blob: 9ce443f03ef6079790fa0afd670648232706ef08 [file] [log] [blame]
Serhiy Storchakac9ea9332017-01-19 18:13:09 +02001/*[clinic input]
2preserve
3[clinic start generated code]*/
4
5PyDoc_STRVAR(math_gcd__doc__,
6"gcd($module, x, y, /)\n"
7"--\n"
8"\n"
9"greatest common divisor of x and y");
10
11#define MATH_GCD_METHODDEF \
12 {"gcd", (PyCFunction)math_gcd, METH_FASTCALL, math_gcd__doc__},
13
14static PyObject *
15math_gcd_impl(PyObject *module, PyObject *a, PyObject *b);
16
17static PyObject *
Serhiy Storchaka6969eaf2017-07-03 21:20:15 +030018math_gcd(PyObject *module, PyObject **args, Py_ssize_t nargs)
Serhiy Storchakac9ea9332017-01-19 18:13:09 +020019{
20 PyObject *return_value = NULL;
21 PyObject *a;
22 PyObject *b;
23
Sylvain74453812017-06-10 06:51:48 +020024 if (!_PyArg_UnpackStack(args, nargs, "gcd",
25 2, 2,
26 &a, &b)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +020027 goto exit;
28 }
29 return_value = math_gcd_impl(module, a, b);
30
31exit:
32 return return_value;
33}
34
35PyDoc_STRVAR(math_ceil__doc__,
36"ceil($module, x, /)\n"
37"--\n"
38"\n"
39"Return the ceiling of x as an Integral.\n"
40"\n"
41"This is the smallest integer >= x.");
42
43#define MATH_CEIL_METHODDEF \
44 {"ceil", (PyCFunction)math_ceil, METH_O, math_ceil__doc__},
45
46PyDoc_STRVAR(math_floor__doc__,
47"floor($module, x, /)\n"
48"--\n"
49"\n"
50"Return the floor of x as an Integral.\n"
51"\n"
52"This is the largest integer <= x.");
53
54#define MATH_FLOOR_METHODDEF \
55 {"floor", (PyCFunction)math_floor, METH_O, math_floor__doc__},
56
57PyDoc_STRVAR(math_fsum__doc__,
58"fsum($module, seq, /)\n"
59"--\n"
60"\n"
61"Return an accurate floating point sum of values in the iterable seq.\n"
62"\n"
63"Assumes IEEE-754 floating point arithmetic.");
64
65#define MATH_FSUM_METHODDEF \
66 {"fsum", (PyCFunction)math_fsum, METH_O, math_fsum__doc__},
67
68PyDoc_STRVAR(math_factorial__doc__,
69"factorial($module, x, /)\n"
70"--\n"
71"\n"
72"Find x!.\n"
73"\n"
74"Raise a ValueError if x is negative or non-integral.");
75
76#define MATH_FACTORIAL_METHODDEF \
77 {"factorial", (PyCFunction)math_factorial, METH_O, math_factorial__doc__},
78
79PyDoc_STRVAR(math_trunc__doc__,
80"trunc($module, x, /)\n"
81"--\n"
82"\n"
83"Truncates the Real x to the nearest Integral toward 0.\n"
84"\n"
85"Uses the __trunc__ magic method.");
86
87#define MATH_TRUNC_METHODDEF \
88 {"trunc", (PyCFunction)math_trunc, METH_O, math_trunc__doc__},
89
90PyDoc_STRVAR(math_frexp__doc__,
91"frexp($module, x, /)\n"
92"--\n"
93"\n"
94"Return the mantissa and exponent of x, as pair (m, e).\n"
95"\n"
96"m is a float and e is an int, such that x = m * 2.**e.\n"
97"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
98
99#define MATH_FREXP_METHODDEF \
100 {"frexp", (PyCFunction)math_frexp, METH_O, math_frexp__doc__},
101
102static PyObject *
103math_frexp_impl(PyObject *module, double x);
104
105static PyObject *
106math_frexp(PyObject *module, PyObject *arg)
107{
108 PyObject *return_value = NULL;
109 double x;
110
111 if (!PyArg_Parse(arg, "d:frexp", &x)) {
112 goto exit;
113 }
114 return_value = math_frexp_impl(module, x);
115
116exit:
117 return return_value;
118}
119
120PyDoc_STRVAR(math_ldexp__doc__,
121"ldexp($module, x, i, /)\n"
122"--\n"
123"\n"
124"Return x * (2**i).\n"
125"\n"
126"This is essentially the inverse of frexp().");
127
128#define MATH_LDEXP_METHODDEF \
129 {"ldexp", (PyCFunction)math_ldexp, METH_FASTCALL, math_ldexp__doc__},
130
131static PyObject *
132math_ldexp_impl(PyObject *module, double x, PyObject *i);
133
