Antoine Pitrou | 074e5ed | 2009-11-10 19:50:40 +0000 | [diff] [blame] | 1 | /* |
| 2 | * Implementation of the Global Interpreter Lock (GIL). |
| 3 | */ |
| 4 | |
| 5 | #include <stdlib.h> |
| 6 | #include <errno.h> |
| 7 | |
| 8 | |
| 9 | /* First some general settings */ |
| 10 | |
| 11 | /* microseconds (the Python API uses seconds, though) */ |
| 12 | #define DEFAULT_INTERVAL 5000 |
| 13 | static unsigned long gil_interval = DEFAULT_INTERVAL; |
| 14 | #define INTERVAL (gil_interval >= 1 ? gil_interval : 1) |
| 15 | |
| 16 | /* Enable if you want to force the switching of threads at least every `gil_interval` */ |
| 17 | #undef FORCE_SWITCHING |
| 18 | #define FORCE_SWITCHING |
| 19 | |
| 20 | |
| 21 | /* |
| 22 | Notes about the implementation: |
| 23 | |
| 24 | - The GIL is just a boolean variable (gil_locked) whose access is protected |
| 25 | by a mutex (gil_mutex), and whose changes are signalled by a condition |
| 26 | variable (gil_cond). gil_mutex is taken for short periods of time, |
| 27 | and therefore mostly uncontended. |
| 28 | |
| 29 | - In the GIL-holding thread, the main loop (PyEval_EvalFrameEx) must be |
| 30 | able to release the GIL on demand by another thread. A volatile boolean |
| 31 | variable (gil_drop_request) is used for that purpose, which is checked |
| 32 | at every turn of the eval loop. That variable is set after a wait of |
| 33 | `interval` microseconds on `gil_cond` has timed out. |
| 34 | |
| 35 | [Actually, another volatile boolean variable (eval_breaker) is used |
| 36 | which ORs several conditions into one. Volatile booleans are |
| 37 | sufficient as inter-thread signalling means since Python is run |
| 38 | on cache-coherent architectures only.] |
| 39 | |
| 40 | - A thread wanting to take the GIL will first let pass a given amount of |
| 41 | time (`interval` microseconds) before setting gil_drop_request. This |
| 42 | encourages a defined switching period, but doesn't enforce it since |
| 43 | opcodes can take an arbitrary time to execute. |
| 44 | |
| 45 | The `interval` value is available for the user to read and modify |
| 46 | using the Python API `sys.{get,set}switchinterval()`. |
| 47 | |
| 48 | - When a thread releases the GIL and gil_drop_request is set, that thread |
| 49 | ensures that another GIL-awaiting thread gets scheduled. |
| 50 | It does so by waiting on a condition variable (switch_cond) until |
| 51 | the value of gil_last_holder is changed to something else than its |
| 52 | own thread state pointer, indicating that another thread was able to |
| 53 | take the GIL. |
| 54 | |
| 55 | This is meant to prohibit the latency-adverse behaviour on multi-core |
| 56 | machines where one thread would speculatively release the GIL, but still |
| 57 | run and end up being the first to re-acquire it, making the "timeslices" |
| 58 | much longer than expected. |
| 59 | (Note: this mechanism is enabled with FORCE_SWITCHING above) |
| 60 | */ |
| 61 | |
| 62 | #ifndef _POSIX_THREADS |
| 63 | /* This means pthreads are not implemented in libc headers, hence the macro |
| 64 | not present in unistd.h. But they still can be implemented as an external |
