blob: 2414869a7e6dc68e16c2f5d29eb96f211ffa53f9 [file] [log] [blame]
Larry Hastingsf5e987b2013-10-19 11:50:09 -07001"""
2Basic statistics module.
3
4This module provides functions for calculating statistics of data, including
5averages, variance, and standard deviation.
6
7Calculating averages
8--------------------
9
Raymond Hettinger9013ccf2019-04-23 00:06:35 -070010================== ==================================================
Larry Hastingsf5e987b2013-10-19 11:50:09 -070011Function Description
Raymond Hettinger9013ccf2019-04-23 00:06:35 -070012================== ==================================================
Larry Hastingsf5e987b2013-10-19 11:50:09 -070013mean Arithmetic mean (average) of data.
Raymond Hettinger72800482019-04-23 01:35:16 -070014fmean Fast, floating point arithmetic mean.
Raymond Hettinger6463ba32019-04-07 09:20:03 -070015geometric_mean Geometric mean of data.
Steven D'Apranoa474afd2016-08-09 12:49:01 +100016harmonic_mean Harmonic mean of data.
Larry Hastingsf5e987b2013-10-19 11:50:09 -070017median Median (middle value) of data.
18median_low Low median of data.
19median_high High median of data.
20median_grouped Median, or 50th percentile, of grouped data.
21mode Mode (most common value) of data.
Raymond Hettinger6463ba32019-04-07 09:20:03 -070022multimode List of modes (most common values of data).
Raymond Hettinger9013ccf2019-04-23 00:06:35 -070023quantiles Divide data into intervals with equal probability.
24================== ==================================================
Larry Hastingsf5e987b2013-10-19 11:50:09 -070025
26Calculate the arithmetic mean ("the average") of data:
27
28>>> mean([-1.0, 2.5, 3.25, 5.75])
292.625
30
31
32Calculate the standard median of discrete data:
33
34>>> median([2, 3, 4, 5])
353.5
36
37
38Calculate the median, or 50th percentile, of data grouped into class intervals
39centred on the data values provided. E.g. if your data points are rounded to
40the nearest whole number:
41
42>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
432.8333333333...
44
45This should be interpreted in this way: you have two data points in the class
46interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
47the class interval 3.5-4.5. The median of these data points is 2.8333...
48
49
50Calculating variability or spread
51---------------------------------
52
53================== =============================================
54Function Description
55================== =============================================
56pvariance Population variance of data.
57variance Sample variance of data.
58pstdev Population standard deviation of data.
59stdev Sample standard deviation of data.
60================== =============================================
61
62Calculate the standard deviation of sample data:
63
64>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
654.38961843444...
66
67If you have previously calculated the mean, you can pass it as the optional
68second argument to the four "spread" functions to avoid recalculating it:
69
70>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
71>>> mu = mean(data)
72>>> pvariance(data, mu)
732.5
74
75
76Exceptions
77----------
78
79A single exception is defined: StatisticsError is a subclass of ValueError.
80
81"""
82
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -070083__all__ = [
84 'NormalDist',
85 'StatisticsError',
86 'fmean',
87 'geometric_mean',
88 'harmonic_mean',
89 'mean',
90 'median',
91 'median_grouped',
92 'median_high',
93 'median_low',
94 'mode',
95 'multimode',
96 'pstdev',
97 'pvariance',
98 'quantiles',
99 'stdev',
100 'variance',
101]
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700102
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700103import math
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000104import numbers
Raymond Hettinger11c79532019-02-23 14:44:07 -0800105import random
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700106
107from fractions import Fraction
108from decimal import Decimal
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800109from itertools import groupby, repeat
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000110from bisect import bisect_left, bisect_right
Raymond Hettinger318d5372019-03-06 22:59:40 -0800111from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700112from operator import itemgetter
113from collections import Counter
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700114
115# === Exceptions ===
116
117class StatisticsError(ValueError):
118 pass
119
120
121# === Private utilities ===
122
123def _sum(data, start=0):
Steven D'Apranob28c3272015-12-01 19:59:53 +1100124 """_sum(data [, start]) -> (type, sum, count)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700125
Steven D'Apranob28c3272015-12-01 19:59:53 +1100126 Return a high-precision sum of the given numeric data as a fraction,
127 together with the type to be converted to and the count of items.
128
129 If optional argument ``start`` is given, it is added to the total.
130 If ``data`` is empty, ``start`` (defaulting to 0) is returned.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700131
132
133 Examples
134 --------
135
136 >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
Benjamin Petersonab078e92016-07-13 21:13:29 -0700137 (<class 'float'>, Fraction(11, 1), 5)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700138
139 Some sources of round-off error will be avoided:
140
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000141 # Built-in sum returns zero.
142 >>> _sum([1e50, 1, -1e50] * 1000)
Benjamin Petersonab078e92016-07-13 21:13:29 -0700143 (<class 'float'>, Fraction(1000, 1), 3000)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700144
145 Fractions and Decimals are also supported:
146
147 >>> from fractions import Fraction as F
148 >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
Benjamin Petersonab078e92016-07-13 21:13:29 -0700149 (<class 'fractions.Fraction'>, Fraction(63, 20), 4)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700150
151 >>> from decimal import Decimal as D
152 >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
153 >>> _sum(data)
Benjamin Petersonab078e92016-07-13 21:13:29 -0700154 (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700155
Nick Coghlan73afe2a2014-02-08 19:58:04 +1000156 Mixed types are currently treated as an error, except that int is
157 allowed.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700158 """
Steven D'Apranob28c3272015-12-01 19:59:53 +1100159 count = 0
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700160 n, d = _exact_ratio(start)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100161 partials = {d: n}
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700162 partials_get = partials.get
Steven D'Apranob28c3272015-12-01 19:59:53 +1100163 T = _coerce(int, type(start))
164 for typ, values in groupby(data, type):
165 T = _coerce(T, typ) # or raise TypeError
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700166 for n, d in map(_exact_ratio, values):
Steven D'Apranob28c3272015-12-01 19:59:53 +1100167 count += 1
168 partials[d] = partials_get(d, 0) + n
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700169 if None in partials:
Steven D'Apranob28c3272015-12-01 19:59:53 +1100170 # The sum will be a NAN or INF. We can ignore all the finite
171 # partials, and just look at this special one.
