blob: fa607e3f1ea14a70e3b57f8f4f3a98d7c9a53d55 [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Michael W. Hudson9ef852c2005-04-06 13:05:18 +000056#include "longintrepr.h" /* just for SHIFT */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Christian Heimes969fe572008-01-25 11:23:10 +000058#ifdef _OSF_SOURCE
59/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60extern double copysign(double, double);
61#endif
62
Tim Peters1d120612000-10-12 06:10:25 +000063/* Call is_error when errno != 0, and where x is the result libm
64 * returned. is_error will usually set up an exception and return
65 * true (1), but may return false (0) without setting up an exception.
66 */
67static int
68is_error(double x)
Guido van Rossum8832b621991-12-16 15:44:24 +000069{
Tim Peters1d120612000-10-12 06:10:25 +000070 int result = 1; /* presumption of guilt */
Tim Peters2bf405a2000-10-12 19:42:00 +000071 assert(errno); /* non-zero errno is a precondition for calling */
Guido van Rossum8832b621991-12-16 15:44:24 +000072 if (errno == EDOM)
Barry Warsaw8b43b191996-12-09 22:32:36 +000073 PyErr_SetString(PyExc_ValueError, "math domain error");
Tim Petersa40c7932001-09-05 22:36:56 +000074
Tim Peters1d120612000-10-12 06:10:25 +000075 else if (errno == ERANGE) {
76 /* ANSI C generally requires libm functions to set ERANGE
77 * on overflow, but also generally *allows* them to set
78 * ERANGE on underflow too. There's no consistency about
Tim Petersa40c7932001-09-05 22:36:56 +000079 * the latter across platforms.
80 * Alas, C99 never requires that errno be set.
81 * Here we suppress the underflow errors (libm functions
82 * should return a zero on underflow, and +- HUGE_VAL on
83 * overflow, so testing the result for zero suffices to
84 * distinguish the cases).
Tim Peters1d120612000-10-12 06:10:25 +000085 */
86 if (x)
Tim Petersfe71f812001-08-07 22:10:00 +000087 PyErr_SetString(PyExc_OverflowError,
Tim Peters1d120612000-10-12 06:10:25 +000088 "math range error");
89 else
90 result = 0;
91 }
Guido van Rossum8832b621991-12-16 15:44:24 +000092 else
Barry Warsaw8b43b191996-12-09 22:32:36 +000093 /* Unexpected math error */
94 PyErr_SetFromErrno(PyExc_ValueError);
Tim Peters1d120612000-10-12 06:10:25 +000095 return result;
Guido van Rossum8832b621991-12-16 15:44:24 +000096}
97
Christian Heimes53876d92008-04-19 00:31:39 +000098/*
Christian Heimese57950f2008-04-21 13:08:03 +000099 wrapper for atan2 that deals directly with special cases before
100 delegating to the platform libm for the remaining cases. This
101 is necessary to get consistent behaviour across platforms.
102 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
103 always follow C99.
104*/
105
106static double
107m_atan2(double y, double x)
108{
109 if (Py_IS_NAN(x) || Py_IS_NAN(y))
110 return Py_NAN;
111 if (Py_IS_INFINITY(y)) {
112 if (Py_IS_INFINITY(x)) {
113 if (copysign(1., x) == 1.)
114 /* atan2(+-inf, +inf) == +-pi/4 */
115 return copysign(0.25*Py_MATH_PI, y);
116 else
117 /* atan2(+-inf, -inf) == +-pi*3/4 */
118 return copysign(0.75*Py_MATH_PI, y);
119 }
120 /* atan2(+-inf, x) == +-pi/2 for finite x */
121 return copysign(0.5*Py_MATH_PI, y);
122 }
123 if (Py_IS_INFINITY(x) || y == 0.) {
124 if (copysign(1., x) == 1.)
125 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
126 return copysign(0., y);
127 else
128 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
129 return copysign(Py_MATH_PI, y);
130 }
131 return atan2(y, x);
132}
133
134/*
Christian Heimes53876d92008-04-19 00:31:39 +0000135 math_1 is used to wrap a libm function f that takes a double
136 arguments and returns a double.
137
138 The error reporting follows these rules, which are designed to do
139 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
140 platforms.
141
142 - a NaN result from non-NaN inputs causes ValueError to be raised
143 - an infinite result from finite inputs causes OverflowError to be
144 raised if can_overflow is 1, or raises ValueError if can_overflow
145 is 0.
146 - if the result is finite and errno == EDOM then ValueError is
147 raised
148 - if the result is finite and nonzero and errno == ERANGE then
149 OverflowError is raised
150
151 The last rule is used to catch overflow on platforms which follow
152 C89 but for which HUGE_VAL is not an infinity.
153
154 For the majority of one-argument functions these rules are enough
155 to ensure that Python's functions behave as specified in 'Annex F'
156 of the C99 standard, with the 'invalid' and 'divide-by-zero'
157 floating-point exceptions mapping to Python's ValueError and the
158 'overflow' floating-point exception mapping to OverflowError.
159 math_1 only works for functions that don't have singularities *and*
160 the possibility of overflow; fortunately, that covers everything we
161 care about right now.
