blob: 9a8defee546bf3a9b3084ed736e4c83dc3a6833d [file] [log] [blame]
Georg Brandl6c89a792012-01-25 22:36:25 +01001:mod:`functools` --- Higher-order functions and operations on callable objects
Georg Brandl116aa622007-08-15 14:28:22 +00002==============================================================================
3
4.. module:: functools
Georg Brandl6c89a792012-01-25 22:36:25 +01005 :synopsis: Higher-order functions and operations on callable objects.
Terry Jan Reedyfa089b92016-06-11 15:02:54 -04006
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Peter Harris <scav@blueyonder.co.uk>
8.. moduleauthor:: Raymond Hettinger <python@rcn.com>
9.. moduleauthor:: Nick Coghlan <ncoghlan@gmail.com>
Łukasz Langa6f692512013-06-05 12:20:24 +020010.. moduleauthor:: Łukasz Langa <lukasz@langa.pl>
Georg Brandl116aa622007-08-15 14:28:22 +000011.. sectionauthor:: Peter Harris <scav@blueyonder.co.uk>
12
Raymond Hettinger05ce0792011-01-10 21:16:07 +000013**Source code:** :source:`Lib/functools.py`
14
15--------------
Georg Brandl116aa622007-08-15 14:28:22 +000016
Georg Brandl116aa622007-08-15 14:28:22 +000017The :mod:`functools` module is for higher-order functions: functions that act on
18or return other functions. In general, any callable object can be treated as a
19function for the purposes of this module.
20
Thomas Woutersed03b412007-08-28 21:37:11 +000021The :mod:`functools` module defines the following functions:
22
Éric Araujob10089e2010-11-18 14:22:08 +000023.. function:: cmp_to_key(func)
Raymond Hettingerc50846a2010-04-05 18:56:31 +000024
Raymond Hettinger86e9b6b2014-11-09 17:20:56 -080025 Transform an old-style comparison function to a :term:`key function`. Used
26 with tools that accept key functions (such as :func:`sorted`, :func:`min`,
Benjamin Petersoncca65312010-08-09 02:13:10 +000027 :func:`max`, :func:`heapq.nlargest`, :func:`heapq.nsmallest`,
28 :func:`itertools.groupby`). This function is primarily used as a transition
Ezio Melotti9ecb6be2012-01-16 08:28:54 +020029 tool for programs being converted from Python 2 which supported the use of
Benjamin Petersoncca65312010-08-09 02:13:10 +000030 comparison functions.
Raymond Hettingerc50846a2010-04-05 18:56:31 +000031
Georg Brandl6c89a792012-01-25 22:36:25 +010032 A comparison function is any callable that accept two arguments, compares them,
Benjamin Petersoncca65312010-08-09 02:13:10 +000033 and returns a negative number for less-than, zero for equality, or a positive
34 number for greater-than. A key function is a callable that accepts one
Raymond Hettinger86e9b6b2014-11-09 17:20:56 -080035 argument and returns another value to be used as the sort key.
Raymond Hettingerc50846a2010-04-05 18:56:31 +000036
Benjamin Petersoncca65312010-08-09 02:13:10 +000037 Example::
Raymond Hettingerc50846a2010-04-05 18:56:31 +000038
Benjamin Petersoncca65312010-08-09 02:13:10 +000039 sorted(iterable, key=cmp_to_key(locale.strcoll)) # locale-aware sort order
Raymond Hettingerc50846a2010-04-05 18:56:31 +000040
Raymond Hettinger86e9b6b2014-11-09 17:20:56 -080041 For sorting examples and a brief sorting tutorial, see :ref:`sortinghowto`.
42
Raymond Hettingerc50846a2010-04-05 18:56:31 +000043 .. versionadded:: 3.2
44
Georg Brandl67b21b72010-08-17 15:07:14 +000045
Raymond Hettinger010ce322012-05-19 21:20:48 -070046.. decorator:: lru_cache(maxsize=128, typed=False)
Georg Brandl2e7346a2010-07-31 18:09:23 +000047
48 Decorator to wrap a function with a memoizing callable that saves up to the
49 *maxsize* most recent calls. It can save time when an expensive or I/O bound
50 function is periodically called with the same arguments.
51
Raymond Hettinger7496b412010-11-30 19:15:45 +000052 Since a dictionary is used to cache results, the positional and keyword
53 arguments to the function must be hashable.