172 total = partials[None]
173 assert not _isfinite(total)
174 else:
175 # Sum all the partial sums using builtin sum.
176 # FIXME is this faster if we sum them in order of the denominator?
177 total = sum(Fraction(n, d) for d, n in sorted(partials.items()))
178 return (T, total, count)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700179
180
Steven D'Apranob28c3272015-12-01 19:59:53 +1100181def _isfinite(x):
182 try:
183 return x.is_finite() # Likely a Decimal.
184 except AttributeError:
185 return math.isfinite(x) # Coerces to float first.
186
187
188def _coerce(T, S):
189 """Coerce types T and S to a common type, or raise TypeError.
190
191 Coercion rules are currently an implementation detail. See the CoerceTest
192 test class in test_statistics for details.
193 """
194 # See http://bugs.python.org/issue24068.
195 assert T is not bool, "initial type T is bool"
196 # If the types are the same, no need to coerce anything. Put this
197 # first, so that the usual case (no coercion needed) happens as soon
198 # as possible.
199 if T is S: return T
200 # Mixed int & other coerce to the other type.
201 if S is int or S is bool: return T
202 if T is int: return S
203 # If one is a (strict) subclass of the other, coerce to the subclass.
204 if issubclass(S, T): return S
205 if issubclass(T, S): return T
206 # Ints coerce to the other type.
207 if issubclass(T, int): return S
208 if issubclass(S, int): return T
209 # Mixed fraction & float coerces to float (or float subclass).
210 if issubclass(T, Fraction) and issubclass(S, float):
211 return S
212 if issubclass(T, float) and issubclass(S, Fraction):
213 return T
214 # Any other combination is disallowed.
215 msg = "don't know how to coerce %s and %s"
216 raise TypeError(msg % (T.__name__, S.__name__))
Nick Coghlan73afe2a2014-02-08 19:58:04 +1000217
218
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700219def _exact_ratio(x):
Steven D'Apranob28c3272015-12-01 19:59:53 +1100220 """Return Real number x to exact (numerator, denominator) pair.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700221
222 >>> _exact_ratio(0.25)
223 (1, 4)
224
225 x is expected to be an int, Fraction, Decimal or float.
226 """
227 try:
Steven D'Apranob28c3272015-12-01 19:59:53 +1100228 # Optimise the common case of floats. We expect that the most often
229 # used numeric type will be builtin floats, so try to make this as
230 # fast as possible.
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000231 if type(x) is float or type(x) is Decimal:
Steven D'Apranob28c3272015-12-01 19:59:53 +1100232 return x.as_integer_ratio()
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700233 try:
Steven D'Apranob28c3272015-12-01 19:59:53 +1100234 # x may be an int, Fraction, or Integral ABC.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700235 return (x.numerator, x.denominator)
236 except AttributeError:
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700237 try:
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000238 # x may be a float or Decimal subclass.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700239 return x.as_integer_ratio()
240 except AttributeError:
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000241 # Just give up?
242 pass
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700243 except (OverflowError, ValueError):
Steven D'Apranob28c3272015-12-01 19:59:53 +1100244 # float NAN or INF.
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000245 assert not _isfinite(x)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700246 return (x, None)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100247 msg = "can't convert type '{}' to numerator/denominator"
248 raise TypeError(msg.format(type(x).__name__))
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700249
250
Steven D'Apranob28c3272015-12-01 19:59:53 +1100251def _convert(value, T):
252 """Convert value to given numeric type T."""
253 if type(value) is T:
254 # This covers the cases where T is Fraction, or where value is
255 # a NAN or INF (Decimal or float).
256 return value
257 if issubclass(T, int) and value.denominator != 1:
258 T = float
259 try:
260 # FIXME: what do we do if this overflows?
261 return T(value)
262 except TypeError:
263 if issubclass(T, Decimal):
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700264 return T(value.numerator) / T(value.denominator)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100265 else:
266 raise
267
268
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000269def _find_lteq(a, x):
270 'Locate the leftmost value exactly equal to x'
271 i = bisect_left(a, x)
272 if i != len(a) and a[i] == x:
273 return i
274 raise ValueError
275
276
277def _find_rteq(a, l, x):
278 'Locate the rightmost value exactly equal to x'
279 i = bisect_right(a, x, lo=l)
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700280 if i != (len(a) + 1) and a[i - 1] == x:
281 return i - 1
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000282 raise ValueError
283
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000284
285def _fail_neg(values, errmsg='negative value'):
286 """Iterate over values, failing if any are less than zero."""
287 for x in values:
288 if x < 0:
289 raise StatisticsError(errmsg)
290 yield x
291
292
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700293# === Measures of central tendency (averages) ===
294
295def mean(data):
296 """Return the sample arithmetic mean of data.
297
298 >>> mean([1, 2, 3, 4, 4])
299 2.8
300
301 >>> from fractions import Fraction as F
302 >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
303 Fraction(13, 21)
304
305 >>> from decimal import Decimal as D
306 >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
307 Decimal('0.5625')
308
309 If ``data`` is empty, StatisticsError will be raised.
310 """
311 if iter(data) is data:
312 data = list(data)
313 n = len(data)
314 if n < 1:
315 raise StatisticsError('mean requires at least one data point')
Steven D'Apranob28c3272015-12-01 19:59:53 +1100316 T, total, count = _sum(data)
317 assert count == n
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700318 return _convert(total / n, T)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700319
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700320
Raymond Hettinger47d99872019-02-21 15:06:29 -0800321def fmean(data):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700322 """Convert data to floats and compute the arithmetic mean.