162*/
163
Barry Warsaw8b43b191996-12-09 22:32:36 +0000164static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000165math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000166 PyObject *(*from_double_func) (double),
167 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000168{
Christian Heimes53876d92008-04-19 00:31:39 +0000169 double x, r;
170 x = PyFloat_AsDouble(arg);
Thomas Wouters89f507f2006-12-13 04:49:30 +0000171 if (x == -1.0 && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000172 return NULL;
173 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +0000174 PyFPE_START_PROTECT("in math_1", return 0);
175 r = (*func)(x);
176 PyFPE_END_PROTECT(r);
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000177 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
178 PyErr_SetString(PyExc_ValueError,
179 "math domain error (invalid argument)");
180 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +0000181 }
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000182 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
183 if (can_overflow)
184 PyErr_SetString(PyExc_OverflowError,
185 "math range error (overflow)");
Mark Dickinsonb63aff12008-05-09 14:10:27 +0000186 else
187 PyErr_SetString(PyExc_ValueError,
188 "math domain error (singularity)");
Mark Dickinsona0de26c2008-04-30 23:30:57 +0000189 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +0000190 }
Mark Dickinsonde429622008-05-01 00:19:23 +0000191 if (Py_IS_FINITE(r) && errno && is_error(r))
192 /* this branch unnecessary on most platforms */
Tim Peters1d120612000-10-12 06:10:25 +0000193 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000194
195 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000196}
197
198/*
199 math_2 is used to wrap a libm function f that takes two double
200 arguments and returns a double.
201
202 The error reporting follows these rules, which are designed to do
203 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
204 platforms.
205
206 - a NaN result from non-NaN inputs causes ValueError to be raised
207 - an infinite result from finite inputs causes OverflowError to be
208 raised.
209 - if the result is finite and errno == EDOM then ValueError is
210 raised
211 - if the result is finite and nonzero and errno == ERANGE then
212 OverflowError is raised
213
214 The last rule is used to catch overflow on platforms which follow
215 C89 but for which HUGE_VAL is not an infinity.
216
217 For most two-argument functions (copysign, fmod, hypot, atan2)
218 these rules are enough to ensure that Python's functions behave as
219 specified in 'Annex F' of the C99 standard, with the 'invalid' and
220 'divide-by-zero' floating-point exceptions mapping to Python's
221 ValueError and the 'overflow' floating-point exception mapping to
222 OverflowError.
223*/
224
225static PyObject *
226math_1(PyObject *arg, double (*func) (double), int can_overflow)
227{
228 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000229}
230
231static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +0000232math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000233{
Christian Heimes53876d92008-04-19 00:31:39 +0000234 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000235}
236
Barry Warsaw8b43b191996-12-09 22:32:36 +0000237static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000238math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000239{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000240 PyObject *ox, *oy;
Christian Heimes53876d92008-04-19 00:31:39 +0000241 double x, y, r;
Thomas Wouters89f507f2006-12-13 04:49:30 +0000242 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
243 return NULL;
244 x = PyFloat_AsDouble(ox);
245 y = PyFloat_AsDouble(oy);
246 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000247 return NULL;
248 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +0000249 PyFPE_START_PROTECT("in math_2", return 0);
250 r = (*func)(x, y);
251 PyFPE_END_PROTECT(r);
252 if (Py_IS_NAN(r)) {
253 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
254 errno = EDOM;
255 else
256 errno = 0;
257 }
258 else if (Py_IS_INFINITY(r)) {
259 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
260 errno = ERANGE;
261 else
262 errno = 0;
263 }
264 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000265 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000266 else
Christian Heimes53876d92008-04-19 00:31:39 +0000267 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000268}
269
Christian Heimes53876d92008-04-19 00:31:39 +0000270#define FUNC1(funcname, func, can_overflow, docstring) \
Fred Drake40c48682000-07-03 18:11:56 +0000271 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Christian Heimes53876d92008-04-19 00:31:39 +0000272 return math_1(args, func, can_overflow); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000273 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000274 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000275
Fred Drake40c48682000-07-03 18:11:56 +0000276#define FUNC2(funcname, func, docstring) \
277 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Thomas Wouters89f507f2006-12-13 04:49:30 +0000278 return math_2(args, func, #funcname); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000279 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000280 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000281
Christian Heimes53876d92008-04-19 00:31:39 +0000282FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000283 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000284FUNC1(acosh, acosh, 0,
285 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
286FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000287 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000288FUNC1(asinh, asinh, 0,
289 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
290FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000291 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Christian Heimese57950f2008-04-21 13:08:03 +0000292FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000293 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
294 "Unlike atan(y/x), the signs of both x and y are considered.")