134static PyObject *
Serhiy Storchaka6969eaf2017-07-03 21:20:15 +0300135math_ldexp(PyObject *module, PyObject **args, Py_ssize_t nargs)
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200136{
137 PyObject *return_value = NULL;
138 double x;
139 PyObject *i;
140
Sylvain74453812017-06-10 06:51:48 +0200141 if (!_PyArg_ParseStack(args, nargs, "dO:ldexp",
142 &x, &i)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200143 goto exit;
144 }
145 return_value = math_ldexp_impl(module, x, i);
146
147exit:
148 return return_value;
149}
150
151PyDoc_STRVAR(math_modf__doc__,
152"modf($module, x, /)\n"
153"--\n"
154"\n"
155"Return the fractional and integer parts of x.\n"
156"\n"
157"Both results carry the sign of x and are floats.");
158
159#define MATH_MODF_METHODDEF \
160 {"modf", (PyCFunction)math_modf, METH_O, math_modf__doc__},
161
162static PyObject *
163math_modf_impl(PyObject *module, double x);
164
165static PyObject *
166math_modf(PyObject *module, PyObject *arg)
167{
168 PyObject *return_value = NULL;
169 double x;
170
171 if (!PyArg_Parse(arg, "d:modf", &x)) {
172 goto exit;
173 }
174 return_value = math_modf_impl(module, x);
175
176exit:
177 return return_value;
178}
179
180PyDoc_STRVAR(math_log__doc__,
181"log(x, [base=math.e])\n"
182"Return the logarithm of x to the given base.\n"
183"\n"
184"If the base not specified, returns the natural logarithm (base e) of x.");
185
186#define MATH_LOG_METHODDEF \
187 {"log", (PyCFunction)math_log, METH_VARARGS, math_log__doc__},
188
189static PyObject *
190math_log_impl(PyObject *module, PyObject *x, int group_right_1,
191 PyObject *base);
192
193static PyObject *
194math_log(PyObject *module, PyObject *args)
195{
196 PyObject *return_value = NULL;
197 PyObject *x;
198 int group_right_1 = 0;
199 PyObject *base = NULL;
200
201 switch (PyTuple_GET_SIZE(args)) {
202 case 1:
203 if (!PyArg_ParseTuple(args, "O:log", &x)) {
204 goto exit;
205 }
206 break;
207 case 2:
208 if (!PyArg_ParseTuple(args, "OO:log", &x, &base)) {
209 goto exit;
210 }
211 group_right_1 = 1;
212 break;
213 default:
214 PyErr_SetString(PyExc_TypeError, "math.log requires 1 to 2 arguments");
215 goto exit;
216 }
217 return_value = math_log_impl(module, x, group_right_1, base);
218
219exit:
220 return return_value;
221}
222
223PyDoc_STRVAR(math_log2__doc__,
224"log2($module, x, /)\n"
225"--\n"
226"\n"
227"Return the base 2 logarithm of x.");
228
229#define MATH_LOG2_METHODDEF \
230 {"log2", (PyCFunction)math_log2, METH_O, math_log2__doc__},
231
232PyDoc_STRVAR(math_log10__doc__,
233"log10($module, x, /)\n"
234"--\n"
235"\n"
236"Return the base 10 logarithm of x.");
237
238#define MATH_LOG10_METHODDEF \
239 {"log10", (PyCFunction)math_log10, METH_O, math_log10__doc__},
240
241PyDoc_STRVAR(math_fmod__doc__,
242"fmod($module, x, y, /)\n"
243"--\n"
244"\n"
245"Return fmod(x, y), according to platform C.\n"
246"\n"
247"x % y may differ.");
248
249#define MATH_FMOD_METHODDEF \
250 {"fmod", (PyCFunction)math_fmod, METH_FASTCALL, math_fmod__doc__},
251
252static PyObject *
253math_fmod_impl(PyObject *module, double x, double y);
254
255static PyObject *
Serhiy Storchaka6969eaf2017-07-03 21:20:15 +0300256math_fmod(PyObject *module, PyObject **args, Py_ssize_t nargs)
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200257{
258 PyObject *return_value = NULL;
259 double x;
260 double y;
261
Sylvain74453812017-06-10 06:51:48 +0200262 if (!_PyArg_ParseStack(args, nargs, "dd:fmod",
263 &x, &y)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200264 goto exit;
265 }