Georg Brandl2e7346a2010-07-31 18:09:23 +000054
Serhiy Storchakaecf41da2016-10-19 16:29:26 +030055 If *maxsize* is set to ``None``, the LRU feature is disabled and the cache can
Raymond Hettinger7d74eff2012-06-04 00:32:15 -070056 grow without bound. The LRU feature performs best when *maxsize* is a
57 power-of-two.
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +000058
Serhiy Storchaka4adf01c2016-10-19 18:30:05 +030059 If *typed* is set to true, function arguments of different types will be
Raymond Hettingercd9fdfd2011-10-20 08:57:45 -070060 cached separately. For example, ``f(3)`` and ``f(3.0)`` will be treated
61 as distinct calls with distinct results.
62
Raymond Hettinger7496b412010-11-30 19:15:45 +000063 To help measure the effectiveness of the cache and tune the *maxsize*
64 parameter, the wrapped function is instrumented with a :func:`cache_info`
65 function that returns a :term:`named tuple` showing *hits*, *misses*,
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +000066 *maxsize* and *currsize*. In a multi-threaded environment, the hits
67 and misses are approximate.
Nick Coghlan234515a2010-11-30 06:19:46 +000068
Raymond Hettinger7496b412010-11-30 19:15:45 +000069 The decorator also provides a :func:`cache_clear` function for clearing or
70 invalidating the cache.
Georg Brandl2e7346a2010-07-31 18:09:23 +000071
Raymond Hettinger3fccfcb2010-08-17 19:19:29 +000072 The original underlying function is accessible through the
Raymond Hettinger7496b412010-11-30 19:15:45 +000073 :attr:`__wrapped__` attribute. This is useful for introspection, for
74 bypassing the cache, or for rewrapping the function with a different cache.
Nick Coghlan98876832010-08-17 06:17:18 +000075
Raymond Hettingercc038582010-11-30 20:02:57 +000076 An `LRU (least recently used) cache
Georg Brandl5d941342016-02-26 19:37:12 +010077 <https://en.wikipedia.org/wiki/Cache_algorithms#Examples>`_ works
Raymond Hettingercd9fdfd2011-10-20 08:57:45 -070078 best when the most recent calls are the best predictors of upcoming calls (for
79 example, the most popular articles on a news server tend to change each day).
Raymond Hettinger7496b412010-11-30 19:15:45 +000080 The cache's size limit assures that the cache does not grow without bound on
81 long-running processes such as web servers.
82
Raymond Hettingercc038582010-11-30 20:02:57 +000083 Example of an LRU cache for static web content::
Raymond Hettinger7496b412010-11-30 19:15:45 +000084
Raymond Hettinger17328e42013-04-06 20:27:33 -070085 @lru_cache(maxsize=32)
Raymond Hettinger7496b412010-11-30 19:15:45 +000086 def get_pep(num):
87 'Retrieve text of a Python Enhancement Proposal'
88 resource = 'http://www.python.org/dev/peps/pep-%04d/' % num
89 try:
90 with urllib.request.urlopen(resource) as s:
91 return s.read()
92 except urllib.error.HTTPError:
93 return 'Not Found'
94
95 >>> for n in 8, 290, 308, 320, 8, 218, 320, 279, 289, 320, 9991:
96 ... pep = get_pep(n)
97 ... print(n, len(pep))
98
Raymond Hettinger17328e42013-04-06 20:27:33 -070099 >>> get_pep.cache_info()
100 CacheInfo(hits=3, misses=8, maxsize=32, currsize=8)
Georg Brandl2e7346a2010-07-31 18:09:23 +0000101
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000102 Example of efficiently computing
Georg Brandl5d941342016-02-26 19:37:12 +0100103 `Fibonacci numbers <https://en.wikipedia.org/wiki/Fibonacci_number>`_
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000104 using a cache to implement a
Georg Brandl5d941342016-02-26 19:37:12 +0100105 `dynamic programming <https://en.wikipedia.org/wiki/Dynamic_programming>`_
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000106 technique::
107
108 @lru_cache(maxsize=None)
109 def fib(n):
110 if n < 2:
111 return n
112 return fib(n-1) + fib(n-2)
113
Raymond Hettinger17328e42013-04-06 20:27:33 -0700114 >>> [fib(n) for n in range(16)]
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000115 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610]
116
Raymond Hettinger17328e42013-04-06 20:27:33 -0700117 >>> fib.cache_info()
Raymond Hettingerc79fb0e2010-12-01 03:45:41 +0000118 CacheInfo(hits=28, misses=16, maxsize=None, currsize=16)