Raymond Hettinger47d99872019-02-21 15:06:29 -0800323
324 This runs faster than the mean() function and it always returns a float.
Raymond Hettinger47d99872019-02-21 15:06:29 -0800325 If the input dataset is empty, it raises a StatisticsError.
326
327 >>> fmean([3.5, 4.0, 5.25])
328 4.25
Raymond Hettinger47d99872019-02-21 15:06:29 -0800329 """
330 try:
331 n = len(data)
332 except TypeError:
333 # Handle iterators that do not define __len__().
334 n = 0
Raymond Hettinger6c01ebc2019-06-05 07:39:38 -0700335 def count(iterable):
Raymond Hettinger47d99872019-02-21 15:06:29 -0800336 nonlocal n
Raymond Hettinger6c01ebc2019-06-05 07:39:38 -0700337 for n, x in enumerate(iterable, start=1):
338 yield x
339 total = fsum(count(data))
Raymond Hettinger47d99872019-02-21 15:06:29 -0800340 else:
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700341 total = fsum(data)
Raymond Hettinger47d99872019-02-21 15:06:29 -0800342 try:
343 return total / n
344 except ZeroDivisionError:
345 raise StatisticsError('fmean requires at least one data point') from None
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700346
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700347
Raymond Hettinger6463ba32019-04-07 09:20:03 -0700348def geometric_mean(data):
349 """Convert data to floats and compute the geometric mean.
350
351 Raises a StatisticsError if the input dataset is empty,
352 if it contains a zero, or if it contains a negative value.
353
354 No special efforts are made to achieve exact results.
355 (However, this may change in the future.)
356
357 >>> round(geometric_mean([54, 24, 36]), 9)
358 36.0
359 """
360 try:
361 return exp(fmean(map(log, data)))
362 except ValueError:
363 raise StatisticsError('geometric mean requires a non-empty dataset '
364 ' containing positive numbers') from None
365
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700366
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800367def harmonic_mean(data, weights=None):
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000368 """Return the harmonic mean of data.
369
Raymond Hettinger30a8b282021-02-07 16:44:42 -0800370 The harmonic mean is the reciprocal of the arithmetic mean of the
371 reciprocals of the data. It can be used for averaging ratios or
372 rates, for example speeds.
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000373
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800374 Suppose a car travels 40 km/hr for 5 km and then speeds-up to
375 60 km/hr for another 5 km. What is the average speed?
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000376
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800377 >>> harmonic_mean([40, 60])
378 48.0
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000379
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800380 Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
381 speeds-up to 60 km/hr for the remaining 30 km of the journey. What
382 is the average speed?
383
384 >>> harmonic_mean([40, 60], weights=[5, 30])
385 56.0
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000386
387 If ``data`` is empty, or any element is less than zero,
388 ``harmonic_mean`` will raise ``StatisticsError``.
389 """
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000390 if iter(data) is data:
391 data = list(data)
392 errmsg = 'harmonic mean does not support negative values'
393 n = len(data)
394 if n < 1:
395 raise StatisticsError('harmonic_mean requires at least one data point')
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800396 elif n == 1 and weights is None:
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000397 x = data[0]
398 if isinstance(x, (numbers.Real, Decimal)):
399 if x < 0:
400 raise StatisticsError(errmsg)
401 return x
402 else:
403 raise TypeError('unsupported type')
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800404 if weights is None:
405 weights = repeat(1, n)
406 sum_weights = n
407 else:
408 if iter(weights) is weights:
409 weights = list(weights)
410 if len(weights) != n:
411 raise StatisticsError('Number of weights does not match data size')
412 _, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg))
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000413 try:
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800414 data = _fail_neg(data, errmsg)
415 T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data))
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000416 except ZeroDivisionError:
417 return 0
Raymond Hettingercc3467a2020-12-23 19:52:09 -0800418 if total <= 0:
419 raise StatisticsError('Weighted sum must be positive')
420 return _convert(sum_weights / total, T)
Steven D'Apranoa474afd2016-08-09 12:49:01 +1000421
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700422# FIXME: investigate ways to calculate medians without sorting? Quickselect?
423def median(data):
424 """Return the median (middle value) of numeric data.
425
426 When the number of data points is odd, return the middle data point.
427 When the number of data points is even, the median is interpolated by
428 taking the average of the two middle values:
429
430 >>> median([1, 3, 5])
431 3
432 >>> median([1, 3, 5, 7])
433 4.0
434
435 """
436 data = sorted(data)
437 n = len(data)
438 if n == 0:
439 raise StatisticsError("no median for empty data")
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700440 if n % 2 == 1:
441 return data[n // 2]
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700442 else:
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700443 i = n // 2
444 return (data[i - 1] + data[i]) / 2
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700445
446
447def median_low(data):
448 """Return the low median of numeric data.
449
450 When the number of data points is odd, the middle value is returned.
451 When it is even, the smaller of the two middle values is returned.
452
453 >>> median_low([1, 3, 5])
454 3
455 >>> median_low([1, 3, 5, 7])
456 3
457
458 """
459 data = sorted(data)
460 n = len(data)
461 if n == 0:
462 raise StatisticsError("no median for empty data")
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700463 if n % 2 == 1:
464 return data[n // 2]
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700465 else:
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700466 return data[n // 2 - 1]
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700467
468
469def median_high(data):
470 """Return the high median of data.
