Raymond Hettinger | 7c85fa4 | 2004-07-01 11:01:35 +0000 | [diff] [blame] | 1 | ------------------------------------------------------------------------ |
| 2 | -- subtract.decTest -- decimal subtraction -- |
Benjamin Peterson | f17ff4e | 2008-07-31 16:32:12 +0000 | [diff] [blame] | 3 | -- Copyright (c) IBM Corporation, 1981, 2008. All rights reserved. -- |
Raymond Hettinger | 7c85fa4 | 2004-07-01 11:01:35 +0000 | [diff] [blame] | 4 | ------------------------------------------------------------------------ |
| 5 | -- Please see the document "General Decimal Arithmetic Testcases" -- |
| 6 | -- at http://www2.hursley.ibm.com/decimal for the description of -- |
| 7 | -- these testcases. -- |
| 8 | -- -- |
| 9 | -- These testcases are experimental ('beta' versions), and they -- |
| 10 | -- may contain errors. They are offered on an as-is basis. In -- |
| 11 | -- particular, achieving the same results as the tests here is not -- |
| 12 | -- a guarantee that an implementation complies with any Standard -- |
| 13 | -- or specification. The tests are not exhaustive. -- |
| 14 | -- -- |
| 15 | -- Please send comments, suggestions, and corrections to the author: -- |
| 16 | -- Mike Cowlishaw, IBM Fellow -- |
| 17 | -- IBM UK, PO Box 31, Birmingham Road, Warwick CV34 5JL, UK -- |
| 18 | -- mfc@uk.ibm.com -- |
| 19 | ------------------------------------------------------------------------ |
Mark Dickinson | 8a54653 | 2009-10-08 16:30:38 +0000 | [diff] [blame] | 20 | version: 2.59 |
Raymond Hettinger | 7c85fa4 | 2004-07-01 11:01:35 +0000 | [diff] [blame] | 21 | |
| 22 | extended: 1 |
| 23 | precision: 9 |
| 24 | rounding: half_up |
| 25 | maxExponent: 384 |
| 26 | minexponent: -383 |
| 27 | |
| 28 | -- [first group are 'quick confidence check'] |
| 29 | subx001 subtract 0 0 -> '0' |
| 30 | subx002 subtract 1 1 -> '0' |
| 31 | subx003 subtract 1 2 -> '-1' |
| 32 | subx004 subtract 2 1 -> '1' |
| 33 | subx005 subtract 2 2 -> '0' |
| 34 | subx006 subtract 3 2 -> '1' |
| 35 | subx007 subtract 2 3 -> '-1' |
| 36 | |
| 37 | subx011 subtract -0 0 -> '-0' |
| 38 | subx012 subtract -1 1 -> '-2' |
| 39 | subx013 subtract -1 2 -> '-3' |
| 40 | subx014 subtract -2 1 -> '-3' |
| 41 | subx015 subtract -2 2 -> '-4' |
| 42 | subx016 subtract -3 2 -> '-5' |
| 43 | subx017 subtract -2 3 -> '-5' |
| 44 | |
| 45 | subx021 subtract 0 -0 -> '0' |
| 46 | subx022 subtract 1 -1 -> '2' |
| 47 | subx023 subtract 1 -2 -> '3' |
| 48 | subx024 subtract 2 -1 -> '3' |
| 49 | subx025 subtract 2 -2 -> '4' |
| 50 | subx026 subtract 3 -2 -> '5' |
| 51 | subx027 subtract 2 -3 -> '5' |
| 52 | |
| 53 | subx030 subtract 11 1 -> 10 |
| 54 | subx031 subtract 10 1 -> 9 |
| 55 | subx032 subtract 9 1 -> 8 |
| 56 | subx033 subtract 1 1 -> 0 |
| 57 | subx034 subtract 0 1 -> -1 |
| 58 | subx035 subtract -1 1 -> -2 |
| 59 | subx036 subtract -9 1 -> -10 |
| 60 | subx037 subtract -10 1 -> -11 |
| 61 | subx038 subtract -11 1 -> -12 |
| 62 | |
| 63 | subx040 subtract '5.75' '3.3' -> '2.45' |
| 64 | subx041 subtract '5' '-3' -> '8' |
| 65 | subx042 subtract '-5' '-3' -> '-2' |
| 66 | subx043 subtract '-7' '2.5' -> '-9.5' |
| 67 | subx044 subtract '0.7' '0.3' -> '0.4' |
| 68 | subx045 subtract '1.3' '0.3' -> '1.0' |
| 69 | subx046 subtract '1.25' '1.25' -> '0.00' |
| 70 | |
| 71 | subx050 subtract '1.23456789' '1.00000000' -> '0.23456789' |
| 72 | subx051 subtract '1.23456789' '1.00000089' -> '0.23456700' |
| 73 | subx052 subtract '0.5555555559' '0.0000000001' -> '0.555555556' Inexact Rounded |
| 74 | subx053 subtract '0.5555555559' '0.0000000005' -> '0.555555555' Inexact Rounded |
| 75 | subx054 subtract '0.4444444444' '0.1111111111' -> '0.333333333' Inexact Rounded |
| 76 | subx055 subtract '1.0000000000' '0.00000001' -> '0.999999990' Rounded |
| 77 | subx056 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Rounded |
| 78 | subx057 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Rounded |
| 79 | |
| 80 | subx060 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded |
| 81 | subx061 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded |
| 82 | subx062 subtract '7000' '10000e+9' -> '-9.99999999E+12' Inexact Rounded |
| 83 | subx063 subtract '70000' '10000e+9' -> '-9.99999993E+12' Rounded |
| 84 | subx064 subtract '700000' '10000e+9' -> '-9.99999930E+12' Rounded |
| 85 | -- symmetry: |
| 86 | subx065 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded |
| 87 | subx066 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded |
| 88 | subx067 subtract '10000e+9' '7000' -> '9.99999999E+12' Inexact Rounded |
| 89 | subx068 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded |
| 90 | subx069 subtract '10000e+9' '700000' -> '9.99999930E+12' Rounded |
| 91 | |
| 92 | -- change precision |
| 93 | subx080 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded |
| 94 | precision: 6 |
| 95 | subx081 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded |
| 96 | precision: 9 |
| 97 | |
| 98 | -- some of the next group are really constructor tests |
| 99 | subx090 subtract '00.0' '0.0' -> '0.0' |
| 100 | subx091 subtract '00.0' '0.00' -> '0.00' |
| 101 | subx092 subtract '0.00' '00.0' -> '0.00' |
| 102 | subx093 subtract '00.0' '0.00' -> '0.00' |
| 103 | subx094 subtract '0.00' '00.0' -> '0.00' |
| 104 | subx095 subtract '3' '.3' -> '2.7' |
| 105 | subx096 subtract '3.' '.3' -> '2.7' |
| 106 | subx097 subtract '3.0' '.3' -> '2.7' |
| 107 | subx098 subtract '3.00' '.3' -> '2.70' |
| 108 | subx099 subtract '3' '3' -> '0' |
| 109 | subx100 subtract '3' '+3' -> '0' |
| 110 | subx101 subtract '3' '-3' -> '6' |
| 111 | subx102 subtract '3' '0.3' -> '2.7' |
| 112 | subx103 subtract '3.' '0.3' -> '2.7' |
| 113 | subx104 subtract '3.0' '0.3' -> '2.7' |
| 114 | subx105 subtract '3.00' '0.3' -> '2.70' |
| 115 | subx106 subtract '3' '3.0' -> '0.0' |
| 116 | subx107 subtract '3' '+3.0' -> '0.0' |
| 117 | subx108 subtract '3' '-3.0' -> '6.0' |
| 118 | |
| 119 | -- the above all from add; massaged and extended. Now some new ones... |
| 120 | -- [particularly important for comparisons] |
| 121 | -- NB: -xE-8 below were non-exponents pre-ANSI X3-274, and -1E-7 or 0E-7 |
| 122 | -- with input rounding. |
| 123 | subx120 subtract '10.23456784' '10.23456789' -> '-5E-8' |
| 124 | subx121 subtract '10.23456785' '10.23456789' -> '-4E-8' |