Christian Heimes53876d92008-04-19 00:31:39 +0000295FUNC1(atanh, atanh, 0,
296 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000297
298static PyObject * math_ceil(PyObject *self, PyObject *number) {
299 static PyObject *ceil_str = NULL;
300 PyObject *method;
301
302 if (ceil_str == NULL) {
Christian Heimesfe82e772008-01-28 02:38:20 +0000303 ceil_str = PyUnicode_InternFromString("__ceil__");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000304 if (ceil_str == NULL)
305 return NULL;
306 }
307
Christian Heimes90aa7642007-12-19 02:45:37 +0000308 method = _PyType_Lookup(Py_TYPE(number), ceil_str);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000309 if (method == NULL)
Christian Heimes53876d92008-04-19 00:31:39 +0000310 return math_1_to_int(number, ceil, 0);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000311 else
312 return PyObject_CallFunction(method, "O", number);
313}
314
315PyDoc_STRVAR(math_ceil_doc,
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000316 "ceil(x)\n\nReturn the ceiling of x as an int.\n"
Guido van Rossum13e05de2007-08-23 22:56:55 +0000317 "This is the smallest integral value >= x.");
318
Christian Heimes072c0f12008-01-03 23:01:04 +0000319FUNC2(copysign, copysign,
Christian Heimes53876d92008-04-19 00:31:39 +0000320 "copysign(x,y)\n\nReturn x with the sign of y.")
321FUNC1(cos, cos, 0,
322 "cos(x)\n\nReturn the cosine of x (measured in radians).")
323FUNC1(cosh, cosh, 1,
324 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
325FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000326 "exp(x)\n\nReturn e raised to the power of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000327FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000328 "fabs(x)\n\nReturn the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000329
330static PyObject * math_floor(PyObject *self, PyObject *number) {
331 static PyObject *floor_str = NULL;
332 PyObject *method;
333
334 if (floor_str == NULL) {
Christian Heimesfe82e772008-01-28 02:38:20 +0000335 floor_str = PyUnicode_InternFromString("__floor__");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000336 if (floor_str == NULL)
337 return NULL;
338 }
339
Christian Heimes90aa7642007-12-19 02:45:37 +0000340 method = _PyType_Lookup(Py_TYPE(number), floor_str);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000341 if (method == NULL)
Christian Heimes53876d92008-04-19 00:31:39 +0000342 return math_1_to_int(number, floor, 0);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000343 else
344 return PyObject_CallFunction(method, "O", number);
345}
346
347PyDoc_STRVAR(math_floor_doc,
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000348 "floor(x)\n\nReturn the floor of x as an int.\n"
Guido van Rossum13e05de2007-08-23 22:56:55 +0000349 "This is the largest integral value <= x.");
350
Christian Heimes53876d92008-04-19 00:31:39 +0000351FUNC1(log1p, log1p, 1,
352 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\
353 The result is computed in a way which is accurate for x near zero.")
354FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000355 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000356FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000357 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000358FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000359 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000360FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000361 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000362FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000363 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000364
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000365/* Precision summation function as msum() by Raymond Hettinger in
366 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
367 enhanced with the exact partials sum and roundoff from Mark
368 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
369 See those links for more details, proofs and other references.
370
371 Note 1: IEEE 754R floating point semantics are assumed,
372 but the current implementation does not re-establish special
373 value semantics across iterations (i.e. handling -Inf + Inf).
374
375 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000376 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000377 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
378 overflow of the first partial sum.
379
Georg Brandlf78e02b2008-06-10 17:40:04 +0000380 Note 3: The itermediate values lo, yr, and hi are declared volatile so
381 aggressive compilers won't algebraicly reduce lo to always be exactly 0.0.
382 Also, the volatile declaration forces the values to be stored in memory as
383 regular doubles instead of extended long precision (80-bit) values. This
384 prevents double rounding because any addition or substraction of two doubles
385 can be resolved exactly into double-sized hi and lo values. As long as the
386 hi value gets forced into a double before yr and lo are computed, the extra
387 bits in downstream extended precision operations (x87 for example) will be
388 exactly zero and therefore can be losslessly stored back into a double,
389 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000390
391 Note 4: A similar implementation is in Modules/cmathmodule.c.
392 Be sure to update both when making changes.
393
394 Note 5: The signature of math.sum() differs from __builtin__.sum()
395 because the start argument doesn't make sense in the context of
396 accurate summation. Since the partials table is collapsed before
397 returning a result, sum(seq2, start=sum(seq1)) may not equal the
398 accurate result returned by sum(itertools.chain(seq1, seq2)).
399*/
400
401#define NUM_PARTIALS 32 /* initial partials array size, on stack */
402
403/* Extend the partials array p[] by doubling its size. */
404static int /* non-zero on error */
405_sum_realloc(double **p_ptr, Py_ssize_t n,
406 double *ps, Py_ssize_t *m_ptr)
407{
408 void *v = NULL;
409 Py_ssize_t m = *m_ptr;
410
411 m += m; /* double */
412 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
413 double *p = *p_ptr;
414 if (p == ps) {
415 v = PyMem_Malloc(sizeof(double) * m);
416 if (v != NULL)
417 memcpy(v, ps, sizeof(double) * n);
418 }
419 else
420 v = PyMem_Realloc(p, sizeof(double) * m);
421 }
422 if (v == NULL) { /* size overflow or no memory */
423 PyErr_SetString(PyExc_MemoryError, "math sum partials");
424 return 1;
425 }
426 *p_ptr = (double*) v;
427 *m_ptr = m;
428 return 0;
429}
430
431/* Full precision summation of a sequence of floats.
