statistics.median_grouped
1648
1649 def test_odd_number_repeated(self):
1650 # Test median.grouped with repeated median values.
1651 data = [12, 13, 14, 14, 14, 15, 15]
1652 assert len(data)%2 == 1
1653 self.assertEqual(self.func(data), 14)
1654 #---
1655 data = [12, 13, 14, 14, 14, 14, 15]
1656 assert len(data)%2 == 1
1657 self.assertEqual(self.func(data), 13.875)
1658 #---
1659 data = [5, 10, 10, 15, 20, 20, 20, 20, 25, 25, 30]
1660 assert len(data)%2 == 1
1661 self.assertEqual(self.func(data, 5), 19.375)
1662 #---
1663 data = [16, 18, 18, 18, 18, 20, 20, 20, 22, 22, 22, 24, 24, 26, 28]
1664 assert len(data)%2 == 1
1665 self.assertApproxEqual(self.func(data, 2), 20.66666667, tol=1e-8)
1666
1667 def test_even_number_repeated(self):
1668 # Test median.grouped with repeated median values.
1669 data = [5, 10, 10, 15, 20, 20, 20, 25, 25, 30]
1670 assert len(data)%2 == 0
1671 self.assertApproxEqual(self.func(data, 5), 19.16666667, tol=1e-8)
1672 #---
1673 data = [2, 3, 4, 4, 4, 5]
1674 assert len(data)%2 == 0
1675 self.assertApproxEqual(self.func(data), 3.83333333, tol=1e-8)
1676 #---
1677 data = [2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
1678 assert len(data)%2 == 0
1679 self.assertEqual(self.func(data), 4.5)
1680 #---
1681 data = [3, 4, 4, 4, 5, 5, 5, 5, 6, 6]
1682 assert len(data)%2 == 0
1683 self.assertEqual(self.func(data), 4.75)
1684
1685 def test_repeated_single_value(self):
1686 # Override method from AverageMixin.
1687 # Yet again, failure of median_grouped to conserve the data type
1688 # causes me headaches :-(
1689 for x in (5.3, 68, 4.3e17, Fraction(29, 101), Decimal('32.9714')):
1690 for count in (2, 5, 10, 20):
1691 data = [x]*count
1692 self.assertEqual(self.func(data), float(x))
1693
1694 def test_odd_fractions(self):
1695 # Test median_grouped works with an odd number of Fractions.
1696 F = Fraction
1697 data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4)]
1698 assert len(data)%2 == 1
1699 random.shuffle(data)
1700 self.assertEqual(self.func(data), 3.0)
1701
1702 def test_even_fractions(self):
1703 # Test median_grouped works with an even number of Fractions.
1704 F = Fraction
1705 data = [F(5, 4), F(9, 4), F(13, 4), F(13, 4), F(17, 4), F(17, 4)]
1706 assert len(data)%2 == 0
1707 random.shuffle(data)
1708 self.assertEqual(self.func(data), 3.25)
1709
1710 def test_odd_decimals(self):
1711 # Test median_grouped works with an odd number of Decimals.
1712 D = Decimal
1713 data = [D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
1714 assert len(data)%2 == 1
1715 random.shuffle(data)
1716 self.assertEqual(self.func(data), 6.75)
1717
1718 def test_even_decimals(self):
1719 # Test median_grouped works with an even number of Decimals.
1720 D = Decimal
1721 data = [D('5.5'), D('5.5'), D('6.5'), D('6.5'), D('7.5'), D('8.5')]
1722 assert len(data)%2 == 0
1723 random.shuffle(data)
1724 self.assertEqual(self.func(data), 6.5)
1725 #---
1726 data = [D('5.5'), D('5.5'), D('6.5'), D('7.5'), D('7.5'), D('8.5')]
1727 assert len(data)%2 == 0
1728 random.shuffle(data)
1729 self.assertEqual(self.func(data), 7.0)
1730
1731 def test_interval(self):
1732 # Test median_grouped with interval argument.
1733 data = [2.25, 2.5, 2.5, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
1734 self.assertEqual(self.func(data, 0.25), 2.875)
1735 data = [2.25, 2.5, 2.5, 2.75, 2.75, 2.75, 3.0, 3.0, 3.25, 3.5, 3.75]
1736 self.assertApproxEqual(self.func(data, 0.25), 2.83333333, tol=1e-8)
1737 data = [220, 220, 240, 260, 260, 260, 260, 280, 280, 300, 320, 340]
1738 self.assertEqual(self.func(data, 20), 265.0)
1739
Steven D'Aprano8c115a42016-07-08 02:38:45 +10001740 def test_data_type_error(self):
1741 # Test median_grouped with str, bytes data types for data and interval
1742 data = ["", "", ""]
1743 self.assertRaises(TypeError, self.func, data)
1744 #---
1745 data = [b"", b"", b""]
1746 self.assertRaises(TypeError, self.func, data)
1747 #---
1748 data = [1, 2, 3]
1749 interval = ""
1750 self.assertRaises(TypeError, self.func, data, interval)
1751 #---
1752 data = [1, 2, 3]
1753 interval = b""
1754 self.assertRaises(TypeError, self.func, data, interval)
1755
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001756
1757class TestMode(NumericTestCase, AverageMixin, UnivariateTypeMixin):
1758 # Test cases for the discrete version of mode.