| 125 | subx122 subtract '10.23456786' '10.23456789' -> '-3E-8' |
| 126 | subx123 subtract '10.23456787' '10.23456789' -> '-2E-8' |
| 127 | subx124 subtract '10.23456788' '10.23456789' -> '-1E-8' |
| 128 | subx125 subtract '10.23456789' '10.23456789' -> '0E-8' |
| 129 | subx126 subtract '10.23456790' '10.23456789' -> '1E-8' |
| 130 | subx127 subtract '10.23456791' '10.23456789' -> '2E-8' |
| 131 | subx128 subtract '10.23456792' '10.23456789' -> '3E-8' |
| 132 | subx129 subtract '10.23456793' '10.23456789' -> '4E-8' |
| 133 | subx130 subtract '10.23456794' '10.23456789' -> '5E-8' |
| 134 | subx131 subtract '10.23456781' '10.23456786' -> '-5E-8' |
| 135 | subx132 subtract '10.23456782' '10.23456786' -> '-4E-8' |
| 136 | subx133 subtract '10.23456783' '10.23456786' -> '-3E-8' |
| 137 | subx134 subtract '10.23456784' '10.23456786' -> '-2E-8' |
| 138 | subx135 subtract '10.23456785' '10.23456786' -> '-1E-8' |
| 139 | subx136 subtract '10.23456786' '10.23456786' -> '0E-8' |
| 140 | subx137 subtract '10.23456787' '10.23456786' -> '1E-8' |
| 141 | subx138 subtract '10.23456788' '10.23456786' -> '2E-8' |
| 142 | subx139 subtract '10.23456789' '10.23456786' -> '3E-8' |
| 143 | subx140 subtract '10.23456790' '10.23456786' -> '4E-8' |
| 144 | subx141 subtract '10.23456791' '10.23456786' -> '5E-8' |
| 145 | subx142 subtract '1' '0.999999999' -> '1E-9' |
| 146 | subx143 subtract '0.999999999' '1' -> '-1E-9' |
| 147 | subx144 subtract '-10.23456780' '-10.23456786' -> '6E-8' |
| 148 | subx145 subtract '-10.23456790' '-10.23456786' -> '-4E-8' |
| 149 | subx146 subtract '-10.23456791' '-10.23456786' -> '-5E-8' |
| 150 | |
| 151 | precision: 3 |
| 152 | subx150 subtract '12345678900000' '9999999999999' -> 2.35E+12 Inexact Rounded |
| 153 | subx151 subtract '9999999999999' '12345678900000' -> -2.35E+12 Inexact Rounded |
| 154 | precision: 6 |
| 155 | subx152 subtract '12345678900000' '9999999999999' -> 2.34568E+12 Inexact Rounded |
| 156 | subx153 subtract '9999999999999' '12345678900000' -> -2.34568E+12 Inexact Rounded |
| 157 | precision: 9 |
| 158 | subx154 subtract '12345678900000' '9999999999999' -> 2.34567890E+12 Inexact Rounded |
| 159 | subx155 subtract '9999999999999' '12345678900000' -> -2.34567890E+12 Inexact Rounded |
| 160 | precision: 12 |
| 161 | subx156 subtract '12345678900000' '9999999999999' -> 2.34567890000E+12 Inexact Rounded |
| 162 | subx157 subtract '9999999999999' '12345678900000' -> -2.34567890000E+12 Inexact Rounded |
| 163 | precision: 15 |
| 164 | subx158 subtract '12345678900000' '9999999999999' -> 2345678900001 |
| 165 | subx159 subtract '9999999999999' '12345678900000' -> -2345678900001 |
| 166 | precision: 9 |
| 167 | |
| 168 | -- additional scaled arithmetic tests [0.97 problem] |
| 169 | subx160 subtract '0' '.1' -> '-0.1' |
| 170 | subx161 subtract '00' '.97983' -> '-0.97983' |
| 171 | subx162 subtract '0' '.9' -> '-0.9' |
| 172 | subx163 subtract '0' '0.102' -> '-0.102' |
| 173 | subx164 subtract '0' '.4' -> '-0.4' |
| 174 | subx165 subtract '0' '.307' -> '-0.307' |
| 175 | subx166 subtract '0' '.43822' -> '-0.43822' |
| 176 | subx167 subtract '0' '.911' -> '-0.911' |
| 177 | subx168 subtract '.0' '.02' -> '-0.02' |
| 178 | subx169 subtract '00' '.392' -> '-0.392' |
| 179 | subx170 subtract '0' '.26' -> '-0.26' |
| 180 | subx171 subtract '0' '0.51' -> '-0.51' |
| 181 | subx172 subtract '0' '.2234' -> '-0.2234' |
| 182 | subx173 subtract '0' '.2' -> '-0.2' |
| 183 | subx174 subtract '.0' '.0008' -> '-0.0008' |
| 184 | -- 0. on left |
| 185 | subx180 subtract '0.0' '-.1' -> '0.1' |
| 186 | subx181 subtract '0.00' '-.97983' -> '0.97983' |
| 187 | subx182 subtract '0.0' '-.9' -> '0.9' |
| 188 | subx183 subtract '0.0' '-0.102' -> '0.102' |
| 189 | subx184 subtract '0.0' '-.4' -> '0.4' |
| 190 | subx185 subtract '0.0' '-.307' -> '0.307' |
| 191 | subx186 subtract '0.0' '-.43822' -> '0.43822' |
| 192 | subx187 subtract '0.0' '-.911' -> '0.911' |
| 193 | subx188 subtract '0.0' '-.02' -> '0.02' |
| 194 | subx189 subtract '0.00' '-.392' -> '0.392' |
| 195 | subx190 subtract '0.0' '-.26' -> '0.26' |
| 196 | subx191 subtract '0.0' '-0.51' -> '0.51' |
| 197 | subx192 subtract '0.0' '-.2234' -> '0.2234' |
| 198 | subx193 subtract '0.0' '-.2' -> '0.2' |
| 199 | subx194 subtract '0.0' '-.0008' -> '0.0008' |
| 200 | -- negatives of same |
| 201 | subx200 subtract '0' '-.1' -> '0.1' |
| 202 | subx201 subtract '00' '-.97983' -> '0.97983' |
| 203 | subx202 subtract '0' '-.9' -> '0.9' |
| 204 | subx203 subtract '0' '-0.102' -> '0.102' |
| 205 | subx204 subtract '0' '-.4' -> '0.4' |
| 206 | subx205 subtract '0' '-.307' -> '0.307' |
| 207 | subx206 subtract '0' '-.43822' -> '0.43822' |
| 208 | subx207 subtract '0' '-.911' -> '0.911' |
| 209 | subx208 subtract '.0' '-.02' -> '0.02' |
| 210 | subx209 subtract '00' '-.392' -> '0.392' |
| 211 | subx210 subtract '0' '-.26' -> '0.26' |
| 212 | subx211 subtract '0' '-0.51' -> '0.51' |
| 213 | subx212 subtract '0' '-.2234' -> '0.2234' |
| 214 | subx213 subtract '0' '-.2' -> '0.2' |
| 215 | subx214 subtract '.0' '-.0008' -> '0.0008' |
| 216 | |
| 217 | -- more fixed, LHS swaps [really the same as testcases under add] |
| 218 | subx220 subtract '-56267E-12' 0 -> '-5.6267E-8' |
| 219 | subx221 subtract '-56267E-11' 0 -> '-5.6267E-7' |
| 220 | subx222 subtract '-56267E-10' 0 -> '-0.0000056267' |
| 221 | subx223 subtract '-56267E-9' 0 -> '-0.000056267' |
| 222 | subx224 subtract '-56267E-8' 0 -> '-0.00056267' |
| 223 | subx225 subtract '-56267E-7' 0 -> '-0.0056267' |
| 224 | subx226 subtract '-56267E-6' 0 -> '-0.056267' |
| 225 | subx227 subtract '-56267E-5' 0 -> '-0.56267' |
| 226 | subx228 subtract '-56267E-2' 0 -> '-562.67' |
| 227 | subx229 subtract '-56267E-1' 0 -> '-5626.7' |
| 228 | subx230 subtract '-56267E-0' 0 -> '-56267' |
| 229 | -- symmetry ... |
| 230 | subx240 subtract 0 '-56267E-12' -> '5.6267E-8' |
| 231 | subx241 subtract 0 '-56267E-11' -> '5.6267E-7' |
| 232 | subx242 subtract 0 '-56267E-10' -> '0.0000056267' |
| 233 | subx243 subtract 0 '-56267E-9' -> '0.000056267' |
| 234 | subx244 subtract 0 '-56267E-8' -> '0.00056267' |
| 235 | subx245 subtract 0 '-56267E-7' -> '0.0056267' |
| 236 | subx246 subtract 0 '-56267E-6' -> '0.056267' |
| 237 | subx247 subtract 0 '-56267E-5' -> '0.56267' |