432
433 def msum(iterable):
434 partials = [] # sorted, non-overlapping partial sums
435 for x in iterable:
436 i = 0
437 for y in partials:
438 if abs(x) < abs(y):
439 x, y = y, x
440 hi = x + y
441 lo = y - (hi - x)
442 if lo:
443 partials[i] = lo
444 i += 1
445 x = hi
446 partials[i:] = [x]
447 return sum_exact(partials)
448
449 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
450 are exactly equal to x+y. The inner loop applies hi/lo summation to each
451 partial so that the list of partial sums remains exact.
452
453 Sum_exact() adds the partial sums exactly and correctly rounds the final
454 result (using the round-half-to-even rule). The items in partials remain
455 non-zero, non-special, non-overlapping and strictly increasing in
456 magnitude, but possibly not all having the same sign.
457
458 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
459*/
460
461static PyObject*
462math_sum(PyObject *self, PyObject *seq)
463{
464 PyObject *item, *iter, *sum = NULL;
465 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000466 double x, y, t, ps[NUM_PARTIALS], *p = ps;
467 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000468
469 iter = PyObject_GetIter(seq);
470 if (iter == NULL)
471 return NULL;
472
473 PyFPE_START_PROTECT("sum", Py_DECREF(iter); return NULL)
474
475 for(;;) { /* for x in iterable */
476 assert(0 <= n && n <= m);
477 assert((m == NUM_PARTIALS && p == ps) ||
478 (m > NUM_PARTIALS && p != NULL));
479
480 item = PyIter_Next(iter);
481 if (item == NULL) {
482 if (PyErr_Occurred())
483 goto _sum_error;
484 break;
485 }
486 x = PyFloat_AsDouble(item);
487 Py_DECREF(item);
488 if (PyErr_Occurred())
489 goto _sum_error;
490
491 for (i = j = 0; j < n; j++) { /* for y in partials */
492 y = p[j];
Georg Brandlf78e02b2008-06-10 17:40:04 +0000493 if (fabs(x) < fabs(y)) {
494 t = x; x = y; y = t;
495 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000496 hi = x + y;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000497 yr = hi - x;
498 lo = y - yr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000499 if (lo != 0.0)
500 p[i++] = lo;
501 x = hi;
502 }
503
504 n = i; /* ps[i:] = [x] */
505 if (x != 0.0) {
506 /* If non-finite, reset partials, effectively
507 adding subsequent items without roundoff
508 and yielding correct non-finite results,
509 provided IEEE 754 rules are observed */
510 if (! Py_IS_FINITE(x))
511 n = 0;
512 else if (n >= m && _sum_realloc(&p, n, ps, &m))
513 goto _sum_error;
514 p[n++] = x;
515 }
516 }
517
Georg Brandlf78e02b2008-06-10 17:40:04 +0000518 hi = 0.0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000519 if (n > 0) {
520 hi = p[--n];
521 if (Py_IS_FINITE(hi)) {
522 /* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
523 while (n > 0) {
Georg Brandlf78e02b2008-06-10 17:40:04 +0000524 x = hi;
525 y = p[--n];
526 assert(fabs(y) < fabs(x));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000527 hi = x + y;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000528 yr = hi - x;
529 lo = y - yr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000530 if (lo != 0.0)
531 break;
532 }
Georg Brandlf78e02b2008-06-10 17:40:04 +0000533 /* Make half-even rounding work across multiple partials. Needed
534 so that sum([1e-16, 1, 1e16]) will round-up the last digit to
535 two instead of down to zero (the 1e-16 makes the 1 slightly
536 closer to two). With a potential 1 ULP rounding error fixed-up,
537 math.sum() can guarantee commutativity. */
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000538 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
539 (lo > 0.0 && p[n-1] > 0.0))) {
540 y = lo * 2.0;
541 x = hi + y;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000542 yr = x - hi;
543 if (y == yr)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000544 hi = x;
545 }
546 }
Georg Brandlf78e02b2008-06-10 17:40:04 +0000547 else { /* raise exception corresponding to a special value */
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000548 errno = Py_IS_NAN(hi) ? EDOM : ERANGE;
549 if (is_error(hi))
550 goto _sum_error;
551 }
552 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000553 sum = PyFloat_FromDouble(hi);
554
555_sum_error:
556 PyFPE_END_PROTECT(hi)
557 Py_DECREF(iter);
558 if (p != ps)
559 PyMem_Free(p);
560 return sum;
561}
562
563#undef NUM_PARTIALS
564
565PyDoc_STRVAR(math_sum_doc,
566"sum(iterable)\n\n\
567Return an accurate floating point sum of values in the iterable.\n\
568Assumes IEEE-754 floating point arithmetic.");
569
Barry Warsaw8b43b191996-12-09 22:32:36 +0000570static PyObject *
Georg Brandlc28e1fa2008-06-10 19:20:26 +0000571math_factorial(PyObject *self, PyObject *arg)
572{
573 long i, x;
574 PyObject *result, *iobj, *newresult;
575
576 if (PyFloat_Check(arg)) {
577 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
578 if (dx != floor(dx)) {
579 PyErr_SetString(PyExc_ValueError,
580 "factorial() only accepts integral values");
581 return NULL;
582 }
583 }
584
585 x = PyLong_AsLong(arg);
586 if (x == -1 && PyErr_Occurred())
587 return NULL;
588 if (x < 0) {
589 PyErr_SetString(PyExc_ValueError,
590 "factorial() not defined for negative values");
591 return NULL;
592 }
593
594 result = (PyObject *)PyLong_FromLong(1);
595 if (result == NULL)
596 return NULL;
597 for (i=1 ; i<=x ; i++) {
598 iobj = (PyObject *)PyLong_FromLong(i);
599 if (iobj == NULL)
600 goto error;
601 newresult = PyNumber_Multiply(result, iobj);
602 Py_DECREF(iobj);
603 if (newresult == NULL)
604 goto error;
605 Py_DECREF(result);
606 result = newresult;
607 }
608 return result;
609
610error:
611 Py_DECREF(result);
612 Py_XDECREF(iobj);
613 return NULL;
614}
615
616PyDoc_STRVAR(math_factorial_doc, "Return n!");
617
618static PyObject *
Christian Heimes400adb02008-02-01 08:12:03 +0000619math_trunc(PyObject *self, PyObject *number)
620{
621 static PyObject *trunc_str = NULL;
622 PyObject *trunc;
623
624 if (Py_TYPE(number)->tp_dict == NULL) {
625 if (PyType_Ready(Py_TYPE(number)) < 0)