471
472 When the number of data points is odd, the middle value is returned.
473 When it is even, the larger of the two middle values is returned.
474
475 >>> median_high([1, 3, 5])
476 3
477 >>> median_high([1, 3, 5, 7])
478 5
479
480 """
481 data = sorted(data)
482 n = len(data)
483 if n == 0:
484 raise StatisticsError("no median for empty data")
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700485 return data[n // 2]
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700486
487
488def median_grouped(data, interval=1):
Zachary Waredf2660e2015-10-27 22:00:41 -0500489 """Return the 50th percentile (median) of grouped continuous data.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700490
491 >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
492 3.7
493 >>> median_grouped([52, 52, 53, 54])
494 52.5
495
496 This calculates the median as the 50th percentile, and should be
497 used when your data is continuous and grouped. In the above example,
498 the values 1, 2, 3, etc. actually represent the midpoint of classes
499 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
500 class 3.5-4.5, and interpolation is used to estimate it.
501
502 Optional argument ``interval`` represents the class interval, and
503 defaults to 1. Changing the class interval naturally will change the
504 interpolated 50th percentile value:
505
506 >>> median_grouped([1, 3, 3, 5, 7], interval=1)
507 3.25
508 >>> median_grouped([1, 3, 3, 5, 7], interval=2)
509 3.5
510
511 This function does not check whether the data points are at least
512 ``interval`` apart.
513 """
514 data = sorted(data)
515 n = len(data)
516 if n == 0:
517 raise StatisticsError("no median for empty data")
518 elif n == 1:
519 return data[0]
520 # Find the value at the midpoint. Remember this corresponds to the
521 # centre of the class interval.
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700522 x = data[n // 2]
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700523 for obj in (x, interval):
524 if isinstance(obj, (str, bytes)):
525 raise TypeError('expected number but got %r' % obj)
526 try:
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700527 L = x - interval / 2 # The lower limit of the median interval.
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700528 except TypeError:
529 # Mixed type. For now we just coerce to float.
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700530 L = float(x) - float(interval) / 2
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000531
532 # Uses bisection search to search for x in data with log(n) time complexity
Martin Panterf1579822016-05-26 06:03:33 +0000533 # Find the position of leftmost occurrence of x in data
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000534 l1 = _find_lteq(data, x)
Martin Panterf1579822016-05-26 06:03:33 +0000535 # Find the position of rightmost occurrence of x in data[l1...len(data)]
Steven D'Aprano3b06e242016-05-05 03:54:29 +1000536 # Assuming always l1 <= l2
537 l2 = _find_rteq(data, l1, x)
538 cf = l1
539 f = l2 - l1 + 1
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700540 return L + interval * (n / 2 - cf) / f
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700541
542
543def mode(data):
544 """Return the most common data point from discrete or nominal data.
545
546 ``mode`` assumes discrete data, and returns a single value. This is the
547 standard treatment of the mode as commonly taught in schools:
548
Raymond Hettingere4810b22019-09-05 00:18:47 -0700549 >>> mode([1, 1, 2, 3, 3, 3, 3, 4])
550 3
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700551
552 This also works with nominal (non-numeric) data:
553
Raymond Hettingere4810b22019-09-05 00:18:47 -0700554 >>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
555 'red'
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700556
Raymond Hettingere4810b22019-09-05 00:18:47 -0700557 If there are multiple modes with same frequency, return the first one
558 encountered:
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700559
560 >>> mode(['red', 'red', 'green', 'blue', 'blue'])
561 'red'
562
563 If *data* is empty, ``mode``, raises StatisticsError.
564
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700565 """
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700566 pairs = Counter(iter(data)).most_common(1)
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700567 try:
Raymond Hettinger7ce4bfa2019-09-20 21:46:52 -0700568 return pairs[0][0]
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700569 except IndexError:
570 raise StatisticsError('no mode for empty data') from None
571
572
573def multimode(data):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700574 """Return a list of the most frequently occurring values.
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700575
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700576 Will return more than one result if there are multiple modes
577 or an empty list if *data* is empty.
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700578
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700579 >>> multimode('aabbbbbbbbcc')
580 ['b']
581 >>> multimode('aabbbbccddddeeffffgg')
582 ['b', 'd', 'f']
583 >>> multimode('')
584 []
Raymond Hettingerfc06a192019-03-12 00:43:27 -0700585 """
586 counts = Counter(iter(data)).most_common()
587 maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, []))
588 return list(map(itemgetter(0), mode_items))
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700589
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700590
Raymond Hettingercba9f842019-06-02 21:07:43 -0700591# Notes on methods for computing quantiles
592# ----------------------------------------
593#
594# There is no one perfect way to compute quantiles. Here we offer
595# two methods that serve common needs. Most other packages
596# surveyed offered at least one or both of these two, making them
597# "standard" in the sense of "widely-adopted and reproducible".
598# They are also easy to explain, easy to compute manually, and have
599# straight-forward interpretations that aren't surprising.
600
601# The default method is known as "R6", "PERCENTILE.EXC", or "expected
602# value of rank order statistics". The alternative method is known as
603# "R7", "PERCENTILE.INC", or "mode of rank order statistics".
604
605# For sample data where there is a positive probability for values
606# beyond the range of the data, the R6 exclusive method is a
607# reasonable choice. Consider a random sample of nine values from a
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700608# population with a uniform distribution from 0.0 to 1.0. The
Raymond Hettingercba9f842019-06-02 21:07:43 -0700609# distribution of the third ranked sample point is described by
610# betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
611# mean=0.300. Only the latter (which corresponds with R6) gives the
612# desired cut point with 30% of the population falling below that
613# value, making it comparable to a result from an inv_cdf() function.
Raymond Hettinger7ce4bfa2019-09-20 21:46:52 -0700614# The R6 exclusive method is also idempotent.