| 65 | library (e.g. gnu pth in pthread emulation) */ |
| 66 | # ifdef HAVE_PTHREAD_H |
| 67 | # include <pthread.h> /* _POSIX_THREADS */ |
| 68 | # endif |
| 69 | #endif |
| 70 | |
| 71 | |
| 72 | #ifdef _POSIX_THREADS |
| 73 | |
| 74 | /* |
| 75 | * POSIX support |
| 76 | */ |
| 77 | |
| 78 | #include <pthread.h> |
| 79 | |
| 80 | #define ADD_MICROSECONDS(tv, interval) \ |
| 81 | do { \ |
| 82 | tv.tv_usec += (long) interval; \ |
| 83 | tv.tv_sec += tv.tv_usec / 1000000; \ |
| 84 | tv.tv_usec %= 1000000; \ |
| 85 | } while (0) |
| 86 | |
| 87 | /* We assume all modern POSIX systems have gettimeofday() */ |
| 88 | #ifdef GETTIMEOFDAY_NO_TZ |
| 89 | #define GETTIMEOFDAY(ptv) gettimeofday(ptv) |
| 90 | #else |
| 91 | #define GETTIMEOFDAY(ptv) gettimeofday(ptv, (struct timezone *)NULL) |
| 92 | #endif |
| 93 | |
| 94 | #define MUTEX_T pthread_mutex_t |
| 95 | #define MUTEX_INIT(mut) \ |
| 96 | if (pthread_mutex_init(&mut, NULL)) { \ |
| 97 | Py_FatalError("pthread_mutex_init(" #mut ") failed"); }; |
| 98 | #define MUTEX_LOCK(mut) \ |
| 99 | if (pthread_mutex_lock(&mut)) { \ |
| 100 | Py_FatalError("pthread_mutex_lock(" #mut ") failed"); }; |
| 101 | #define MUTEX_UNLOCK(mut) \ |
| 102 | if (pthread_mutex_unlock(&mut)) { \ |
| 103 | Py_FatalError("pthread_mutex_unlock(" #mut ") failed"); }; |
| 104 | |
| 105 | #define COND_T pthread_cond_t |
| 106 | #define COND_INIT(cond) \ |
| 107 | if (pthread_cond_init(&cond, NULL)) { \ |
| 108 | Py_FatalError("pthread_cond_init(" #cond ") failed"); }; |
| 109 | #define COND_PREPARE(cond) |
| 110 | #define COND_SIGNAL(cond) \ |
| 111 | if (pthread_cond_signal(&cond)) { \ |
| 112 | Py_FatalError("pthread_cond_signal(" #cond ") failed"); }; |
| 113 | #define COND_WAIT(cond, mut) \ |
| 114 | if (pthread_cond_wait(&cond, &mut)) { \ |
| 115 | Py_FatalError("pthread_cond_wait(" #cond ") failed"); }; |
| 116 | #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ |
| 117 | { \ |
| 118 | int r; \ |
| 119 | struct timespec ts; \ |
| 120 | struct timeval deadline; \ |
| 121 | \ |
| 122 | GETTIMEOFDAY(&deadline); \ |
| 123 | ADD_MICROSECONDS(deadline, microseconds); \ |
| 124 | ts.tv_sec = deadline.tv_sec; \ |
| 125 | ts.tv_nsec = deadline.tv_usec * 1000; \ |
| 126 | \ |
| 127 | r = pthread_cond_timedwait(&cond, &mut, &ts); \ |
| 128 | if (r == ETIMEDOUT) \ |
| 129 | timeout_result = 1; \ |
| 130 | else if (r) \ |
| 131 | Py_FatalError("pthread_cond_timedwait(" #cond ") failed"); \ |
| 132 | else \ |
| 133 | timeout_result = 0; \ |
| 134 | } \ |
| 135 | |
| 136 | #elif defined(NT_THREADS) |
| 137 | |
| 138 | /* |
| 139 | * Windows (2000 and later, as well as (hopefully) CE) support |
| 140 | */ |
| 141 | |
| 142 | #include <windows.h> |
| 143 | |
| 144 | #define MUTEX_T HANDLE |
| 145 | #define MUTEX_INIT(mut) \ |
| 146 | if (!(mut = CreateMutex(NULL, FALSE, NULL))) { \ |
| 147 | Py_FatalError("CreateMutex(" #mut ") failed"); }; |
| 148 | #define MUTEX_LOCK(mut) \ |
| 149 | if (WaitForSingleObject(mut, INFINITE) != WAIT_OBJECT_0) { \ |
| 150 | Py_FatalError("WaitForSingleObject(" #mut ") failed"); }; |
| 151 | #define MUTEX_UNLOCK(mut) \ |
| 152 | if (!ReleaseMutex(mut)) { \ |