626 return NULL;
627 }
628
629 if (trunc_str == NULL) {
630 trunc_str = PyUnicode_InternFromString("__trunc__");
631 if (trunc_str == NULL)
632 return NULL;
633 }
634
635 trunc = _PyType_Lookup(Py_TYPE(number), trunc_str);
636 if (trunc == NULL) {
637 PyErr_Format(PyExc_TypeError,
638 "type %.100s doesn't define __trunc__ method",
639 Py_TYPE(number)->tp_name);
640 return NULL;
641 }
642 return PyObject_CallFunctionObjArgs(trunc, number, NULL);
643}
644
645PyDoc_STRVAR(math_trunc_doc,
646"trunc(x:Real) -> Integral\n"
647"\n"
Christian Heimes292d3512008-02-03 16:51:08 +0000648"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Christian Heimes400adb02008-02-01 08:12:03 +0000649
650static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000651math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000652{
Guido van Rossumd18ad581991-10-24 14:57:21 +0000653 int i;
Thomas Wouters89f507f2006-12-13 04:49:30 +0000654 double x = PyFloat_AsDouble(arg);
655 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +0000656 return NULL;
Christian Heimes53876d92008-04-19 00:31:39 +0000657 /* deal with special cases directly, to sidestep platform
658 differences */
659 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
660 i = 0;
661 }
662 else {
663 PyFPE_START_PROTECT("in math_frexp", return 0);
664 x = frexp(x, &i);
665 PyFPE_END_PROTECT(x);
666 }
667 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000668}
669
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000670PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +0000671"frexp(x)\n"
672"\n"
673"Return the mantissa and exponent of x, as pair (m, e).\n"
674"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000675"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000676
Barry Warsaw8b43b191996-12-09 22:32:36 +0000677static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +0000678math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000679{
Christian Heimes53876d92008-04-19 00:31:39 +0000680 double x, r;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000681 PyObject *oexp;
682 long exp;
683 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
Guido van Rossumd18ad581991-10-24 14:57:21 +0000684 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000685
686 if (PyLong_Check(oexp)) {
687 /* on overflow, replace exponent with either LONG_MAX
688 or LONG_MIN, depending on the sign. */
689 exp = PyLong_AsLong(oexp);
690 if (exp == -1 && PyErr_Occurred()) {
691 if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
692 if (Py_SIZE(oexp) < 0) {
693 exp = LONG_MIN;
694 }
695 else {
696 exp = LONG_MAX;
697 }
698 PyErr_Clear();
699 }
700 else {
701 /* propagate any unexpected exception */
702 return NULL;
703 }
704 }
705 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000706 else {
707 PyErr_SetString(PyExc_TypeError,
708 "Expected an int or long as second argument "
709 "to ldexp.");
710 return NULL;
711 }
712
713 if (x == 0. || !Py_IS_FINITE(x)) {
714 /* NaNs, zeros and infinities are returned unchanged */
715 r = x;
Christian Heimes53876d92008-04-19 00:31:39 +0000716 errno = 0;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000717 } else if (exp > INT_MAX) {
718 /* overflow */
719 r = copysign(Py_HUGE_VAL, x);
720 errno = ERANGE;
721 } else if (exp < INT_MIN) {
722 /* underflow to +-0 */
723 r = copysign(0., x);
724 errno = 0;
725 } else {
726 errno = 0;
727 PyFPE_START_PROTECT("in math_ldexp", return 0);
728 r = ldexp(x, (int)exp);
729 PyFPE_END_PROTECT(r);
730 if (Py_IS_INFINITY(r))
731 errno = ERANGE;
732 }
733
Christian Heimes53876d92008-04-19 00:31:39 +0000734 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000735 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +0000736 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000737}
738
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000739PyDoc_STRVAR(math_ldexp_doc,
740"ldexp(x, i) -> x * (2**i)");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000741
Barry Warsaw8b43b191996-12-09 22:32:36 +0000742static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000743math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000744{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000745 double y, x = PyFloat_AsDouble(arg);
746 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +0000747 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +0000748 /* some platforms don't do the right thing for NaNs and
749 infinities, so we take care of special cases directly. */
750 if (!Py_IS_FINITE(x)) {
751 if (Py_IS_INFINITY(x))
752 return Py_BuildValue("(dd)", copysign(0., x), x);
753 else if (Py_IS_NAN(x))
754 return Py_BuildValue("(dd)", x, x);
755 }
756
Guido van Rossumd18ad581991-10-24 14:57:21 +0000757 errno = 0;
Christian Heimes53876d92008-04-19 00:31:39 +0000758 PyFPE_START_PROTECT("in math_modf", return 0);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000759 x = modf(x, &y);
Christian Heimes53876d92008-04-19 00:31:39 +0000760 PyFPE_END_PROTECT(x);
761 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +0000762}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000763
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000764PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +0000765"modf(x)\n"
766"\n"
767"Return the fractional and integer parts of x. Both results carry the sign\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000768"of x. The integer part is returned as a real.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000769
Tim Peters78526162001-09-05 00:53:45 +0000770/* A decent logarithm is easy to compute even for huge longs, but libm can't
771 do that by itself -- loghelper can. func is log or log10, and name is
772 "log" or "log10". Note that overflow isn't possible: a long can contain
773 no more than INT_MAX * SHIFT bits, so has value certainly less than
774 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
775 small enough to fit in an IEEE single. log and log10 are even smaller.