Raymond Hettingercba9f842019-06-02 21:07:43 -0700615
616# For describing population data where the end points are known to
617# be included in the data, the R7 inclusive method is a reasonable
618# choice. Instead of the mean, it uses the mode of the beta
619# distribution for the interior points. Per Hyndman & Fan, "One nice
620# property is that the vertices of Q7(p) divide the range into n - 1
621# intervals, and exactly 100p% of the intervals lie to the left of
622# Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
623
Raymond Hettingereed5e9a2019-07-19 01:57:22 -0700624# If needed, other methods could be added. However, for now, the
625# position is that fewer options make for easier choices and that
626# external packages can be used for anything more advanced.
Raymond Hettingercba9f842019-06-02 21:07:43 -0700627
Raymond Hettinger272d0d02019-09-17 20:45:05 -0700628def quantiles(data, *, n=4, method='exclusive'):
Raymond Hettingere4810b22019-09-05 00:18:47 -0700629 """Divide *data* into *n* continuous intervals with equal probability.
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700630
631 Returns a list of (n - 1) cut points separating the intervals.
632
633 Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
634 Set *n* to 100 for percentiles which gives the 99 cuts points that
Raymond Hettingere4810b22019-09-05 00:18:47 -0700635 separate *data* in to 100 equal sized groups.
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700636
Raymond Hettinger4db25d52019-09-08 16:57:58 -0700637 The *data* can be any iterable containing sample.
638 The cut points are linearly interpolated between data points.
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700639
Raymond Hettingere4810b22019-09-05 00:18:47 -0700640 If *method* is set to *inclusive*, *data* is treated as population
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700641 data. The minimum value is treated as the 0th percentile and the
642 maximum value is treated as the 100th percentile.
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700643 """
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700644 if n < 1:
645 raise StatisticsError('n must be at least 1')
Raymond Hettingere4810b22019-09-05 00:18:47 -0700646 data = sorted(data)
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700647 ld = len(data)
648 if ld < 2:
649 raise StatisticsError('must have at least two data points')
650 if method == 'inclusive':
651 m = ld - 1
652 result = []
653 for i in range(1, n):
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700654 j, delta = divmod(i * m, n)
655 interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700656 result.append(interpolated)
657 return result
658 if method == 'exclusive':
659 m = ld + 1
660 result = []
661 for i in range(1, n):
662 j = i * m // n # rescale i to m/n
663 j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1
664 delta = i*m - j*n # exact integer math
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700665 interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n
Raymond Hettinger9013ccf2019-04-23 00:06:35 -0700666 result.append(interpolated)
667 return result
668 raise ValueError(f'Unknown method: {method!r}')
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700669
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700670
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700671# === Measures of spread ===
672
673# See http://mathworld.wolfram.com/Variance.html
674# http://mathworld.wolfram.com/SampleVariance.html
675# http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
676#
677# Under no circumstances use the so-called "computational formula for
678# variance", as that is only suitable for hand calculations with a small
679# amount of low-precision data. It has terrible numeric properties.
680#
681# See a comparison of three computational methods here:
682# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
683
684def _ss(data, c=None):
685 """Return sum of square deviations of sequence data.
686
687 If ``c`` is None, the mean is calculated in one pass, and the deviations
688 from the mean are calculated in a second pass. Otherwise, deviations are
689 calculated from ``c`` as given. Use the second case with care, as it can
690 lead to garbage results.
691 """
Raymond Hettingerd71ab4f2020-06-13 15:55:52 -0700692 if c is not None:
693 T, total, count = _sum((x-c)**2 for x in data)
694 return (T, total)
695 c = mean(data)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100696 T, total, count = _sum((x-c)**2 for x in data)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700697 # The following sum should mathematically equal zero, but due to rounding
698 # error may not.
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700699 U, total2, count2 = _sum((x - c) for x in data)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100700 assert T == U and count == count2
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700701 total -= total2 ** 2 / len(data)
Steven D'Apranob28c3272015-12-01 19:59:53 +1100702 assert not total < 0, 'negative sum of square deviations: %f' % total
703 return (T, total)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700704
705
706def variance(data, xbar=None):
707 """Return the sample variance of data.
708
709 data should be an iterable of Real-valued numbers, with at least two
710 values. The optional argument xbar, if given, should be the mean of
711 the data. If it is missing or None, the mean is automatically calculated.
712
713 Use this function when your data is a sample from a population. To
714 calculate the variance from the entire population, see ``pvariance``.
715
716 Examples:
717
718 >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
719 >>> variance(data)
720 1.3720238095238095
721
722 If you have already calculated the mean of your data, you can pass it as
723 the optional second argument ``xbar`` to avoid recalculating it:
724
725 >>> m = mean(data)
726 >>> variance(data, m)
727 1.3720238095238095
728
729 This function does not check that ``xbar`` is actually the mean of
730 ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
731 impossible results.
732
733 Decimals and Fractions are supported:
734
735 >>> from decimal import Decimal as D
736 >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
737 Decimal('31.01875')
738
739 >>> from fractions import Fraction as F
740 >>> variance([F(1, 6), F(1, 2), F(5, 3)])
741 Fraction(67, 108)
742
743 """
744 if iter(data) is data:
745 data = list(data)
746 n = len(data)
747 if n < 2:
748 raise StatisticsError('variance requires at least two data points')
Steven D'Apranob28c3272015-12-01 19:59:53 +1100749 T, ss = _ss(data, xbar)
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700750 return _convert(ss / (n - 1), T)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700751
752
753def pvariance(data, mu=None):
754 """Return the population variance of ``data``.
755
Raymond Hettinger733b9a32019-11-11 23:35:06 -0800756 data should be a sequence or iterable of Real-valued numbers, with at least one
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700757 value. The optional argument mu, if given, should be the mean of
758 the data. If it is missing or None, the mean is automatically calculated.
759
760 Use this function to calculate the variance from the entire population.
761 To estimate the variance from a sample, the ``variance`` function is
762 usually a better choice.