119
Georg Brandl2e7346a2010-07-31 18:09:23 +0000120 .. versionadded:: 3.2
121
Raymond Hettingercd9fdfd2011-10-20 08:57:45 -0700122 .. versionchanged:: 3.3
123 Added the *typed* option.
124
Georg Brandl8a1caa22010-07-29 16:01:11 +0000125.. decorator:: total_ordering
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000126
127 Given a class defining one or more rich comparison ordering methods, this
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000128 class decorator supplies the rest. This simplifies the effort involved
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000129 in specifying all of the possible rich comparison operations:
130
131 The class must define one of :meth:`__lt__`, :meth:`__le__`,
132 :meth:`__gt__`, or :meth:`__ge__`.
133 In addition, the class should supply an :meth:`__eq__` method.
134
135 For example::
136
137 @total_ordering
138 class Student:
Nick Coghlanf05d9812013-10-02 00:02:03 +1000139 def _is_valid_operand(self, other):
140 return (hasattr(other, "lastname") and
141 hasattr(other, "firstname"))
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000142 def __eq__(self, other):
Nick Coghlanf05d9812013-10-02 00:02:03 +1000143 if not self._is_valid_operand(other):
144 return NotImplemented
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000145 return ((self.lastname.lower(), self.firstname.lower()) ==
146 (other.lastname.lower(), other.firstname.lower()))
147 def __lt__(self, other):
Nick Coghlanf05d9812013-10-02 00:02:03 +1000148 if not self._is_valid_operand(other):
149 return NotImplemented
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000150 return ((self.lastname.lower(), self.firstname.lower()) <
151 (other.lastname.lower(), other.firstname.lower()))
152
Nick Coghlanf05d9812013-10-02 00:02:03 +1000153 .. note::
154
155 While this decorator makes it easy to create well behaved totally
156 ordered types, it *does* come at the cost of slower execution and
157 more complex stack traces for the derived comparison methods. If
158 performance benchmarking indicates this is a bottleneck for a given
159 application, implementing all six rich comparison methods instead is
160 likely to provide an easy speed boost.
161
Raymond Hettingerc50846a2010-04-05 18:56:31 +0000162 .. versionadded:: 3.2
163
Nick Coghlanf05d9812013-10-02 00:02:03 +1000164 .. versionchanged:: 3.4
165 Returning NotImplemented from the underlying comparison function for
166 unrecognised types is now supported.
Georg Brandl67b21b72010-08-17 15:07:14 +0000167
Georg Brandl036490d2009-05-17 13:00:36 +0000168.. function:: partial(func, *args, **keywords)
Georg Brandl116aa622007-08-15 14:28:22 +0000169
170 Return a new :class:`partial` object which when called will behave like *func*
171 called with the positional arguments *args* and keyword arguments *keywords*. If
172 more arguments are supplied to the call, they are appended to *args*. If
173 additional keyword arguments are supplied, they extend and override *keywords*.
174 Roughly equivalent to::
175
176 def partial(func, *args, **keywords):
177 def newfunc(*fargs, **fkeywords):
178 newkeywords = keywords.copy()
179 newkeywords.update(fkeywords)
Martin Panter0c0da482016-06-12 01:46:50 +0000180 return func(*args, *fargs, **newkeywords)
Georg Brandl116aa622007-08-15 14:28:22 +0000181 newfunc.func = func
182 newfunc.args = args
183 newfunc.keywords = keywords
184 return newfunc
185
186 The :func:`partial` is used for partial function application which "freezes"
187 some portion of a function's arguments and/or keywords resulting in a new object
188 with a simplified signature. For example, :func:`partial` can be used to create
189 a callable that behaves like the :func:`int` function where the *base* argument
Christian Heimesfe337bf2008-03-23 21:54:12 +0000190 defaults to two:
Georg Brandl116aa622007-08-15 14:28:22 +0000191
Christian Heimesfe337bf2008-03-23 21:54:12 +0000192 >>> from functools import partial
Georg Brandl116aa622007-08-15 14:28:22 +0000193 >>> basetwo = partial(int, base=2)
194 >>> basetwo.__doc__ = 'Convert base 2 string to an int.'