| 238 | subx248 subtract 0 '-56267E-2' -> '562.67' |
| 239 | subx249 subtract 0 '-56267E-1' -> '5626.7' |
| 240 | subx250 subtract 0 '-56267E-0' -> '56267' |
| 241 | |
| 242 | -- now some more from the 'new' add |
| 243 | precision: 9 |
| 244 | subx301 subtract '1.23456789' '1.00000000' -> '0.23456789' |
| 245 | subx302 subtract '1.23456789' '1.00000011' -> '0.23456778' |
| 246 | |
| 247 | subx311 subtract '0.4444444444' '0.5555555555' -> '-0.111111111' Inexact Rounded |
| 248 | subx312 subtract '0.4444444440' '0.5555555555' -> '-0.111111112' Inexact Rounded |
| 249 | subx313 subtract '0.4444444444' '0.5555555550' -> '-0.111111111' Inexact Rounded |
| 250 | subx314 subtract '0.44444444449' '0' -> '0.444444444' Inexact Rounded |
| 251 | subx315 subtract '0.444444444499' '0' -> '0.444444444' Inexact Rounded |
| 252 | subx316 subtract '0.4444444444999' '0' -> '0.444444444' Inexact Rounded |
| 253 | subx317 subtract '0.4444444445000' '0' -> '0.444444445' Inexact Rounded |
| 254 | subx318 subtract '0.4444444445001' '0' -> '0.444444445' Inexact Rounded |
| 255 | subx319 subtract '0.444444444501' '0' -> '0.444444445' Inexact Rounded |
| 256 | subx320 subtract '0.44444444451' '0' -> '0.444444445' Inexact Rounded |
| 257 | |
| 258 | -- some carrying effects |
| 259 | subx321 subtract '0.9998' '0.0000' -> '0.9998' |
| 260 | subx322 subtract '0.9998' '0.0001' -> '0.9997' |
| 261 | subx323 subtract '0.9998' '0.0002' -> '0.9996' |
| 262 | subx324 subtract '0.9998' '0.0003' -> '0.9995' |
| 263 | subx325 subtract '0.9998' '-0.0000' -> '0.9998' |
| 264 | subx326 subtract '0.9998' '-0.0001' -> '0.9999' |
| 265 | subx327 subtract '0.9998' '-0.0002' -> '1.0000' |
| 266 | subx328 subtract '0.9998' '-0.0003' -> '1.0001' |
| 267 | |
| 268 | subx330 subtract '70' '10000e+9' -> '-1.00000000E+13' Inexact Rounded |
| 269 | subx331 subtract '700' '10000e+9' -> '-1.00000000E+13' Inexact Rounded |
| 270 | subx332 subtract '7000' '10000e+9' -> '-9.99999999E+12' Inexact Rounded |
| 271 | subx333 subtract '70000' '10000e+9' -> '-9.99999993E+12' Rounded |
| 272 | subx334 subtract '700000' '10000e+9' -> '-9.99999930E+12' Rounded |
| 273 | subx335 subtract '7000000' '10000e+9' -> '-9.99999300E+12' Rounded |
| 274 | -- symmetry: |
| 275 | subx340 subtract '10000e+9' '70' -> '1.00000000E+13' Inexact Rounded |
| 276 | subx341 subtract '10000e+9' '700' -> '1.00000000E+13' Inexact Rounded |
| 277 | subx342 subtract '10000e+9' '7000' -> '9.99999999E+12' Inexact Rounded |
| 278 | subx343 subtract '10000e+9' '70000' -> '9.99999993E+12' Rounded |
| 279 | subx344 subtract '10000e+9' '700000' -> '9.99999930E+12' Rounded |
| 280 | subx345 subtract '10000e+9' '7000000' -> '9.99999300E+12' Rounded |
| 281 | |
| 282 | -- same, higher precision |
| 283 | precision: 15 |
| 284 | subx346 subtract '10000e+9' '7' -> '9999999999993' |
| 285 | subx347 subtract '10000e+9' '70' -> '9999999999930' |
| 286 | subx348 subtract '10000e+9' '700' -> '9999999999300' |
| 287 | subx349 subtract '10000e+9' '7000' -> '9999999993000' |
| 288 | subx350 subtract '10000e+9' '70000' -> '9999999930000' |
| 289 | subx351 subtract '10000e+9' '700000' -> '9999999300000' |
| 290 | subx352 subtract '7' '10000e+9' -> '-9999999999993' |
| 291 | subx353 subtract '70' '10000e+9' -> '-9999999999930' |
| 292 | subx354 subtract '700' '10000e+9' -> '-9999999999300' |
| 293 | subx355 subtract '7000' '10000e+9' -> '-9999999993000' |
| 294 | subx356 subtract '70000' '10000e+9' -> '-9999999930000' |
| 295 | subx357 subtract '700000' '10000e+9' -> '-9999999300000' |
| 296 | |
| 297 | -- zero preservation |
| 298 | precision: 6 |
| 299 | subx360 subtract '10000e+9' '70000' -> '1.00000E+13' Inexact Rounded |
| 300 | subx361 subtract 1 '0.0001' -> '0.9999' |
| 301 | subx362 subtract 1 '0.00001' -> '0.99999' |
| 302 | subx363 subtract 1 '0.000001' -> '0.999999' |
| 303 | subx364 subtract 1 '0.0000001' -> '1.00000' Inexact Rounded |
| 304 | subx365 subtract 1 '0.00000001' -> '1.00000' Inexact Rounded |
| 305 | |
| 306 | -- some funny zeros [in case of bad signum] |
| 307 | subx370 subtract 1 0 -> 1 |
| 308 | subx371 subtract 1 0. -> 1 |
| 309 | subx372 subtract 1 .0 -> 1.0 |
| 310 | subx373 subtract 1 0.0 -> 1.0 |
| 311 | subx374 subtract 0 1 -> -1 |
| 312 | subx375 subtract 0. 1 -> -1 |
| 313 | subx376 subtract .0 1 -> -1.0 |
| 314 | subx377 subtract 0.0 1 -> -1.0 |
| 315 | |
| 316 | precision: 9 |
| 317 | |
| 318 | -- leading 0 digit before round |
| 319 | subx910 subtract -103519362 -51897955.3 -> -51621406.7 |
| 320 | subx911 subtract 159579.444 89827.5229 -> 69751.9211 |
| 321 | |
| 322 | subx920 subtract 333.123456 33.1234566 -> 299.999999 Inexact Rounded |
| 323 | subx921 subtract 333.123456 33.1234565 -> 300.000000 Inexact Rounded |
| 324 | subx922 subtract 133.123456 33.1234565 -> 99.9999995 |
| 325 | subx923 subtract 133.123456 33.1234564 -> 99.9999996 |
| 326 | subx924 subtract 133.123456 33.1234540 -> 100.000002 Rounded |
| 327 | subx925 subtract 133.123456 43.1234560 -> 90.0000000 |
| 328 | subx926 subtract 133.123456 43.1234561 -> 89.9999999 |
| 329 | subx927 subtract 133.123456 43.1234566 -> 89.9999994 |
| 330 | subx928 subtract 101.123456 91.1234566 -> 9.9999994 |
| 331 | subx929 subtract 101.123456 99.1234566 -> 1.9999994 |
| 332 | |
| 333 | -- more of the same; probe for cluster boundary problems |
| 334 | precision: 1 |
| 335 | subx930 subtract 11 2 -> 9 |
| 336 | precision: 2 |
| 337 | subx932 subtract 101 2 -> 99 |
| 338 | precision: 3 |
| 339 | subx934 subtract 101 2.1 -> 98.9 |
| 340 | subx935 subtract 101 92.01 -> 8.99 |
| 341 | precision: 4 |
| 342 | subx936 subtract 101 2.01 -> 98.99 |
| 343 | subx937 subtract 101 92.01 -> 8.99 |
| 344 | subx938 subtract 101 92.006 -> 8.994 |
| 345 | precision: 5 |
| 346 | subx939 subtract 101 2.001 -> 98.999 |
| 347 | subx940 subtract 101 92.001 -> 8.999 |
| 348 | subx941 subtract 101 92.0006 -> 8.9994 |
| 349 | precision: 6 |
| 350 | subx942 subtract 101 2.0001 -> 98.9999 |
| 351 | subx943 subtract 101 92.0001 -> 8.9999 |
| 352 | subx944 subtract 101 92.00006 -> 8.99994 |
| 353 | precision: 7 |
| 354 | subx945 subtract 101 2.00001 -> 98.99999 |
| 355 | subx946 subtract 101 92.00001 -> 8.99999 |
| 356 | subx947 subtract 101 92.000006 -> 8.999994 |
| 357 | precision: 8 |
| 358 | subx948 subtract 101 2.000001 -> 98.999999 |