266 return_value = math_fmod_impl(module, x, y);
267
268exit:
269 return return_value;
270}
271
272PyDoc_STRVAR(math_hypot__doc__,
273"hypot($module, x, y, /)\n"
274"--\n"
275"\n"
276"Return the Euclidean distance, sqrt(x*x + y*y).");
277
278#define MATH_HYPOT_METHODDEF \
279 {"hypot", (PyCFunction)math_hypot, METH_FASTCALL, math_hypot__doc__},
280
281static PyObject *
282math_hypot_impl(PyObject *module, double x, double y);
283
284static PyObject *
Serhiy Storchaka6969eaf2017-07-03 21:20:15 +0300285math_hypot(PyObject *module, PyObject **args, Py_ssize_t nargs)
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200286{
287 PyObject *return_value = NULL;
288 double x;
289 double y;
290
Sylvain74453812017-06-10 06:51:48 +0200291 if (!_PyArg_ParseStack(args, nargs, "dd:hypot",
292 &x, &y)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200293 goto exit;
294 }
295 return_value = math_hypot_impl(module, x, y);
296
297exit:
298 return return_value;
299}
300
301PyDoc_STRVAR(math_pow__doc__,
302"pow($module, x, y, /)\n"
303"--\n"
304"\n"
305"Return x**y (x to the power of y).");
306
307#define MATH_POW_METHODDEF \
308 {"pow", (PyCFunction)math_pow, METH_FASTCALL, math_pow__doc__},
309
310static PyObject *
311math_pow_impl(PyObject *module, double x, double y);
312
313static PyObject *
Serhiy Storchaka6969eaf2017-07-03 21:20:15 +0300314math_pow(PyObject *module, PyObject **args, Py_ssize_t nargs)
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200315{
316 PyObject *return_value = NULL;
317 double x;
318 double y;
319
Sylvain74453812017-06-10 06:51:48 +0200320 if (!_PyArg_ParseStack(args, nargs, "dd:pow",
321 &x, &y)) {
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200322 goto exit;
323 }
324 return_value = math_pow_impl(module, x, y);
325
326exit:
327 return return_value;
328}
329
330PyDoc_STRVAR(math_degrees__doc__,
331"degrees($module, x, /)\n"
332"--\n"
333"\n"
334"Convert angle x from radians to degrees.");
335
336#define MATH_DEGREES_METHODDEF \
337 {"degrees", (PyCFunction)math_degrees, METH_O, math_degrees__doc__},
338
339static PyObject *
340math_degrees_impl(PyObject *module, double x);
341
342static PyObject *
343math_degrees(PyObject *module, PyObject *arg)
344{
345 PyObject *return_value = NULL;
346 double x;
347
348 if (!PyArg_Parse(arg, "d:degrees", &x)) {
349 goto exit;
350 }
351 return_value = math_degrees_impl(module, x);
352
353exit:
354 return return_value;
355}
356
357PyDoc_STRVAR(math_radians__doc__,
358"radians($module, x, /)\n"
359"--\n"
360"\n"
361"Convert angle x from degrees to radians.");
362
363#define MATH_RADIANS_METHODDEF \
364 {"radians", (PyCFunction)math_radians, METH_O, math_radians__doc__},
365
366static PyObject *
367math_radians_impl(PyObject *module, double x);
368
369static PyObject *
370math_radians(PyObject *module, PyObject *arg)
371{
372 PyObject *return_value = NULL;
373 double x;
374
375 if (!PyArg_Parse(arg, "d:radians", &x)) {
376 goto exit;
377 }
378 return_value = math_radians_impl(module, x);
379
380exit:
381 return return_value;
382}
383
384PyDoc_STRVAR(math_isfinite__doc__,
385"isfinite($module, x, /)\n"
386"--\n"
387"\n"
388"Return True if x is neither an infinity nor a NaN, and False otherwise.");
389
390#define MATH_ISFINITE_METHODDEF \
391 {"isfinite", (PyCFunction)math_isfinite, METH_O, math_isfinite__doc__},
392
393static PyObject *
394math_isfinite_impl(PyObject *module, double x);
395
396static PyObject *
397math_isfinite(PyObject *module, PyObject *arg)
398{
399 PyObject *return_value = NULL;
400 double x;