1759 def setUp(self):
1760 self.func = statistics.mode
1761
1762 def prepare_data(self):
1763 """Overload method from UnivariateCommonMixin."""
1764 # Make sure test data has exactly one mode.
1765 return [1, 1, 1, 1, 3, 4, 7, 9, 0, 8, 2]
1766
1767 def test_range_data(self):
1768 # Override test from UnivariateCommonMixin.
1769 data = range(20, 50, 3)
1770 self.assertRaises(statistics.StatisticsError, self.func, data)
1771
1772 def test_nominal_data(self):
1773 # Test mode with nominal data.
1774 data = 'abcbdb'
1775 self.assertEqual(self.func(data), 'b')
1776 data = 'fe fi fo fum fi fi'.split()
1777 self.assertEqual(self.func(data), 'fi')
1778
1779 def test_discrete_data(self):
1780 # Test mode with discrete numeric data.
1781 data = list(range(10))
1782 for i in range(10):
1783 d = data + [i]
1784 random.shuffle(d)
1785 self.assertEqual(self.func(d), i)
1786
1787 def test_bimodal_data(self):
1788 # Test mode with bimodal data.
1789 data = [1, 1, 2, 2, 2, 2, 3, 4, 5, 6, 6, 6, 6, 7, 8, 9, 9]
1790 assert data.count(2) == data.count(6) == 4
1791 # Check for an exception.
1792 self.assertRaises(statistics.StatisticsError, self.func, data)
1793
1794 def test_unique_data_failure(self):
1795 # Test mode exception when data points are all unique.
1796 data = list(range(10))
1797 self.assertRaises(statistics.StatisticsError, self.func, data)
1798
1799 def test_none_data(self):
1800 # Test that mode raises TypeError if given None as data.
1801
1802 # This test is necessary because the implementation of mode uses
1803 # collections.Counter, which accepts None and returns an empty dict.
1804 self.assertRaises(TypeError, self.func, None)
1805
Nick Coghlanbfd68bf2014-02-08 19:44:16 +10001806 def test_counter_data(self):
1807 # Test that a Counter is treated like any other iterable.
1808 data = collections.Counter([1, 1, 1, 2])
1809 # Since the keys of the counter are treated as data points, not the
1810 # counts, this should raise.
1811 self.assertRaises(statistics.StatisticsError, self.func, data)
1812
1813
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001814
1815# === Tests for variances and standard deviations ===
1816
1817class VarianceStdevMixin(UnivariateCommonMixin):
1818 # Mixin class holding common tests for variance and std dev.
1819
1820 # Subclasses should inherit from this before NumericTestClass, in order
1821 # to see the rel attribute below. See testShiftData for an explanation.
1822
1823 rel = 1e-12
1824
1825 def test_single_value(self):
1826 # Deviation of a single value is zero.
1827 for x in (11, 19.8, 4.6e14, Fraction(21, 34), Decimal('8.392')):
1828 self.assertEqual(self.func([x]), 0)
1829
1830 def test_repeated_single_value(self):
1831 # The deviation of a single repeated value is zero.
1832 for x in (7.2, 49, 8.1e15, Fraction(3, 7), Decimal('62.4802')):
1833 for count in (2, 3, 5, 15):
1834 data = [x]*count
1835 self.assertEqual(self.func(data), 0)
1836
1837 def test_domain_error_regression(self):
1838 # Regression test for a domain error exception.
1839 # (Thanks to Geremy Condra.)
1840 data = [0.123456789012345]*10000
1841 # All the items are identical, so variance should be exactly zero.
1842 # We allow some small round-off error, but not much.
1843 result = self.func(data)
1844 self.assertApproxEqual(result, 0.0, tol=5e-17)
1845 self.assertGreaterEqual(result, 0) # A negative result must fail.
1846
1847 def test_shift_data(self):
1848 # Test that shifting the data by a constant amount does not affect
1849 # the variance or stdev. Or at least not much.
1850
1851 # Due to rounding, this test should be considered an ideal. We allow
1852 # some tolerance away from "no change at all" by setting tol and/or rel
1853 # attributes. Subclasses may set tighter or looser error tolerances.
1854 raw = [1.03, 1.27, 1.94, 2.04, 2.58, 3.14, 4.75, 4.98, 5.42, 6.78]
1855 expected = self.func(raw)
1856 # Don't set shift too high, the bigger it is, the more rounding error.
1857 shift = 1e5
1858 data = [x + shift for x in raw]
1859 self.assertApproxEqual(self.func(data), expected)
1860
1861 def test_shift_data_exact(self):
1862 # Like test_shift_data, but result is always exact.