| 359 | subx949 subtract 101 92.000001 -> 8.999999 |
| 360 | subx950 subtract 101 92.0000006 -> 8.9999994 |
| 361 | precision: 9 |
| 362 | subx951 subtract 101 2.0000001 -> 98.9999999 |
| 363 | subx952 subtract 101 92.0000001 -> 8.9999999 |
| 364 | subx953 subtract 101 92.00000006 -> 8.99999994 |
| 365 | |
| 366 | precision: 9 |
| 367 | |
| 368 | -- more LHS swaps [were fixed] |
| 369 | subx390 subtract '-56267E-10' 0 -> '-0.0000056267' |
| 370 | subx391 subtract '-56267E-6' 0 -> '-0.056267' |
| 371 | subx392 subtract '-56267E-5' 0 -> '-0.56267' |
| 372 | subx393 subtract '-56267E-4' 0 -> '-5.6267' |
| 373 | subx394 subtract '-56267E-3' 0 -> '-56.267' |
| 374 | subx395 subtract '-56267E-2' 0 -> '-562.67' |
| 375 | subx396 subtract '-56267E-1' 0 -> '-5626.7' |
| 376 | subx397 subtract '-56267E-0' 0 -> '-56267' |
| 377 | subx398 subtract '-5E-10' 0 -> '-5E-10' |
| 378 | subx399 subtract '-5E-7' 0 -> '-5E-7' |
| 379 | subx400 subtract '-5E-6' 0 -> '-0.000005' |
| 380 | subx401 subtract '-5E-5' 0 -> '-0.00005' |
| 381 | subx402 subtract '-5E-4' 0 -> '-0.0005' |
| 382 | subx403 subtract '-5E-1' 0 -> '-0.5' |
| 383 | subx404 subtract '-5E0' 0 -> '-5' |
| 384 | subx405 subtract '-5E1' 0 -> '-50' |
| 385 | subx406 subtract '-5E5' 0 -> '-500000' |
| 386 | subx407 subtract '-5E8' 0 -> '-500000000' |
| 387 | subx408 subtract '-5E9' 0 -> '-5.00000000E+9' Rounded |
| 388 | subx409 subtract '-5E10' 0 -> '-5.00000000E+10' Rounded |
| 389 | subx410 subtract '-5E11' 0 -> '-5.00000000E+11' Rounded |
| 390 | subx411 subtract '-5E100' 0 -> '-5.00000000E+100' Rounded |
| 391 | |
| 392 | -- more RHS swaps [were fixed] |
| 393 | subx420 subtract 0 '-56267E-10' -> '0.0000056267' |
| 394 | subx421 subtract 0 '-56267E-6' -> '0.056267' |
| 395 | subx422 subtract 0 '-56267E-5' -> '0.56267' |
| 396 | subx423 subtract 0 '-56267E-4' -> '5.6267' |
| 397 | subx424 subtract 0 '-56267E-3' -> '56.267' |
| 398 | subx425 subtract 0 '-56267E-2' -> '562.67' |
| 399 | subx426 subtract 0 '-56267E-1' -> '5626.7' |
| 400 | subx427 subtract 0 '-56267E-0' -> '56267' |
| 401 | subx428 subtract 0 '-5E-10' -> '5E-10' |
| 402 | subx429 subtract 0 '-5E-7' -> '5E-7' |
| 403 | subx430 subtract 0 '-5E-6' -> '0.000005' |
| 404 | subx431 subtract 0 '-5E-5' -> '0.00005' |
| 405 | subx432 subtract 0 '-5E-4' -> '0.0005' |
| 406 | subx433 subtract 0 '-5E-1' -> '0.5' |
| 407 | subx434 subtract 0 '-5E0' -> '5' |
| 408 | subx435 subtract 0 '-5E1' -> '50' |
| 409 | subx436 subtract 0 '-5E5' -> '500000' |
| 410 | subx437 subtract 0 '-5E8' -> '500000000' |
| 411 | subx438 subtract 0 '-5E9' -> '5.00000000E+9' Rounded |
| 412 | subx439 subtract 0 '-5E10' -> '5.00000000E+10' Rounded |
| 413 | subx440 subtract 0 '-5E11' -> '5.00000000E+11' Rounded |
| 414 | subx441 subtract 0 '-5E100' -> '5.00000000E+100' Rounded |
| 415 | |
| 416 | |
| 417 | -- try borderline precision, with carries, etc. |
| 418 | precision: 15 |
| 419 | subx461 subtract '1E+12' '1' -> '999999999999' |
| 420 | subx462 subtract '1E+12' '-1.11' -> '1000000000001.11' |
| 421 | subx463 subtract '1.11' '-1E+12' -> '1000000000001.11' |
| 422 | subx464 subtract '-1' '-1E+12' -> '999999999999' |
| 423 | subx465 subtract '7E+12' '1' -> '6999999999999' |
| 424 | subx466 subtract '7E+12' '-1.11' -> '7000000000001.11' |
| 425 | subx467 subtract '1.11' '-7E+12' -> '7000000000001.11' |
| 426 | subx468 subtract '-1' '-7E+12' -> '6999999999999' |
| 427 | |
| 428 | -- 123456789012345 123456789012345 1 23456789012345 |
| 429 | subx470 subtract '0.444444444444444' '-0.555555555555563' -> '1.00000000000001' Inexact Rounded |
| 430 | subx471 subtract '0.444444444444444' '-0.555555555555562' -> '1.00000000000001' Inexact Rounded |
| 431 | subx472 subtract '0.444444444444444' '-0.555555555555561' -> '1.00000000000001' Inexact Rounded |
| 432 | subx473 subtract '0.444444444444444' '-0.555555555555560' -> '1.00000000000000' Inexact Rounded |
| 433 | subx474 subtract '0.444444444444444' '-0.555555555555559' -> '1.00000000000000' Inexact Rounded |
| 434 | subx475 subtract '0.444444444444444' '-0.555555555555558' -> '1.00000000000000' Inexact Rounded |
| 435 | subx476 subtract '0.444444444444444' '-0.555555555555557' -> '1.00000000000000' Inexact Rounded |
| 436 | subx477 subtract '0.444444444444444' '-0.555555555555556' -> '1.00000000000000' Rounded |
| 437 | subx478 subtract '0.444444444444444' '-0.555555555555555' -> '0.999999999999999' |
| 438 | subx479 subtract '0.444444444444444' '-0.555555555555554' -> '0.999999999999998' |
| 439 | subx480 subtract '0.444444444444444' '-0.555555555555553' -> '0.999999999999997' |
| 440 | subx481 subtract '0.444444444444444' '-0.555555555555552' -> '0.999999999999996' |
| 441 | subx482 subtract '0.444444444444444' '-0.555555555555551' -> '0.999999999999995' |
| 442 | subx483 subtract '0.444444444444444' '-0.555555555555550' -> '0.999999999999994' |
| 443 | |
| 444 | -- and some more, including residue effects and different roundings |
| 445 | precision: 9 |
| 446 | rounding: half_up |
| 447 | subx500 subtract '123456789' 0 -> '123456789' |
| 448 | subx501 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded |
| 449 | subx502 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded |
| 450 | subx503 subtract '123456789' 0.1 -> '123456789' Inexact Rounded |
| 451 | subx504 subtract '123456789' 0.4 -> '123456789' Inexact Rounded |
| 452 | subx505 subtract '123456789' 0.49 -> '123456789' Inexact Rounded |
| 453 | subx506 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded |
| 454 | subx507 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded |
| 455 | subx508 subtract '123456789' 0.5 -> '123456789' Inexact Rounded |
| 456 | subx509 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded |
| 457 | subx510 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded |
| 458 | subx511 subtract '123456789' 0.51 -> '123456788' Inexact Rounded |
| 459 | subx512 subtract '123456789' 0.6 -> '123456788' Inexact Rounded |
| 460 | subx513 subtract '123456789' 0.9 -> '123456788' Inexact Rounded |
| 461 | subx514 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded |
| 462 | subx515 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded |
| 463 | subx516 subtract '123456789' 1 -> '123456788' |