401
402 if (!PyArg_Parse(arg, "d:isfinite", &x)) {
403 goto exit;
404 }
405 return_value = math_isfinite_impl(module, x);
406
407exit:
408 return return_value;
409}
410
411PyDoc_STRVAR(math_isnan__doc__,
412"isnan($module, x, /)\n"
413"--\n"
414"\n"
415"Return True if x is a NaN (not a number), and False otherwise.");
416
417#define MATH_ISNAN_METHODDEF \
418 {"isnan", (PyCFunction)math_isnan, METH_O, math_isnan__doc__},
419
420static PyObject *
421math_isnan_impl(PyObject *module, double x);
422
423static PyObject *
424math_isnan(PyObject *module, PyObject *arg)
425{
426 PyObject *return_value = NULL;
427 double x;
428
429 if (!PyArg_Parse(arg, "d:isnan", &x)) {
430 goto exit;
431 }
432 return_value = math_isnan_impl(module, x);
433
434exit:
435 return return_value;
436}
437
438PyDoc_STRVAR(math_isinf__doc__,
439"isinf($module, x, /)\n"
440"--\n"
441"\n"
442"Return True if x is a positive or negative infinity, and False otherwise.");
443
444#define MATH_ISINF_METHODDEF \
445 {"isinf", (PyCFunction)math_isinf, METH_O, math_isinf__doc__},
446
447static PyObject *
448math_isinf_impl(PyObject *module, double x);
449
450static PyObject *
451math_isinf(PyObject *module, PyObject *arg)
452{
453 PyObject *return_value = NULL;
454 double x;
455
456 if (!PyArg_Parse(arg, "d:isinf", &x)) {
457 goto exit;
458 }
459 return_value = math_isinf_impl(module, x);
460
461exit:
462 return return_value;
463}
464
465PyDoc_STRVAR(math_isclose__doc__,
466"isclose($module, /, a, b, *, rel_tol=1e-09, abs_tol=0.0)\n"
467"--\n"
468"\n"
469"Determine whether two floating point numbers are close in value.\n"
470"\n"
471" rel_tol\n"
472" maximum difference for being considered \"close\", relative to the\n"
473" magnitude of the input values\n"
474" abs_tol\n"
475" maximum difference for being considered \"close\", regardless of the\n"
476" magnitude of the input values\n"
477"\n"
478"Return True if a is close in value to b, and False otherwise.\n"
479"\n"
480"For the values to be considered close, the difference between them\n"
481"must be smaller than at least one of the tolerances.\n"
482"\n"
483"-inf, inf and NaN behave similarly to the IEEE 754 Standard. That\n"
484"is, NaN is not close to anything, even itself. inf and -inf are\n"
485"only close to themselves.");
486
487#define MATH_ISCLOSE_METHODDEF \
Serhiy Storchaka6969eaf2017-07-03 21:20:15 +0300488 {"isclose", (PyCFunction)math_isclose, METH_FASTCALL|METH_KEYWORDS, math_isclose__doc__},
Serhiy Storchakac9ea9332017-01-19 18:13:09 +0200489
490static int
491math_isclose_impl(PyObject *module, double a, double b, double rel_tol,
492 double abs_tol);
493
494static PyObject *
495math_isclose(PyObject *module, PyObject **args, Py_ssize_t nargs, PyObject *kwnames)
496{
497 PyObject *return_value = NULL;
498 static const char * const _keywords[] = {"a", "b", "rel_tol", "abs_tol", NULL};
499 static _PyArg_Parser _parser = {"dd|$dd:isclose", _keywords, 0};
500 double a;
501 double b;
502 double rel_tol = 1e-09;
503 double abs_tol = 0.0;
504 int _return_value;
505
506 if (!_PyArg_ParseStackAndKeywords(args, nargs, kwnames, &_parser,
507 &a, &b, &rel_tol, &abs_tol)) {
508 goto exit;
509 }
510 _return_value = math_isclose_impl(module, a, b, rel_tol, abs_tol);
511 if ((_return_value == -1) && PyErr_Occurred()) {
512 goto exit;
513 }
514 return_value = PyBool_FromLong((long)_return_value);
515
516exit:
517 return return_value;
518}
Serhiy Storchaka6969eaf2017-07-03 21:20:15 +0300519/*[clinic end generated code: output=d9bfbd645d273209 input=a9049054013a1b77]*/