763
764 Examples:
765
766 >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
767 >>> pvariance(data)
768 1.25
769
770 If you have already calculated the mean of the data, you can pass it as
771 the optional second argument to avoid recalculating it:
772
773 >>> mu = mean(data)
774 >>> pvariance(data, mu)
775 1.25
776
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700777 Decimals and Fractions are supported:
778
779 >>> from decimal import Decimal as D
780 >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
781 Decimal('24.815')
782
783 >>> from fractions import Fraction as F
784 >>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
785 Fraction(13, 72)
786
787 """
788 if iter(data) is data:
789 data = list(data)
790 n = len(data)
791 if n < 1:
792 raise StatisticsError('pvariance requires at least one data point')
Steven D'Apranob28c3272015-12-01 19:59:53 +1100793 T, ss = _ss(data, mu)
Raymond Hettinger5aad0272020-06-13 19:17:28 -0700794 return _convert(ss / n, T)
Larry Hastingsf5e987b2013-10-19 11:50:09 -0700795
796
797def stdev(data, xbar=None):
798 """Return the square root of the sample variance.
799
800 See ``variance`` for arguments and other details.
801
802 >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
803 1.0810874155219827
804
805 """
806 var = variance(data, xbar)
807 try:
808 return var.sqrt()
809 except AttributeError:
810 return math.sqrt(var)
811
812
813def pstdev(data, mu=None):
814 """Return the square root of the population variance.
815
816 See ``pvariance`` for arguments and other details.
817
818 >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
819 0.986893273527251
820
821 """
822 var = pvariance(data, mu)
823 try:
824 return var.sqrt()
825 except AttributeError:
826 return math.sqrt(var)
Raymond Hettinger11c79532019-02-23 14:44:07 -0800827
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700828
Raymond Hettinger11c79532019-02-23 14:44:07 -0800829## Normal Distribution #####################################################
830
Dong-hee Na0a18ee42019-08-24 07:20:30 +0900831
832def _normal_dist_inv_cdf(p, mu, sigma):
833 # There is no closed-form solution to the inverse CDF for the normal
834 # distribution, so we use a rational approximation instead:
835 # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
836 # Normal Distribution". Applied Statistics. Blackwell Publishing. 37
837 # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
838 q = p - 0.5
839 if fabs(q) <= 0.425:
840 r = 0.180625 - q * q
841 # Hash sum: 55.88319_28806_14901_4439
842 num = (((((((2.50908_09287_30122_6727e+3 * r +
843 3.34305_75583_58812_8105e+4) * r +
844 6.72657_70927_00870_0853e+4) * r +
845 4.59219_53931_54987_1457e+4) * r +
846 1.37316_93765_50946_1125e+4) * r +
847 1.97159_09503_06551_4427e+3) * r +
848 1.33141_66789_17843_7745e+2) * r +
849 3.38713_28727_96366_6080e+0) * q
850 den = (((((((5.22649_52788_52854_5610e+3 * r +
851 2.87290_85735_72194_2674e+4) * r +
852 3.93078_95800_09271_0610e+4) * r +
853 2.12137_94301_58659_5867e+4) * r +
854 5.39419_60214_24751_1077e+3) * r +
855 6.87187_00749_20579_0830e+2) * r +
856 4.23133_30701_60091_1252e+1) * r +
857 1.0)
858 x = num / den
859 return mu + (x * sigma)
860 r = p if q <= 0.0 else 1.0 - p
861 r = sqrt(-log(r))
862 if r <= 5.0:
863 r = r - 1.6
864 # Hash sum: 49.33206_50330_16102_89036
865 num = (((((((7.74545_01427_83414_07640e-4 * r +
866 2.27238_44989_26918_45833e-2) * r +
867 2.41780_72517_74506_11770e-1) * r +
868 1.27045_82524_52368_38258e+0) * r +
869 3.64784_83247_63204_60504e+0) * r +
870 5.76949_72214_60691_40550e+0) * r +
871 4.63033_78461_56545_29590e+0) * r +
872 1.42343_71107_49683_57734e+0)
873 den = (((((((1.05075_00716_44416_84324e-9 * r +
874 5.47593_80849_95344_94600e-4) * r +
875 1.51986_66563_61645_71966e-2) * r +
876 1.48103_97642_74800_74590e-1) * r +
877 6.89767_33498_51000_04550e-1) * r +
878 1.67638_48301_83803_84940e+0) * r +
879 2.05319_16266_37758_82187e+0) * r +
880 1.0)
881 else:
882 r = r - 5.0
883 # Hash sum: 47.52583_31754_92896_71629
884 num = (((((((2.01033_43992_92288_13265e-7 * r +
885 2.71155_55687_43487_57815e-5) * r +
886 1.24266_09473_88078_43860e-3) * r +
887 2.65321_89526_57612_30930e-2) * r +
888 2.96560_57182_85048_91230e-1) * r +
889 1.78482_65399_17291_33580e+0) * r +
890 5.46378_49111_64114_36990e+0) * r +
891 6.65790_46435_01103_77720e+0)
892 den = (((((((2.04426_31033_89939_78564e-15 * r +
893 1.42151_17583_16445_88870e-7) * r +
894 1.84631_83175_10054_68180e-5) * r +
895 7.86869_13114_56132_59100e-4) * r +
896 1.48753_61290_85061_48525e-2) * r +
897 1.36929_88092_27358_05310e-1) * r +
898 5.99832_20655_58879_37690e-1) * r +
899 1.0)
900 x = num / den
901 if q < 0.0:
902 x = -x
903 return mu + (x * sigma)
904
905
Raymond Hettinger0400a7f2020-05-02 19:30:24 -0700906# If available, use C implementation
907try:
908 from _statistics import _normal_dist_inv_cdf
909except ImportError:
910 pass
911
912
Raymond Hettinger11c79532019-02-23 14:44:07 -0800913class NormalDist:
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700914 "Normal distribution of a random variable"
Raymond Hettinger11c79532019-02-23 14:44:07 -0800915 # https://en.wikipedia.org/wiki/Normal_distribution
916 # https://en.wikipedia.org/wiki/Variance#Properties
917
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700918 __slots__ = {
919 '_mu': 'Arithmetic mean of a normal distribution',
920 '_sigma': 'Standard deviation of a normal distribution',
921 }
Raymond Hettinger11c79532019-02-23 14:44:07 -0800922
923 def __init__(self, mu=0.0, sigma=1.0):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700924 "NormalDist where mu is the mean and sigma is the standard deviation."