| 464 | subx517 subtract '123456789' 1.000000001 -> '123456788' Inexact Rounded |
| 465 | subx518 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded |
| 466 | subx519 subtract '123456789' 1.1 -> '123456788' Inexact Rounded |
| 467 | |
| 468 | rounding: half_even |
| 469 | subx520 subtract '123456789' 0 -> '123456789' |
| 470 | subx521 subtract '123456789' 0.000000001 -> '123456789' Inexact Rounded |
| 471 | subx522 subtract '123456789' 0.000001 -> '123456789' Inexact Rounded |
| 472 | subx523 subtract '123456789' 0.1 -> '123456789' Inexact Rounded |
| 473 | subx524 subtract '123456789' 0.4 -> '123456789' Inexact Rounded |
| 474 | subx525 subtract '123456789' 0.49 -> '123456789' Inexact Rounded |
| 475 | subx526 subtract '123456789' 0.499999 -> '123456789' Inexact Rounded |
| 476 | subx527 subtract '123456789' 0.499999999 -> '123456789' Inexact Rounded |
| 477 | subx528 subtract '123456789' 0.5 -> '123456788' Inexact Rounded |
| 478 | subx529 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded |
| 479 | subx530 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded |
| 480 | subx531 subtract '123456789' 0.51 -> '123456788' Inexact Rounded |
| 481 | subx532 subtract '123456789' 0.6 -> '123456788' Inexact Rounded |
| 482 | subx533 subtract '123456789' 0.9 -> '123456788' Inexact Rounded |
| 483 | subx534 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded |
| 484 | subx535 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded |
| 485 | subx536 subtract '123456789' 1 -> '123456788' |
| 486 | subx537 subtract '123456789' 1.00000001 -> '123456788' Inexact Rounded |
| 487 | subx538 subtract '123456789' 1.00001 -> '123456788' Inexact Rounded |
| 488 | subx539 subtract '123456789' 1.1 -> '123456788' Inexact Rounded |
| 489 | -- critical few with even bottom digit... |
| 490 | subx540 subtract '123456788' 0.499999999 -> '123456788' Inexact Rounded |
| 491 | subx541 subtract '123456788' 0.5 -> '123456788' Inexact Rounded |
| 492 | subx542 subtract '123456788' 0.500000001 -> '123456787' Inexact Rounded |
| 493 | |
| 494 | rounding: down |
| 495 | subx550 subtract '123456789' 0 -> '123456789' |
| 496 | subx551 subtract '123456789' 0.000000001 -> '123456788' Inexact Rounded |
| 497 | subx552 subtract '123456789' 0.000001 -> '123456788' Inexact Rounded |
| 498 | subx553 subtract '123456789' 0.1 -> '123456788' Inexact Rounded |
| 499 | subx554 subtract '123456789' 0.4 -> '123456788' Inexact Rounded |
| 500 | subx555 subtract '123456789' 0.49 -> '123456788' Inexact Rounded |
| 501 | subx556 subtract '123456789' 0.499999 -> '123456788' Inexact Rounded |
| 502 | subx557 subtract '123456789' 0.499999999 -> '123456788' Inexact Rounded |
| 503 | subx558 subtract '123456789' 0.5 -> '123456788' Inexact Rounded |
| 504 | subx559 subtract '123456789' 0.500000001 -> '123456788' Inexact Rounded |
| 505 | subx560 subtract '123456789' 0.500001 -> '123456788' Inexact Rounded |
| 506 | subx561 subtract '123456789' 0.51 -> '123456788' Inexact Rounded |
| 507 | subx562 subtract '123456789' 0.6 -> '123456788' Inexact Rounded |
| 508 | subx563 subtract '123456789' 0.9 -> '123456788' Inexact Rounded |
| 509 | subx564 subtract '123456789' 0.99999 -> '123456788' Inexact Rounded |
| 510 | subx565 subtract '123456789' 0.999999999 -> '123456788' Inexact Rounded |
| 511 | subx566 subtract '123456789' 1 -> '123456788' |
| 512 | subx567 subtract '123456789' 1.00000001 -> '123456787' Inexact Rounded |
| 513 | subx568 subtract '123456789' 1.00001 -> '123456787' Inexact Rounded |
| 514 | subx569 subtract '123456789' 1.1 -> '123456787' Inexact Rounded |
| 515 | |
| 516 | -- symmetry... |
| 517 | rounding: half_up |
| 518 | subx600 subtract 0 '123456789' -> '-123456789' |
| 519 | subx601 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded |
| 520 | subx602 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded |
| 521 | subx603 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded |
| 522 | subx604 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded |
| 523 | subx605 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded |
| 524 | subx606 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded |
| 525 | subx607 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded |
| 526 | subx608 subtract 0.5 '123456789' -> '-123456789' Inexact Rounded |
| 527 | subx609 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded |
| 528 | subx610 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded |
| 529 | subx611 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded |
| 530 | subx612 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded |
| 531 | subx613 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded |
| 532 | subx614 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded |
| 533 | subx615 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded |
| 534 | subx616 subtract 1 '123456789' -> '-123456788' |
| 535 | subx617 subtract 1.000000001 '123456789' -> '-123456788' Inexact Rounded |
| 536 | subx618 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded |
| 537 | subx619 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded |
| 538 | |
| 539 | rounding: half_even |
| 540 | subx620 subtract 0 '123456789' -> '-123456789' |
| 541 | subx621 subtract 0.000000001 '123456789' -> '-123456789' Inexact Rounded |
| 542 | subx622 subtract 0.000001 '123456789' -> '-123456789' Inexact Rounded |
| 543 | subx623 subtract 0.1 '123456789' -> '-123456789' Inexact Rounded |
| 544 | subx624 subtract 0.4 '123456789' -> '-123456789' Inexact Rounded |
| 545 | subx625 subtract 0.49 '123456789' -> '-123456789' Inexact Rounded |
| 546 | subx626 subtract 0.499999 '123456789' -> '-123456789' Inexact Rounded |
| 547 | subx627 subtract 0.499999999 '123456789' -> '-123456789' Inexact Rounded |
| 548 | subx628 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded |
| 549 | subx629 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded |
| 550 | subx630 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded |
| 551 | subx631 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded |
| 552 | subx632 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded |
| 553 | subx633 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded |
| 554 | subx634 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded |
| 555 | subx635 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded |
| 556 | subx636 subtract 1 '123456789' -> '-123456788' |
| 557 | subx637 subtract 1.00000001 '123456789' -> '-123456788' Inexact Rounded |
| 558 | subx638 subtract 1.00001 '123456789' -> '-123456788' Inexact Rounded |
| 559 | subx639 subtract 1.1 '123456789' -> '-123456788' Inexact Rounded |
| 560 | -- critical few with even bottom digit... |
| 561 | subx640 subtract 0.499999999 '123456788' -> '-123456788' Inexact Rounded |
| 562 | subx641 subtract 0.5 '123456788' -> '-123456788' Inexact Rounded |
| 563 | subx642 subtract 0.500000001 '123456788' -> '-123456787' Inexact Rounded |
| 564 | |
| 565 | rounding: down |
| 566 | subx650 subtract 0 '123456789' -> '-123456789' |
| 567 | subx651 subtract 0.000000001 '123456789' -> '-123456788' Inexact Rounded |
| 568 | subx652 subtract 0.000001 '123456789' -> '-123456788' Inexact Rounded |
| 569 | subx653 subtract 0.1 '123456789' -> '-123456788' Inexact Rounded |
| 570 | subx654 subtract 0.4 '123456789' -> '-123456788' Inexact Rounded |
| 571 | subx655 subtract 0.49 '123456789' -> '-123456788' Inexact Rounded |
| 572 | subx656 subtract 0.499999 '123456789' -> '-123456788' Inexact Rounded |
| 573 | subx657 subtract 0.499999999 '123456789' -> '-123456788' Inexact Rounded |
| 574 | subx658 subtract 0.5 '123456789' -> '-123456788' Inexact Rounded |
| 575 | subx659 subtract 0.500000001 '123456789' -> '-123456788' Inexact Rounded |
| 576 | subx660 subtract 0.500001 '123456789' -> '-123456788' Inexact Rounded |
| 577 | subx661 subtract 0.51 '123456789' -> '-123456788' Inexact Rounded |
| 578 | subx662 subtract 0.6 '123456789' -> '-123456788' Inexact Rounded |
| 579 | subx663 subtract 0.9 '123456789' -> '-123456788' Inexact Rounded |
| 580 | subx664 subtract 0.99999 '123456789' -> '-123456788' Inexact Rounded |
| 581 | subx665 subtract 0.999999999 '123456789' -> '-123456788' Inexact Rounded |
| 582 | subx666 subtract 1 '123456789' -> '-123456788' |
| 583 | subx667 subtract 1.00000001 '123456789' -> '-123456787' Inexact Rounded |
| 584 | subx668 subtract 1.00001 '123456789' -> '-123456787' Inexact Rounded |
| 585 | subx669 subtract 1.1 '123456789' -> '-123456787' Inexact Rounded |
| 586 | |
| 587 | |
| 588 | -- lots of leading zeros in intermediate result, and showing effects of |
| 589 | -- input rounding would have affected the following |
| 590 | precision: 9 |
| 591 | rounding: half_up |
| 592 | subx670 subtract '123456789' '123456788.1' -> 0.9 |
| 593 | subx671 subtract '123456789' '123456788.9' -> 0.1 |
| 594 | subx672 subtract '123456789' '123456789.1' -> -0.1 |
| 595 | subx673 subtract '123456789' '123456789.5' -> -0.5 |
| 596 | subx674 subtract '123456789' '123456789.9' -> -0.9 |
| 597 | |
| 598 | rounding: half_even |
| 599 | subx680 subtract '123456789' '123456788.1' -> 0.9 |
| 600 | subx681 subtract '123456789' '123456788.9' -> 0.1 |
| 601 | subx682 subtract '123456789' '123456789.1' -> -0.1 |
| 602 | subx683 subtract '123456789' '123456789.5' -> -0.5 |
| 603 | subx684 subtract '123456789' '123456789.9' -> -0.9 |
| 604 | |
| 605 | subx685 subtract '123456788' '123456787.1' -> 0.9 |
| 606 | subx686 subtract '123456788' '123456787.9' -> 0.1 |
| 607 | subx687 subtract '123456788' '123456788.1' -> -0.1 |
| 608 | subx688 subtract '123456788' '123456788.5' -> -0.5 |
| 609 | subx689 subtract '123456788' '123456788.9' -> -0.9 |
| 610 | |
| 611 | rounding: down |
| 612 | subx690 subtract '123456789' '123456788.1' -> 0.9 |
| 613 | subx691 subtract '123456789' '123456788.9' -> 0.1 |
| 614 | subx692 subtract '123456789' '123456789.1' -> -0.1 |
| 615 | subx693 subtract '123456789' '123456789.5' -> -0.5 |
| 616 | subx694 subtract '123456789' '123456789.9' -> -0.9 |
| 617 | |
| 618 | -- input preparation tests |
| 619 | rounding: half_up |
| 620 | precision: 3 |
| 621 | |
| 622 | subx700 subtract '12345678900000' -9999999999999 -> '2.23E+13' Inexact Rounded |
| 623 | subx701 subtract '9999999999999' -12345678900000 -> '2.23E+13' Inexact Rounded |
| 624 | subx702 subtract '12E+3' '-3456' -> '1.55E+4' Inexact Rounded |
| 625 | subx703 subtract '12E+3' '-3446' -> '1.54E+4' Inexact Rounded |
| 626 | subx704 subtract '12E+3' '-3454' -> '1.55E+4' Inexact Rounded |
| 627 | subx705 subtract '12E+3' '-3444' -> '1.54E+4' Inexact Rounded |
| 628 | |
| 629 | subx706 subtract '3456' '-12E+3' -> '1.55E+4' Inexact Rounded |
| 630 | subx707 subtract '3446' '-12E+3' -> '1.54E+4' Inexact Rounded |
| 631 | subx708 subtract '3454' '-12E+3' -> '1.55E+4' Inexact Rounded |
| 632 | subx709 subtract '3444' '-12E+3' -> '1.54E+4' Inexact Rounded |
| 633 | |
| 634 | -- overflow and underflow tests [subnormals now possible] |
| 635 | maxexponent: 999999999 |
| 636 | minexponent: -999999999 |
| 637 | precision: 9 |
| 638 | rounding: down |
| 639 | subx710 subtract 1E+999999999 -9E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded |
| 640 | subx711 subtract 9E+999999999 -1E+999999999 -> 9.99999999E+999999999 Overflow Inexact Rounded |
| 641 | rounding: half_up |
| 642 | subx712 subtract 1E+999999999 -9E+999999999 -> Infinity Overflow Inexact Rounded |
| 643 | subx713 subtract 9E+999999999 -1E+999999999 -> Infinity Overflow Inexact Rounded |
| 644 | subx714 subtract -1.1E-999999999 -1E-999999999 -> -1E-1000000000 Subnormal |
| 645 | subx715 subtract 1E-999999999 +1.1e-999999999 -> -1E-1000000000 Subnormal |
| 646 | subx716 subtract -1E+999999999 +9E+999999999 -> -Infinity Overflow Inexact Rounded |
| 647 | subx717 subtract -9E+999999999 +1E+999999999 -> -Infinity Overflow Inexact Rounded |
| 648 | subx718 subtract +1.1E-999999999 +1E-999999999 -> 1E-1000000000 Subnormal |
| 649 | subx719 subtract -1E-999999999 -1.1e-999999999 -> 1E-1000000000 Subnormal |
| 650 | |
| 651 | precision: 3 |
| 652 | subx720 subtract 1 9.999E+999999999 -> -Infinity Inexact Overflow Rounded |
| 653 | subx721 subtract 1 -9.999E+999999999 -> Infinity Inexact Overflow Rounded |
| 654 | subx722 subtract 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded |
| 655 | subx723 subtract -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded |
| 656 | subx724 subtract 1 9.999E+999999999 -> -Infinity Inexact Overflow Rounded |
| 657 | subx725 subtract 1 -9.999E+999999999 -> Infinity Inexact Overflow Rounded |