195 >>> basetwo('10010')
196 18
197
198
Nick Coghlanf4cb48a2013-11-03 16:41:46 +1000199.. class:: partialmethod(func, *args, **keywords)
200
201 Return a new :class:`partialmethod` descriptor which behaves
202 like :class:`partial` except that it is designed to be used as a method
203 definition rather than being directly callable.
204
205 *func* must be a :term:`descriptor` or a callable (objects which are both,
206 like normal functions, are handled as descriptors).
207
208 When *func* is a descriptor (such as a normal Python function,
209 :func:`classmethod`, :func:`staticmethod`, :func:`abstractmethod` or
210 another instance of :class:`partialmethod`), calls to ``__get__`` are
211 delegated to the underlying descriptor, and an appropriate
212 :class:`partial` object returned as the result.
213
214 When *func* is a non-descriptor callable, an appropriate bound method is
215 created dynamically. This behaves like a normal Python function when
216 used as a method: the *self* argument will be inserted as the first
217 positional argument, even before the *args* and *keywords* supplied to
218 the :class:`partialmethod` constructor.
219
220 Example::
221
222 >>> class Cell(object):
Benjamin Peterson3a434032014-03-30 15:07:09 -0400223 ... def __init__(self):
224 ... self._alive = False
Nick Coghlanf4cb48a2013-11-03 16:41:46 +1000225 ... @property
226 ... def alive(self):
227 ... return self._alive
228 ... def set_state(self, state):
229 ... self._alive = bool(state)
Nick Coghlan3daaf5f2013-11-04 23:32:16 +1000230 ... set_alive = partialmethod(set_state, True)
231 ... set_dead = partialmethod(set_state, False)
Nick Coghlanf4cb48a2013-11-03 16:41:46 +1000232 ...
233 >>> c = Cell()
234 >>> c.alive
235 False
236 >>> c.set_alive()
237 >>> c.alive
238 True
239
240 .. versionadded:: 3.4
241
242
Georg Brandl58f9e4f2008-04-19 22:18:33 +0000243.. function:: reduce(function, iterable[, initializer])
Georg Brandl116aa622007-08-15 14:28:22 +0000244
245 Apply *function* of two arguments cumulatively to the items of *sequence*, from
246 left to right, so as to reduce the sequence to a single value. For example,
247 ``reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])`` calculates ``((((1+2)+3)+4)+5)``.
248 The left argument, *x*, is the accumulated value and the right argument, *y*, is
249 the update value from the *sequence*. If the optional *initializer* is present,
250 it is placed before the items of the sequence in the calculation, and serves as
251 a default when the sequence is empty. If *initializer* is not given and
252 *sequence* contains only one item, the first item is returned.
253
Raymond Hettinger558dcf32014-12-16 18:16:57 -0800254 Roughly equivalent to::
Raymond Hettinger64801682013-10-12 16:04:17 -0700255
256 def reduce(function, iterable, initializer=None):
257 it = iter(iterable)
258 if initializer is None:
259 value = next(it)
260 else:
261 value = initializer
262 for element in it:
263 value = function(value, element)
264 return value
265
Georg Brandl116aa622007-08-15 14:28:22 +0000266
Łukasz Langa6f692512013-06-05 12:20:24 +0200267.. decorator:: singledispatch(default)
268
Łukasz Langafdcf2b72013-06-07 22:54:03 +0200269 Transforms a function into a :term:`single-dispatch <single
270 dispatch>` :term:`generic function`.
Łukasz Langa6f692512013-06-05 12:20:24 +0200271
272 To define a generic function, decorate it with the ``@singledispatch``
273 decorator. Note that the dispatch happens on the type of the first argument,
274 create your function accordingly::
275
276 >>> from functools import singledispatch
277 >>> @singledispatch
278 ... def fun(arg, verbose=False):
279 ... if verbose:
280 ... print("Let me just say,", end=" ")
281 ... print(arg)
282
283 To add overloaded implementations to the function, use the :func:`register`
284 attribute of the generic function. It is a decorator, taking a type
285 parameter and decorating a function implementing the operation for that
286 type::
287
288 >>> @fun.register(int)
289 ... def _(arg, verbose=False):
290 ... if verbose:
291 ... print("Strength in numbers, eh?", end=" ")
292 ... print(arg)
293 ...