776*/
777
778static PyObject*
Thomas Wouters89f507f2006-12-13 04:49:30 +0000779loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +0000780{
Tim Peters78526162001-09-05 00:53:45 +0000781 /* If it is long, do it ourselves. */
782 if (PyLong_Check(arg)) {
783 double x;
784 int e;
785 x = _PyLong_AsScaledDouble(arg, &e);
786 if (x <= 0.0) {
787 PyErr_SetString(PyExc_ValueError,
788 "math domain error");
789 return NULL;
790 }
Christian Heimesaf98da12008-01-27 15:18:18 +0000791 /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
792 log(x) + log(2) * e * PyLong_SHIFT.
793 CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
Tim Peters78526162001-09-05 00:53:45 +0000794 so force use of double. */
Martin v. Löwis9f2e3462007-07-21 17:22:18 +0000795 x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
Tim Peters78526162001-09-05 00:53:45 +0000796 return PyFloat_FromDouble(x);
797 }
798
799 /* Else let libm handle it by itself. */
Christian Heimes53876d92008-04-19 00:31:39 +0000800 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +0000801}
802
803static PyObject *
804math_log(PyObject *self, PyObject *args)
805{
Raymond Hettinger866964c2002-12-14 19:51:34 +0000806 PyObject *arg;
807 PyObject *base = NULL;
808 PyObject *num, *den;
809 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000810
Raymond Hettingerea3fdf42002-12-29 16:33:45 +0000811 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
Raymond Hettinger866964c2002-12-14 19:51:34 +0000812 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000813
Thomas Wouters89f507f2006-12-13 04:49:30 +0000814 num = loghelper(arg, log, "log");
815 if (num == NULL || base == NULL)
816 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +0000817
Thomas Wouters89f507f2006-12-13 04:49:30 +0000818 den = loghelper(base, log, "log");
Raymond Hettinger866964c2002-12-14 19:51:34 +0000819 if (den == NULL) {
820 Py_DECREF(num);
821 return NULL;
822 }
823
Neal Norwitzbcc0db82006-03-24 08:14:36 +0000824 ans = PyNumber_TrueDivide(num, den);
Raymond Hettinger866964c2002-12-14 19:51:34 +0000825 Py_DECREF(num);
826 Py_DECREF(den);
827 return ans;
Tim Peters78526162001-09-05 00:53:45 +0000828}
829
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000830PyDoc_STRVAR(math_log_doc,
Raymond Hettinger866964c2002-12-14 19:51:34 +0000831"log(x[, base]) -> the logarithm of x to the given base.\n\
832If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +0000833
834static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000835math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +0000836{
Thomas Wouters89f507f2006-12-13 04:49:30 +0000837 return loghelper(arg, log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +0000838}
839
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000840PyDoc_STRVAR(math_log10_doc,
841"log10(x) -> the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +0000842
Christian Heimes53876d92008-04-19 00:31:39 +0000843static PyObject *
844math_fmod(PyObject *self, PyObject *args)
845{
846 PyObject *ox, *oy;
847 double r, x, y;
848 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
849 return NULL;
850 x = PyFloat_AsDouble(ox);
851 y = PyFloat_AsDouble(oy);
852 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
853 return NULL;
854 /* fmod(x, +/-Inf) returns x for finite x. */
855 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
856 return PyFloat_FromDouble(x);
857 errno = 0;
858 PyFPE_START_PROTECT("in math_fmod", return 0);
859 r = fmod(x, y);
860 PyFPE_END_PROTECT(r);
861 if (Py_IS_NAN(r)) {
862 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
863 errno = EDOM;
864 else
865 errno = 0;
866 }
867 if (errno && is_error(r))
868 return NULL;
869 else
870 return PyFloat_FromDouble(r);
871}
872
873PyDoc_STRVAR(math_fmod_doc,
874"fmod(x,y)\n\nReturn fmod(x, y), according to platform C."