| 658 | subx726 subtract 9.999E+999999999 1 -> Infinity Inexact Overflow Rounded |
| 659 | subx727 subtract -9.999E+999999999 1 -> -Infinity Inexact Overflow Rounded |
| 660 | |
| 661 | -- [more below] |
| 662 | |
| 663 | -- long operand checks |
| 664 | maxexponent: 999 |
| 665 | minexponent: -999 |
| 666 | precision: 9 |
| 667 | sub731 subtract 12345678000 0 -> 1.23456780E+10 Rounded |
| 668 | sub732 subtract 0 12345678000 -> -1.23456780E+10 Rounded |
| 669 | sub733 subtract 1234567800 0 -> 1.23456780E+9 Rounded |
| 670 | sub734 subtract 0 1234567800 -> -1.23456780E+9 Rounded |
| 671 | sub735 subtract 1234567890 0 -> 1.23456789E+9 Rounded |
| 672 | sub736 subtract 0 1234567890 -> -1.23456789E+9 Rounded |
| 673 | sub737 subtract 1234567891 0 -> 1.23456789E+9 Inexact Rounded |
| 674 | sub738 subtract 0 1234567891 -> -1.23456789E+9 Inexact Rounded |
| 675 | sub739 subtract 12345678901 0 -> 1.23456789E+10 Inexact Rounded |
| 676 | sub740 subtract 0 12345678901 -> -1.23456789E+10 Inexact Rounded |
| 677 | sub741 subtract 1234567896 0 -> 1.23456790E+9 Inexact Rounded |
| 678 | sub742 subtract 0 1234567896 -> -1.23456790E+9 Inexact Rounded |
| 679 | |
| 680 | precision: 15 |
| 681 | sub751 subtract 12345678000 0 -> 12345678000 |
| 682 | sub752 subtract 0 12345678000 -> -12345678000 |
| 683 | sub753 subtract 1234567800 0 -> 1234567800 |
| 684 | sub754 subtract 0 1234567800 -> -1234567800 |
| 685 | sub755 subtract 1234567890 0 -> 1234567890 |
| 686 | sub756 subtract 0 1234567890 -> -1234567890 |
| 687 | sub757 subtract 1234567891 0 -> 1234567891 |
| 688 | sub758 subtract 0 1234567891 -> -1234567891 |
| 689 | sub759 subtract 12345678901 0 -> 12345678901 |
| 690 | sub760 subtract 0 12345678901 -> -12345678901 |
| 691 | sub761 subtract 1234567896 0 -> 1234567896 |
| 692 | sub762 subtract 0 1234567896 -> -1234567896 |
| 693 | |
| 694 | -- Specials |
| 695 | subx780 subtract -Inf Inf -> -Infinity |
| 696 | subx781 subtract -Inf 1000 -> -Infinity |
| 697 | subx782 subtract -Inf 1 -> -Infinity |
| 698 | subx783 subtract -Inf -0 -> -Infinity |
| 699 | subx784 subtract -Inf -1 -> -Infinity |
| 700 | subx785 subtract -Inf -1000 -> -Infinity |
| 701 | subx787 subtract -1000 Inf -> -Infinity |
| 702 | subx788 subtract -Inf Inf -> -Infinity |
| 703 | subx789 subtract -1 Inf -> -Infinity |
| 704 | subx790 subtract 0 Inf -> -Infinity |
| 705 | subx791 subtract 1 Inf -> -Infinity |
| 706 | subx792 subtract 1000 Inf -> -Infinity |
| 707 | |
| 708 | subx800 subtract Inf Inf -> NaN Invalid_operation |
| 709 | subx801 subtract Inf 1000 -> Infinity |
| 710 | subx802 subtract Inf 1 -> Infinity |
| 711 | subx803 subtract Inf 0 -> Infinity |
| 712 | subx804 subtract Inf -0 -> Infinity |
| 713 | subx805 subtract Inf -1 -> Infinity |
| 714 | subx806 subtract Inf -1000 -> Infinity |
| 715 | subx807 subtract Inf -Inf -> Infinity |
| 716 | subx808 subtract -1000 -Inf -> Infinity |
| 717 | subx809 subtract -Inf -Inf -> NaN Invalid_operation |
| 718 | subx810 subtract -1 -Inf -> Infinity |
| 719 | subx811 subtract -0 -Inf -> Infinity |
| 720 | subx812 subtract 0 -Inf -> Infinity |
| 721 | subx813 subtract 1 -Inf -> Infinity |
| 722 | subx814 subtract 1000 -Inf -> Infinity |
| 723 | subx815 subtract Inf -Inf -> Infinity |
| 724 | |
| 725 | subx821 subtract NaN Inf -> NaN |
| 726 | subx822 subtract -NaN 1000 -> -NaN |
| 727 | subx823 subtract NaN 1 -> NaN |
| 728 | subx824 subtract NaN 0 -> NaN |
| 729 | subx825 subtract NaN -0 -> NaN |
| 730 | subx826 subtract NaN -1 -> NaN |
| 731 | subx827 subtract NaN -1000 -> NaN |
| 732 | subx828 subtract NaN -Inf -> NaN |
| 733 | subx829 subtract -NaN NaN -> -NaN |
| 734 | subx830 subtract -Inf NaN -> NaN |
| 735 | subx831 subtract -1000 NaN -> NaN |
| 736 | subx832 subtract -1 NaN -> NaN |
| 737 | subx833 subtract -0 NaN -> NaN |
| 738 | subx834 subtract 0 NaN -> NaN |
| 739 | subx835 subtract 1 NaN -> NaN |
| 740 | subx836 subtract 1000 -NaN -> -NaN |
| 741 | subx837 subtract Inf NaN -> NaN |
| 742 | |
| 743 | subx841 subtract sNaN Inf -> NaN Invalid_operation |
| 744 | subx842 subtract -sNaN 1000 -> -NaN Invalid_operation |
| 745 | subx843 subtract sNaN 1 -> NaN Invalid_operation |
| 746 | subx844 subtract sNaN 0 -> NaN Invalid_operation |
| 747 | subx845 subtract sNaN -0 -> NaN Invalid_operation |
| 748 | subx846 subtract sNaN -1 -> NaN Invalid_operation |
| 749 | subx847 subtract sNaN -1000 -> NaN Invalid_operation |
| 750 | subx848 subtract sNaN NaN -> NaN Invalid_operation |
| 751 | subx849 subtract sNaN sNaN -> NaN Invalid_operation |
| 752 | subx850 subtract NaN sNaN -> NaN Invalid_operation |
| 753 | subx851 subtract -Inf -sNaN -> -NaN Invalid_operation |
| 754 | subx852 subtract -1000 sNaN -> NaN Invalid_operation |
| 755 | subx853 subtract -1 sNaN -> NaN Invalid_operation |
| 756 | subx854 subtract -0 sNaN -> NaN Invalid_operation |
| 757 | subx855 subtract 0 sNaN -> NaN Invalid_operation |
| 758 | subx856 subtract 1 sNaN -> NaN Invalid_operation |
| 759 | subx857 subtract 1000 sNaN -> NaN Invalid_operation |
| 760 | subx858 subtract Inf sNaN -> NaN Invalid_operation |
| 761 | subx859 subtract NaN sNaN -> NaN Invalid_operation |
| 762 | |
| 763 | -- propagating NaNs |
| 764 | subx861 subtract NaN01 -Inf -> NaN1 |
| 765 | subx862 subtract -NaN02 -1000 -> -NaN2 |
| 766 | subx863 subtract NaN03 1000 -> NaN3 |
| 767 | subx864 subtract NaN04 Inf -> NaN4 |
| 768 | subx865 subtract NaN05 NaN61 -> NaN5 |
| 769 | subx866 subtract -Inf -NaN71 -> -NaN71 |
| 770 | subx867 subtract -1000 NaN81 -> NaN81 |
| 771 | subx868 subtract 1000 NaN91 -> NaN91 |
| 772 | subx869 subtract Inf NaN101 -> NaN101 |
| 773 | subx871 subtract sNaN011 -Inf -> NaN11 Invalid_operation |
| 774 | subx872 subtract sNaN012 -1000 -> NaN12 Invalid_operation |
| 775 | subx873 subtract -sNaN013 1000 -> -NaN13 Invalid_operation |
| 776 | subx874 subtract sNaN014 NaN171 -> NaN14 Invalid_operation |
| 777 | subx875 subtract sNaN015 sNaN181 -> NaN15 Invalid_operation |
| 778 | subx876 subtract NaN016 sNaN191 -> NaN191 Invalid_operation |
| 779 | subx877 subtract -Inf sNaN201 -> NaN201 Invalid_operation |
| 780 | subx878 subtract -1000 sNaN211 -> NaN211 Invalid_operation |
| 781 | subx879 subtract 1000 -sNaN221 -> -NaN221 Invalid_operation |
| 782 | subx880 subtract Inf sNaN231 -> NaN231 Invalid_operation |