294 >>> @fun.register(list)
295 ... def _(arg, verbose=False):
296 ... if verbose:
297 ... print("Enumerate this:")
298 ... for i, elem in enumerate(arg):
299 ... print(i, elem)
300
301 To enable registering lambdas and pre-existing functions, the
302 :func:`register` attribute can be used in a functional form::
303
304 >>> def nothing(arg, verbose=False):
305 ... print("Nothing.")
306 ...
307 >>> fun.register(type(None), nothing)
308
309 The :func:`register` attribute returns the undecorated function which
310 enables decorator stacking, pickling, as well as creating unit tests for
311 each variant independently::
312
313 >>> @fun.register(float)
314 ... @fun.register(Decimal)
315 ... def fun_num(arg, verbose=False):
316 ... if verbose:
317 ... print("Half of your number:", end=" ")
318 ... print(arg / 2)
319 ...
320 >>> fun_num is fun
321 False
322
323 When called, the generic function dispatches on the type of the first
324 argument::
325
326 >>> fun("Hello, world.")
327 Hello, world.
328 >>> fun("test.", verbose=True)
329 Let me just say, test.
330 >>> fun(42, verbose=True)
331 Strength in numbers, eh? 42
332 >>> fun(['spam', 'spam', 'eggs', 'spam'], verbose=True)
333 Enumerate this:
334 0 spam
335 1 spam
336 2 eggs
337 3 spam
338 >>> fun(None)
339 Nothing.
340 >>> fun(1.23)
341 0.615
342
343 Where there is no registered implementation for a specific type, its
344 method resolution order is used to find a more generic implementation.
345 The original function decorated with ``@singledispatch`` is registered
346 for the base ``object`` type, which means it is used if no better
347 implementation is found.
348
349 To check which implementation will the generic function choose for
350 a given type, use the ``dispatch()`` attribute::
351
352 >>> fun.dispatch(float)
353 <function fun_num at 0x1035a2840>
354 >>> fun.dispatch(dict) # note: default implementation
355 <function fun at 0x103fe0000>
356
357 To access all registered implementations, use the read-only ``registry``
358 attribute::
359
360 >>> fun.registry.keys()
361 dict_keys([<class 'NoneType'>, <class 'int'>, <class 'object'>,
362 <class 'decimal.Decimal'>, <class 'list'>,
363 <class 'float'>])
364 >>> fun.registry[float]
365 <function fun_num at 0x1035a2840>
366 >>> fun.registry[object]
367 <function fun at 0x103fe0000>
368
369 .. versionadded:: 3.4
370
371
Georg Brandl036490d2009-05-17 13:00:36 +0000372.. function:: update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
Georg Brandl116aa622007-08-15 14:28:22 +0000373
374 Update a *wrapper* function to look like the *wrapped* function. The optional
375 arguments are tuples to specify which attributes of the original function are
376 assigned directly to the matching attributes on the wrapper function and which
377 attributes of the wrapper function are updated with the corresponding attributes
378 from the original function. The default values for these arguments are the
Berker Peksag472233e2016-04-18 21:20:50 +0300379 module level constants ``WRAPPER_ASSIGNMENTS`` (which assigns to the wrapper
380 function's ``__module__``, ``__name__``, ``__qualname__``, ``__annotations__``
381 and ``__doc__``, the documentation string) and ``WRAPPER_UPDATES`` (which
382 updates the wrapper function's ``__dict__``, i.e. the instance dictionary).
Georg Brandl116aa622007-08-15 14:28:22 +0000383
Nick Coghlan98876832010-08-17 06:17:18 +0000384 To allow access to the original function for introspection and other purposes
385 (e.g. bypassing a caching decorator such as :func:`lru_cache`), this function
Nick Coghlan24c05bc2013-07-15 21:13:08 +1000386 automatically adds a ``__wrapped__`` attribute to the wrapper that refers to
387 the function being wrapped.
Nick Coghlan98876832010-08-17 06:17:18 +0000388
Christian Heimesd8654cf2007-12-02 15:22:16 +0000389 The main intended use for this function is in :term:`decorator` functions which
390 wrap the decorated function and return the wrapper. If the wrapper function is
391 not updated, the metadata of the returned function will reflect the wrapper
Georg Brandl116aa622007-08-15 14:28:22 +0000392 definition rather than the original function definition, which is typically less
393 than helpful.