1863 raw = [1, 3, 3, 4, 5, 7, 9, 10, 11, 16]
1864 assert all(x==int(x) for x in raw)
1865 expected = self.func(raw)
1866 shift = 10**9
1867 data = [x + shift for x in raw]
1868 self.assertEqual(self.func(data), expected)
1869
1870 def test_iter_list_same(self):
1871 # Test that iter data and list data give the same result.
1872
1873 # This is an explicit test that iterators and lists are treated the
1874 # same; justification for this test over and above the similar test
1875 # in UnivariateCommonMixin is that an earlier design had variance and
1876 # friends swap between one- and two-pass algorithms, which would
1877 # sometimes give different results.
1878 data = [random.uniform(-3, 8) for _ in range(1000)]
1879 expected = self.func(data)
1880 self.assertEqual(self.func(iter(data)), expected)
1881
1882
1883class TestPVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
1884 # Tests for population variance.
1885 def setUp(self):
1886 self.func = statistics.pvariance
1887
1888 def test_exact_uniform(self):
1889 # Test the variance against an exact result for uniform data.
1890 data = list(range(10000))
1891 random.shuffle(data)
1892 expected = (10000**2 - 1)/12 # Exact value.
1893 self.assertEqual(self.func(data), expected)
1894
1895 def test_ints(self):
1896 # Test population variance with int data.
1897 data = [4, 7, 13, 16]
1898 exact = 22.5
1899 self.assertEqual(self.func(data), exact)
1900
1901 def test_fractions(self):
1902 # Test population variance with Fraction data.
1903 F = Fraction
1904 data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
1905 exact = F(3, 8)
1906 result = self.func(data)
1907 self.assertEqual(result, exact)
1908 self.assertIsInstance(result, Fraction)
1909
1910 def test_decimals(self):
1911 # Test population variance with Decimal data.
1912 D = Decimal
1913 data = [D("12.1"), D("12.2"), D("12.5"), D("12.9")]
1914 exact = D('0.096875')
1915 result = self.func(data)
1916 self.assertEqual(result, exact)
1917 self.assertIsInstance(result, Decimal)
1918
1919
1920class TestVariance(VarianceStdevMixin, NumericTestCase, UnivariateTypeMixin):
1921 # Tests for sample variance.
1922 def setUp(self):
1923 self.func = statistics.variance
1924
1925 def test_single_value(self):
1926 # Override method from VarianceStdevMixin.
1927 for x in (35, 24.7, 8.2e15, Fraction(19, 30), Decimal('4.2084')):
1928 self.assertRaises(statistics.StatisticsError, self.func, [x])
1929
1930 def test_ints(self):
1931 # Test sample variance with int data.
1932 data = [4, 7, 13, 16]
1933 exact = 30
1934 self.assertEqual(self.func(data), exact)
1935
1936 def test_fractions(self):
1937 # Test sample variance with Fraction data.
1938 F = Fraction
1939 data = [F(1, 4), F(1, 4), F(3, 4), F(7, 4)]
1940 exact = F(1, 2)
1941 result = self.func(data)
1942 self.assertEqual(result, exact)
1943 self.assertIsInstance(result, Fraction)
1944
1945 def test_decimals(self):
1946 # Test sample variance with Decimal data.
1947 D = Decimal
1948 data = [D(2), D(2), D(7), D(9)]
1949 exact = 4*D('9.5')/D(3)
1950 result = self.func(data)
1951 self.assertEqual(result, exact)
1952 self.assertIsInstance(result, Decimal)
1953
1954
1955class TestPStdev(VarianceStdevMixin, NumericTestCase):
1956 # Tests for population standard deviation.
1957 def setUp(self):
1958 self.func = statistics.pstdev
1959
1960 def test_compare_to_variance(self):
1961 # Test that stdev is, in fact, the square root of variance.
1962 data = [random.uniform(-17, 24) for _ in range(1000)]
1963 expected = math.sqrt(statistics.pvariance(data))
1964 self.assertEqual(self.func(data), expected)
1965
1966
1967class TestStdev(VarianceStdevMixin, NumericTestCase):
1968 # Tests for sample standard deviation.
1969 def setUp(self):
1970 self.func = statistics.stdev
1971
1972 def test_single_value(self):
1973 # Override method from VarianceStdevMixin.
1974 for x in (81, 203.74, 3.9e14, Fraction(5, 21), Decimal('35.719')):
1975 self.assertRaises(statistics.StatisticsError, self.func, [x])
1976
1977 def test_compare_to_variance(self):
1978 # Test that stdev is, in fact, the square root of variance.
1979 data = [random.uniform(-2, 9) for _ in range(1000)]
1980 expected = math.sqrt(statistics.variance(data))
1981 self.assertEqual(self.func(data), expected)
1982
1983
1984# === Run tests ===
1985
1986def load_tests(loader, tests, ignore):
1987 """Used for doctest/unittest integration."""
1988 tests.addTests(doctest.DocTestSuite())
1989 return tests
1990
1991
1992if __name__ == "__main__":
1993 unittest.main()