875" x % y may differ.");
876
877static PyObject *
878math_hypot(PyObject *self, PyObject *args)
879{
880 PyObject *ox, *oy;
881 double r, x, y;
882 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
883 return NULL;
884 x = PyFloat_AsDouble(ox);
885 y = PyFloat_AsDouble(oy);
886 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
887 return NULL;
888 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
889 if (Py_IS_INFINITY(x))
890 return PyFloat_FromDouble(fabs(x));
891 if (Py_IS_INFINITY(y))
892 return PyFloat_FromDouble(fabs(y));
893 errno = 0;
894 PyFPE_START_PROTECT("in math_hypot", return 0);
895 r = hypot(x, y);
896 PyFPE_END_PROTECT(r);
897 if (Py_IS_NAN(r)) {
898 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
899 errno = EDOM;
900 else
901 errno = 0;
902 }
903 else if (Py_IS_INFINITY(r)) {
904 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
905 errno = ERANGE;
906 else
907 errno = 0;
908 }
909 if (errno && is_error(r))
910 return NULL;
911 else
912 return PyFloat_FromDouble(r);
913}
914
915PyDoc_STRVAR(math_hypot_doc,
916"hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
917
918/* pow can't use math_2, but needs its own wrapper: the problem is
919 that an infinite result can arise either as a result of overflow
920 (in which case OverflowError should be raised) or as a result of
921 e.g. 0.**-5. (for which ValueError needs to be raised.)
922*/
923
924static PyObject *
925math_pow(PyObject *self, PyObject *args)
926{
927 PyObject *ox, *oy;
928 double r, x, y;
Christian Heimesa342c012008-04-20 21:01:16 +0000929 int odd_y;
Christian Heimes53876d92008-04-19 00:31:39 +0000930
931 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
932 return NULL;
933 x = PyFloat_AsDouble(ox);
934 y = PyFloat_AsDouble(oy);
935 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
936 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +0000937
938 /* deal directly with IEEE specials, to cope with problems on various
939 platforms whose semantics don't exactly match C99 */
Christian Heimes81ee3ef2008-05-04 22:42:01 +0000940 r = 0.; /* silence compiler warning */
Christian Heimesa342c012008-04-20 21:01:16 +0000941 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
942 errno = 0;
943 if (Py_IS_NAN(x))
944 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
945 else if (Py_IS_NAN(y))
946 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
947 else if (Py_IS_INFINITY(x)) {
948 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
949 if (y > 0.)
950 r = odd_y ? x : fabs(x);
951 else if (y == 0.)
952 r = 1.;
953 else /* y < 0. */
954 r = odd_y ? copysign(0., x) : 0.;
955 }
956 else if (Py_IS_INFINITY(y)) {
957 if (fabs(x) == 1.0)
958 r = 1.;
959 else if (y > 0. && fabs(x) > 1.0)
960 r = y;
961 else if (y < 0. && fabs(x) < 1.0) {
962 r = -y; /* result is +inf */
963 if (x == 0.) /* 0**-inf: divide-by-zero */
964 errno = EDOM;
965 }
966 else
967 r = 0.;
968 }
Christian Heimes53876d92008-04-19 00:31:39 +0000969 }
Christian Heimesa342c012008-04-20 21:01:16 +0000970 else {
971 /* let libm handle finite**finite */
972 errno = 0;
973 PyFPE_START_PROTECT("in math_pow", return 0);
974 r = pow(x, y);
975 PyFPE_END_PROTECT(r);
976 /* a NaN result should arise only from (-ve)**(finite
977 non-integer); in this case we want to raise ValueError. */
978 if (!Py_IS_FINITE(r)) {
979 if (Py_IS_NAN(r)) {
980 errno = EDOM;
981 }
982 /*
983 an infinite result here arises either from:
984 (A) (+/-0.)**negative (-> divide-by-zero)
985 (B) overflow of x**y with x and y finite
986 */
987 else if (Py_IS_INFINITY(r)) {
988 if (x == 0.)