394
Nick Coghlan98876832010-08-17 06:17:18 +0000395 :func:`update_wrapper` may be used with callables other than functions. Any
396 attributes named in *assigned* or *updated* that are missing from the object
397 being wrapped are ignored (i.e. this function will not attempt to set them
398 on the wrapper function). :exc:`AttributeError` is still raised if the
399 wrapper function itself is missing any attributes named in *updated*.
400
401 .. versionadded:: 3.2
Georg Brandl9e257012010-08-17 14:11:59 +0000402 Automatic addition of the ``__wrapped__`` attribute.
Nick Coghlan98876832010-08-17 06:17:18 +0000403
404 .. versionadded:: 3.2
Georg Brandl9e257012010-08-17 14:11:59 +0000405 Copying of the ``__annotations__`` attribute by default.
Nick Coghlan98876832010-08-17 06:17:18 +0000406
407 .. versionchanged:: 3.2
Georg Brandl9e257012010-08-17 14:11:59 +0000408 Missing attributes no longer trigger an :exc:`AttributeError`.
409
Nick Coghlan24c05bc2013-07-15 21:13:08 +1000410 .. versionchanged:: 3.4
411 The ``__wrapped__`` attribute now always refers to the wrapped
412 function, even if that function defined a ``__wrapped__`` attribute.
413 (see :issue:`17482`)
414
Georg Brandl116aa622007-08-15 14:28:22 +0000415
Georg Brandl8a1caa22010-07-29 16:01:11 +0000416.. decorator:: wraps(wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
Georg Brandl116aa622007-08-15 14:28:22 +0000417
Ezio Melotti67f6d5f2014-08-05 08:14:28 +0300418 This is a convenience function for invoking :func:`update_wrapper` as a
419 function decorator when defining a wrapper function. It is equivalent to
420 ``partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated)``.
421 For example::
Georg Brandl116aa622007-08-15 14:28:22 +0000422
Christian Heimesfe337bf2008-03-23 21:54:12 +0000423 >>> from functools import wraps
Georg Brandl116aa622007-08-15 14:28:22 +0000424 >>> def my_decorator(f):
425 ... @wraps(f)
426 ... def wrapper(*args, **kwds):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000427 ... print('Calling decorated function')
Georg Brandl116aa622007-08-15 14:28:22 +0000428 ... return f(*args, **kwds)
429 ... return wrapper
430 ...
431 >>> @my_decorator
432 ... def example():
433 ... """Docstring"""
Georg Brandl6911e3c2007-09-04 07:15:32 +0000434 ... print('Called example function')
Georg Brandl116aa622007-08-15 14:28:22 +0000435 ...
436 >>> example()
437 Calling decorated function
438 Called example function
439 >>> example.__name__
440 'example'
441 >>> example.__doc__
442 'Docstring'
443
444 Without the use of this decorator factory, the name of the example function
445 would have been ``'wrapper'``, and the docstring of the original :func:`example`
446 would have been lost.
447
448
449.. _partial-objects:
450
451:class:`partial` Objects
452------------------------
453
454:class:`partial` objects are callable objects created by :func:`partial`. They
455have three read-only attributes:
456
457
458.. attribute:: partial.func
459
460 A callable object or function. Calls to the :class:`partial` object will be
461 forwarded to :attr:`func` with new arguments and keywords.
462
463
464.. attribute:: partial.args
465
466 The leftmost positional arguments that will be prepended to the positional
467 arguments provided to a :class:`partial` object call.
468
469
470.. attribute:: partial.keywords
471
472 The keyword arguments that will be supplied when the :class:`partial` object is
473 called.
474
475:class:`partial` objects are like :class:`function` objects in that they are
476callable, weak referencable, and can have attributes. There are some important
Martin Panterbae5d812016-06-18 03:57:31 +0000477differences. For instance, the :attr:`~definition.__name__` and :attr:`__doc__` attributes
Georg Brandl116aa622007-08-15 14:28:22 +0000478are not created automatically. Also, :class:`partial` objects defined in
479classes behave like static methods and do not transform into bound methods
480during instance attribute look-up.