Raymond Hettinger11c79532019-02-23 14:44:07 -0800925 if sigma < 0.0:
926 raise StatisticsError('sigma must be non-negative')
Raymond Hettingere4810b22019-09-05 00:18:47 -0700927 self._mu = float(mu)
928 self._sigma = float(sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -0800929
930 @classmethod
931 def from_samples(cls, data):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700932 "Make a normal distribution instance from sample data."
Raymond Hettinger11c79532019-02-23 14:44:07 -0800933 if not isinstance(data, (list, tuple)):
934 data = list(data)
935 xbar = fmean(data)
936 return cls(xbar, stdev(data, xbar))
937
Raymond Hettingerfb8c7d52019-04-23 01:46:18 -0700938 def samples(self, n, *, seed=None):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700939 "Generate *n* samples for a given mean and standard deviation."
Raymond Hettinger11c79532019-02-23 14:44:07 -0800940 gauss = random.gauss if seed is None else random.Random(seed).gauss
Raymond Hettinger02c91f52019-07-21 00:34:47 -0700941 mu, sigma = self._mu, self._sigma
Raymond Hettinger11c79532019-02-23 14:44:07 -0800942 return [gauss(mu, sigma) for i in range(n)]
943
944 def pdf(self, x):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700945 "Probability density function. P(x <= X < x+dx) / dx"
Raymond Hettinger02c91f52019-07-21 00:34:47 -0700946 variance = self._sigma ** 2.0
Raymond Hettinger11c79532019-02-23 14:44:07 -0800947 if not variance:
948 raise StatisticsError('pdf() not defined when sigma is zero')
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700949 return exp((x - self._mu)**2.0 / (-2.0*variance)) / sqrt(tau*variance)
Raymond Hettinger11c79532019-02-23 14:44:07 -0800950
951 def cdf(self, x):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700952 "Cumulative distribution function. P(X <= x)"
Raymond Hettinger02c91f52019-07-21 00:34:47 -0700953 if not self._sigma:
Raymond Hettinger11c79532019-02-23 14:44:07 -0800954 raise StatisticsError('cdf() not defined when sigma is zero')
Raymond Hettinger02c91f52019-07-21 00:34:47 -0700955 return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * sqrt(2.0))))
Raymond Hettinger11c79532019-02-23 14:44:07 -0800956
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700957 def inv_cdf(self, p):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700958 """Inverse cumulative distribution function. x : P(X <= x) = p
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700959
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700960 Finds the value of the random variable such that the probability of
961 the variable being less than or equal to that value equals the given
962 probability.
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700963
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700964 This function is also called the percent point function or quantile
965 function.
966 """
967 if p <= 0.0 or p >= 1.0:
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700968 raise StatisticsError('p must be in the range 0.0 < p < 1.0')
Raymond Hettinger02c91f52019-07-21 00:34:47 -0700969 if self._sigma <= 0.0:
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700970 raise StatisticsError('cdf() not defined when sigma at or below zero')
Dong-hee Na0a18ee42019-08-24 07:20:30 +0900971 return _normal_dist_inv_cdf(p, self._mu, self._sigma)
Raymond Hettinger714c60d2019-03-18 20:17:14 -0700972
Raymond Hettinger4db25d52019-09-08 16:57:58 -0700973 def quantiles(self, n=4):
974 """Divide into *n* continuous intervals with equal probability.
975
976 Returns a list of (n - 1) cut points separating the intervals.
977
978 Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
979 Set *n* to 100 for percentiles which gives the 99 cuts points that
980 separate the normal distribution in to 100 equal sized groups.
981 """
982 return [self.inv_cdf(i / n) for i in range(1, n)]
983
Raymond Hettinger318d5372019-03-06 22:59:40 -0800984 def overlap(self, other):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700985 """Compute the overlapping coefficient (OVL) between two normal distributions.
Raymond Hettinger318d5372019-03-06 22:59:40 -0800986
987 Measures the agreement between two normal probability distributions.
988 Returns a value between 0.0 and 1.0 giving the overlapping area in
989 the two underlying probability density functions.
990
991 >>> N1 = NormalDist(2.4, 1.6)
992 >>> N2 = NormalDist(3.2, 2.0)
993 >>> N1.overlap(N2)
994 0.8035050657330205
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -0700995 """
Raymond Hettinger318d5372019-03-06 22:59:40 -0800996 # See: "The overlapping coefficient as a measure of agreement between
997 # probability distributions and point estimation of the overlap of two
998 # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
999 # http://dx.doi.org/10.1080/03610928908830127
1000 if not isinstance(other, NormalDist):
1001 raise TypeError('Expected another NormalDist instance')
1002 X, Y = self, other
Raymond Hettinger5aad0272020-06-13 19:17:28 -07001003 if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity
Raymond Hettinger318d5372019-03-06 22:59:40 -08001004 X, Y = Y, X
1005 X_var, Y_var = X.variance, Y.variance
1006 if not X_var or not Y_var:
1007 raise StatisticsError('overlap() not defined when sigma is zero')
1008 dv = Y_var - X_var
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001009 dm = fabs(Y._mu - X._mu)
Raymond Hettinger318d5372019-03-06 22:59:40 -08001010 if not dv:
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001011 return 1.0 - erf(dm / (2.0 * X._sigma * sqrt(2.0)))
1012 a = X._mu * Y_var - Y._mu * X_var
1013 b = X._sigma * Y._sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var))
Raymond Hettinger318d5372019-03-06 22:59:40 -08001014 x1 = (a + b) / dv
1015 x2 = (a - b) / dv
1016 return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
1017
Raymond Hettinger70f027d2020-04-16 10:25:14 -07001018 def zscore(self, x):
1019 """Compute the Standard Score. (x - mean) / stdev
1020
1021 Describes *x* in terms of the number of standard deviations
1022 above or below the mean of the normal distribution.