| 783 | subx881 subtract NaN025 sNaN241 -> NaN241 Invalid_operation |
| 784 | |
| 785 | -- edge case spills |
| 786 | subx901 subtract 2.E-3 1.002 -> -1.000 |
| 787 | subx902 subtract 2.0E-3 1.002 -> -1.0000 |
| 788 | subx903 subtract 2.00E-3 1.0020 -> -1.00000 |
| 789 | subx904 subtract 2.000E-3 1.00200 -> -1.000000 |
| 790 | subx905 subtract 2.0000E-3 1.002000 -> -1.0000000 |
| 791 | subx906 subtract 2.00000E-3 1.0020000 -> -1.00000000 |
| 792 | subx907 subtract 2.000000E-3 1.00200000 -> -1.000000000 |
| 793 | subx908 subtract 2.0000000E-3 1.002000000 -> -1.0000000000 |
| 794 | |
| 795 | -- subnormals and underflows |
| 796 | precision: 3 |
| 797 | maxexponent: 999 |
| 798 | minexponent: -999 |
| 799 | subx1010 subtract 0 1.00E-999 -> -1.00E-999 |
| 800 | subx1011 subtract 0 0.1E-999 -> -1E-1000 Subnormal |
| 801 | subx1012 subtract 0 0.10E-999 -> -1.0E-1000 Subnormal |
| 802 | subx1013 subtract 0 0.100E-999 -> -1.0E-1000 Subnormal Rounded |
| 803 | subx1014 subtract 0 0.01E-999 -> -1E-1001 Subnormal |
| 804 | -- next is rounded to Emin |
| 805 | subx1015 subtract 0 0.999E-999 -> -1.00E-999 Inexact Rounded Subnormal Underflow |
| 806 | subx1016 subtract 0 0.099E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow |
| 807 | subx1017 subtract 0 0.009E-999 -> -1E-1001 Inexact Rounded Subnormal Underflow |
Thomas Wouters | 1b7f891 | 2007-09-19 03:06:30 +0000 | [diff] [blame] | 808 | subx1018 subtract 0 0.001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped |
| 809 | subx1019 subtract 0 0.0009E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped |
| 810 | subx1020 subtract 0 0.0001E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped |
Raymond Hettinger | 7c85fa4 | 2004-07-01 11:01:35 +0000 | [diff] [blame] | 811 | |
| 812 | subx1030 subtract 0 -1.00E-999 -> 1.00E-999 |
| 813 | subx1031 subtract 0 -0.1E-999 -> 1E-1000 Subnormal |
| 814 | subx1032 subtract 0 -0.10E-999 -> 1.0E-1000 Subnormal |
| 815 | subx1033 subtract 0 -0.100E-999 -> 1.0E-1000 Subnormal Rounded |
| 816 | subx1034 subtract 0 -0.01E-999 -> 1E-1001 Subnormal |
| 817 | -- next is rounded to Emin |
| 818 | subx1035 subtract 0 -0.999E-999 -> 1.00E-999 Inexact Rounded Subnormal Underflow |
| 819 | subx1036 subtract 0 -0.099E-999 -> 1.0E-1000 Inexact Rounded Subnormal Underflow |
| 820 | subx1037 subtract 0 -0.009E-999 -> 1E-1001 Inexact Rounded Subnormal Underflow |
Thomas Wouters | 1b7f891 | 2007-09-19 03:06:30 +0000 | [diff] [blame] | 821 | subx1038 subtract 0 -0.001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped |
| 822 | subx1039 subtract 0 -0.0009E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped |
| 823 | subx1040 subtract 0 -0.0001E-999 -> 0E-1001 Inexact Rounded Subnormal Underflow Clamped |
Raymond Hettinger | 7c85fa4 | 2004-07-01 11:01:35 +0000 | [diff] [blame] | 824 | |
| 825 | -- some non-zero subnormal subtracts |
| 826 | -- subx1056 is a tricky case |
| 827 | rounding: half_up |
| 828 | subx1050 subtract 1.00E-999 0.1E-999 -> 9.0E-1000 Subnormal |
| 829 | subx1051 subtract 0.1E-999 0.1E-999 -> 0E-1000 |
| 830 | subx1052 subtract 0.10E-999 0.1E-999 -> 0E-1001 |
| 831 | subx1053 subtract 0.100E-999 0.1E-999 -> 0E-1001 Clamped |
| 832 | subx1054 subtract 0.01E-999 0.1E-999 -> -9E-1001 Subnormal |
| 833 | subx1055 subtract 0.999E-999 0.1E-999 -> 9.0E-1000 Inexact Rounded Subnormal Underflow |
Thomas Wouters | 1b7f891 | 2007-09-19 03:06:30 +0000 | [diff] [blame] | 834 | subx1056 subtract 0.099E-999 0.1E-999 -> -0E-1001 Inexact Rounded Subnormal Underflow Clamped |
Raymond Hettinger | 7c85fa4 | 2004-07-01 11:01:35 +0000 | [diff] [blame] | 835 | subx1057 subtract 0.009E-999 0.1E-999 -> -9E-1001 Inexact Rounded Subnormal Underflow |
| 836 | subx1058 subtract 0.001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow |
| 837 | subx1059 subtract 0.0009E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow |
| 838 | subx1060 subtract 0.0001E-999 0.1E-999 -> -1.0E-1000 Inexact Rounded Subnormal Underflow |
| 839 | |
| 840 | |
| 841 | -- check for double-rounded subnormals |
| 842 | precision: 5 |
| 843 | maxexponent: 79 |
| 844 | minexponent: -79 |
| 845 | subx1101 subtract 0 1.52444E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow |
| 846 | subx1102 subtract 0 1.52445E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow |
| 847 | subx1103 subtract 0 1.52446E-80 -> -1.524E-80 Inexact Rounded Subnormal Underflow |
| 848 | subx1104 subtract 1.52444E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow |
| 849 | subx1105 subtract 1.52445E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow |
| 850 | subx1106 subtract 1.52446E-80 0 -> 1.524E-80 Inexact Rounded Subnormal Underflow |
| 851 | |
Thomas Wouters | 1b7f891 | 2007-09-19 03:06:30 +0000 | [diff] [blame] | 852 | subx1111 subtract 1.2345678E-80 1.2345671E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped |
| 853 | subx1112 subtract 1.2345678E-80 1.2345618E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped |
| 854 | subx1113 subtract 1.2345678E-80 1.2345178E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped |
| 855 | subx1114 subtract 1.2345678E-80 1.2341678E-80 -> 0E-83 Inexact Rounded Subnormal Underflow Clamped |
Raymond Hettinger | 7c85fa4 | 2004-07-01 11:01:35 +0000 | [diff] [blame] | 856 | subx1115 subtract 1.2345678E-80 1.2315678E-80 -> 3E-83 Rounded Subnormal |
| 857 | subx1116 subtract 1.2345678E-80 1.2145678E-80 -> 2.0E-82 Rounded Subnormal |
| 858 | subx1117 subtract 1.2345678E-80 1.1345678E-80 -> 1.00E-81 Rounded Subnormal |
| 859 | subx1118 subtract 1.2345678E-80 0.2345678E-80 -> 1.000E-80 Rounded Subnormal |
| 860 | |
Thomas Wouters | 1b7f891 | 2007-09-19 03:06:30 +0000 | [diff] [blame] | 861 | precision: 34 |
| 862 | rounding: half_up |
| 863 | maxExponent: 6144 |
| 864 | minExponent: -6143 |
| 865 | -- Examples from SQL proposal (Krishna Kulkarni) |
| 866 | subx1125 subtract 130E-2 120E-2 -> 0.10 |
| 867 | subx1126 subtract 130E-2 12E-1 -> 0.10 |
| 868 | subx1127 subtract 130E-2 1E0 -> 0.30 |
| 869 | subx1128 subtract 1E2 1E4 -> -9.9E+3 |
| 870 | |
Raymond Hettinger | 7c85fa4 | 2004-07-01 11:01:35 +0000 | [diff] [blame] | 871 | -- Null tests |
| 872 | subx9990 subtract 10 # -> NaN Invalid_operation |
| 873 | subx9991 subtract # 10 -> NaN Invalid_operation |