989 errno = EDOM;
990 else
991 errno = ERANGE;
992 }
993 }
Christian Heimes53876d92008-04-19 00:31:39 +0000994 }
995
996 if (errno && is_error(r))
997 return NULL;
998 else
999 return PyFloat_FromDouble(r);
1000}
1001
1002PyDoc_STRVAR(math_pow_doc,
1003"pow(x,y)\n\nReturn x**y (x to the power of y).");
1004
Christian Heimes072c0f12008-01-03 23:01:04 +00001005static const double degToRad = Py_MATH_PI / 180.0;
1006static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001007
1008static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001009math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001010{
Thomas Wouters89f507f2006-12-13 04:49:30 +00001011 double x = PyFloat_AsDouble(arg);
1012 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001013 return NULL;
Christian Heimes072c0f12008-01-03 23:01:04 +00001014 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001015}
1016
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001017PyDoc_STRVAR(math_degrees_doc,
1018"degrees(x) -> converts angle x from radians to degrees");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001019
1020static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001021math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001022{
Thomas Wouters89f507f2006-12-13 04:49:30 +00001023 double x = PyFloat_AsDouble(arg);
1024 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001025 return NULL;
1026 return PyFloat_FromDouble(x * degToRad);
1027}
1028
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001029PyDoc_STRVAR(math_radians_doc,
1030"radians(x) -> converts angle x from degrees to radians");
Tim Peters78526162001-09-05 00:53:45 +00001031
Christian Heimes072c0f12008-01-03 23:01:04 +00001032static PyObject *
1033math_isnan(PyObject *self, PyObject *arg)
1034{
1035 double x = PyFloat_AsDouble(arg);
1036 if (x == -1.0 && PyErr_Occurred())
1037 return NULL;
1038 return PyBool_FromLong((long)Py_IS_NAN(x));
1039}
1040
1041PyDoc_STRVAR(math_isnan_doc,
1042"isnan(x) -> bool\n\
1043Checks if float x is not a number (NaN)");
1044
1045static PyObject *
1046math_isinf(PyObject *self, PyObject *arg)
1047{
1048 double x = PyFloat_AsDouble(arg);
1049 if (x == -1.0 && PyErr_Occurred())
1050 return NULL;
1051 return PyBool_FromLong((long)Py_IS_INFINITY(x));
1052}
1053
1054PyDoc_STRVAR(math_isinf_doc,
1055"isinf(x) -> bool\n\
1056Checks if float x is infinite (positive or negative)");
1057
Barry Warsaw8b43b191996-12-09 22:32:36 +00001058static PyMethodDef math_methods[] = {
Thomas Wouters89f507f2006-12-13 04:49:30 +00001059 {"acos", math_acos, METH_O, math_acos_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001060 {"acosh", math_acosh, METH_O, math_acosh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001061 {"asin", math_asin, METH_O, math_asin_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001062 {"asinh", math_asinh, METH_O, math_asinh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001063 {"atan", math_atan, METH_O, math_atan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001064 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001065 {"atanh", math_atanh, METH_O, math_atanh_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001066 {"ceil", math_ceil, METH_O, math_ceil_doc},
Christian Heimes072c0f12008-01-03 23:01:04 +00001067 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001068 {"cos", math_cos, METH_O, math_cos_doc},
1069 {"cosh", math_cosh, METH_O, math_cosh_doc},
1070 {"degrees", math_degrees, METH_O, math_degrees_doc},
1071 {"exp", math_exp, METH_O, math_exp_doc},
1072 {"fabs", math_fabs, METH_O, math_fabs_doc},
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001073 {"factorial", math_factorial, METH_O, math_factorial_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001074 {"floor", math_floor, METH_O, math_floor_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001075 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001076 {"frexp", math_frexp, METH_O, math_frexp_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001077 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
Christian Heimes072c0f12008-01-03 23:01:04 +00001078 {"isinf", math_isinf, METH_O, math_isinf_doc},
1079 {"isnan", math_isnan, METH_O, math_isnan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001080 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
1081 {"log", math_log, METH_VARARGS, math_log_doc},
Christian Heimes53876d92008-04-19 00:31:39 +00001082 {"log1p", math_log1p, METH_O, math_log1p_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001083 {"log10", math_log10, METH_O, math_log10_doc},
1084 {"modf", math_modf, METH_O, math_modf_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001085 {"pow", math_pow, METH_VARARGS, math_pow_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001086 {"radians", math_radians, METH_O, math_radians_doc},
1087 {"sin", math_sin, METH_O, math_sin_doc},
1088 {"sinh", math_sinh, METH_O, math_sinh_doc},
1089 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001090 {"sum", math_sum, METH_O, math_sum_doc},
Thomas Wouters89f507f2006-12-13 04:49:30 +00001091 {"tan", math_tan, METH_O, math_tan_doc},
1092 {"tanh", math_tanh, METH_O, math_tanh_doc},
Christian Heimes400adb02008-02-01 08:12:03 +00001093 {"trunc", math_trunc, METH_O, math_trunc_doc},
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001094 {NULL, NULL} /* sentinel */
1095};
1096
Guido van Rossumc6e22901998-12-04 19:26:43 +00001097
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001098PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001099"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001100"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001101
Martin v. Löwis1a214512008-06-11 05:26:20 +00001102
1103static struct PyModuleDef mathmodule = {
1104 PyModuleDef_HEAD_INIT,
1105 "math",
1106 module_doc,
1107 -1,
1108 math_methods,
1109 NULL,
1110 NULL,
1111 NULL,
1112 NULL
1113};
1114
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001115PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00001116PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001117{
Christian Heimes53876d92008-04-19 00:31:39 +00001118 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001119
Martin v. Löwis1a214512008-06-11 05:26:20 +00001120 m = PyModule_Create(&mathmodule);
Neal Norwitz1ac754f2006-01-19 06:09:39 +00001121 if (m == NULL)
1122 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00001123
Christian Heimes53876d92008-04-19 00:31:39 +00001124 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1125 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00001126
Christian Heimes53876d92008-04-19 00:31:39 +00001127 finally:
Martin v. Löwis1a214512008-06-11 05:26:20 +00001128 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001129}