1023 """
1024 # https://www.statisticshowto.com/probability-and-statistics/z-score/
1025 if not self._sigma:
1026 raise StatisticsError('zscore() not defined when sigma is zero')
1027 return (x - self._mu) / self._sigma
1028
Raymond Hettinger11c79532019-02-23 14:44:07 -08001029 @property
Raymond Hettinger9e456bc2019-02-24 11:44:55 -08001030 def mean(self):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001031 "Arithmetic mean of the normal distribution."
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001032 return self._mu
Raymond Hettinger9e456bc2019-02-24 11:44:55 -08001033
1034 @property
Raymond Hettinger4db25d52019-09-08 16:57:58 -07001035 def median(self):
1036 "Return the median of the normal distribution"
1037 return self._mu
1038
1039 @property
1040 def mode(self):
1041 """Return the mode of the normal distribution
1042
1043 The mode is the value x where which the probability density
1044 function (pdf) takes its maximum value.
1045 """
1046 return self._mu
1047
1048 @property
Raymond Hettinger9e456bc2019-02-24 11:44:55 -08001049 def stdev(self):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001050 "Standard deviation of the normal distribution."
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001051 return self._sigma
Raymond Hettinger9e456bc2019-02-24 11:44:55 -08001052
1053 @property
Raymond Hettinger11c79532019-02-23 14:44:07 -08001054 def variance(self):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001055 "Square of the standard deviation."
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001056 return self._sigma ** 2.0
Raymond Hettinger11c79532019-02-23 14:44:07 -08001057
1058 def __add__(x1, x2):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001059 """Add a constant or another NormalDist instance.
Raymond Hettinger5f1e8b42019-03-18 22:24:15 -07001060
1061 If *other* is a constant, translate mu by the constant,
1062 leaving sigma unchanged.
1063
1064 If *other* is a NormalDist, add both the means and the variances.
1065 Mathematically, this works only if the two distributions are
1066 independent or if they are jointly normally distributed.
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001067 """
Raymond Hettinger11c79532019-02-23 14:44:07 -08001068 if isinstance(x2, NormalDist):
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001069 return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
1070 return NormalDist(x1._mu + x2, x1._sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001071
1072 def __sub__(x1, x2):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001073 """Subtract a constant or another NormalDist instance.
Raymond Hettinger5f1e8b42019-03-18 22:24:15 -07001074
1075 If *other* is a constant, translate by the constant mu,
1076 leaving sigma unchanged.
1077
1078 If *other* is a NormalDist, subtract the means and add the variances.
1079 Mathematically, this works only if the two distributions are
1080 independent or if they are jointly normally distributed.
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001081 """
Raymond Hettinger11c79532019-02-23 14:44:07 -08001082 if isinstance(x2, NormalDist):
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001083 return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
1084 return NormalDist(x1._mu - x2, x1._sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001085
1086 def __mul__(x1, x2):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001087 """Multiply both mu and sigma by a constant.
Raymond Hettinger5f1e8b42019-03-18 22:24:15 -07001088
1089 Used for rescaling, perhaps to change measurement units.
1090 Sigma is scaled with the absolute value of the constant.
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001091 """
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001092 return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
Raymond Hettinger11c79532019-02-23 14:44:07 -08001093
1094 def __truediv__(x1, x2):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001095 """Divide both mu and sigma by a constant.
Raymond Hettinger5f1e8b42019-03-18 22:24:15 -07001096
1097 Used for rescaling, perhaps to change measurement units.
1098 Sigma is scaled with the absolute value of the constant.
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001099 """
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001100 return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
Raymond Hettinger11c79532019-02-23 14:44:07 -08001101
1102 def __pos__(x1):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001103 "Return a copy of the instance."
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001104 return NormalDist(x1._mu, x1._sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001105
1106 def __neg__(x1):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001107 "Negates mu while keeping sigma the same."
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001108 return NormalDist(-x1._mu, x1._sigma)
Raymond Hettinger11c79532019-02-23 14:44:07 -08001109
1110 __radd__ = __add__
1111
1112 def __rsub__(x1, x2):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001113 "Subtract a NormalDist from a constant or another NormalDist."
Raymond Hettinger11c79532019-02-23 14:44:07 -08001114 return -(x1 - x2)
1115
1116 __rmul__ = __mul__
1117
1118 def __eq__(x1, x2):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001119 "Two NormalDist objects are equal if their mu and sigma are both equal."
Raymond Hettinger11c79532019-02-23 14:44:07 -08001120 if not isinstance(x2, NormalDist):
1121 return NotImplemented
Raymond Hettinger5eabec02019-10-18 14:20:35 -07001122 return x1._mu == x2._mu and x1._sigma == x2._sigma
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001123
1124 def __hash__(self):
Raymond Hettinger1c0e9bb2019-07-21 12:13:07 -07001125 "NormalDist objects hash equal if their mu and sigma are both equal."
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001126 return hash((self._mu, self._sigma))
Raymond Hettinger11c79532019-02-23 14:44:07 -08001127
1128 def __repr__(self):
Raymond Hettinger02c91f52019-07-21 00:34:47 -07001129 return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'