| 153 | Py_FatalError("ReleaseMutex(" #mut ") failed"); }; |
| 154 | |
| 155 | /* We emulate condition variables with events. It is sufficient here. |
| 156 | (WaitForMultipleObjects() allows the event to be caught and the mutex |
| 157 | to be taken atomically) */ |
| 158 | #define COND_T HANDLE |
| 159 | #define COND_INIT(cond) \ |
| 160 | /* auto-reset, non-signalled */ \ |
| 161 | if (!(cond = CreateEvent(NULL, FALSE, FALSE, NULL))) { \ |
| 162 | Py_FatalError("CreateMutex(" #cond ") failed"); }; |
| 163 | #define COND_PREPARE(cond) \ |
| 164 | if (!ResetEvent(cond)) { \ |
| 165 | Py_FatalError("ResetEvent(" #cond ") failed"); }; |
| 166 | #define COND_SIGNAL(cond) \ |
| 167 | if (!SetEvent(cond)) { \ |
| 168 | Py_FatalError("SetEvent(" #cond ") failed"); }; |
| 169 | #define COND_WAIT(cond, mut) \ |
| 170 | { \ |
| 171 | DWORD r; \ |
| 172 | HANDLE objects[2] = { cond, mut }; \ |
| 173 | MUTEX_UNLOCK(mut); \ |
| 174 | r = WaitForMultipleObjects(2, objects, TRUE, INFINITE); \ |
| 175 | if (r != WAIT_OBJECT_0) \ |
| 176 | Py_FatalError("WaitForSingleObject(" #cond ") failed"); \ |
| 177 | } |
| 178 | #define COND_TIMED_WAIT(cond, mut, microseconds, timeout_result) \ |
| 179 | { \ |
| 180 | DWORD r; \ |
| 181 | HANDLE objects[2] = { cond, mut }; \ |
| 182 | MUTEX_UNLOCK(mut); \ |
| 183 | r = WaitForMultipleObjects(2, objects, TRUE, microseconds / 1000); \ |
| 184 | if (r == WAIT_TIMEOUT) { \ |
| 185 | MUTEX_LOCK(mut); \ |
| 186 | timeout_result = 1; \ |
| 187 | } \ |
| 188 | else if (r != WAIT_OBJECT_0) \ |
| 189 | Py_FatalError("WaitForSingleObject(" #cond ") failed"); \ |
| 190 | else \ |
| 191 | timeout_result = 0; \ |
| 192 | } |
| 193 | |
| 194 | #else |
| 195 | |
| 196 | #error You need either a POSIX-compatible or a Windows system! |
| 197 | |
| 198 | #endif /* _POSIX_THREADS, NT_THREADS */ |
| 199 | |
| 200 | |
| 201 | /* Whether the GIL is already taken (-1 if uninitialized). This is volatile |
| 202 | because it can be read without any lock taken in ceval.c. */ |
| 203 | static volatile int gil_locked = -1; |
| 204 | /* Number of GIL switches since the beginning. */ |
| 205 | static unsigned long gil_switch_number = 0; |
| 206 | /* Last thread holding / having held the GIL. This helps us know whether |
| 207 | anyone else was scheduled after we dropped the GIL. */ |
| 208 | static PyThreadState *gil_last_holder = NULL; |
| 209 | |
| 210 | /* This condition variable allows one or several threads to wait until |
| 211 | the GIL is released. In addition, the mutex also protects the above |
| 212 | variables. */ |
| 213 | static COND_T gil_cond; |
| 214 | static MUTEX_T gil_mutex; |
| 215 | |
| 216 | #ifdef FORCE_SWITCHING |
| 217 | /* This condition variable helps the GIL-releasing thread wait for |
| 218 | a GIL-awaiting thread to be scheduled and take the GIL. */ |
| 219 | static COND_T switch_cond; |
| 220 | static MUTEX_T switch_mutex; |
| 221 | #endif |
| 222 | |
| 223 | |
| 224 | static int gil_created(void) |
| 225 | { |
| 226 | return gil_locked >= 0; |
| 227 | } |
| 228 | |
| 229 | static void create_gil(void) |
| 230 | { |
| 231 | MUTEX_INIT(gil_mutex); |
| 232 | #ifdef FORCE_SWITCHING |
| 233 | MUTEX_INIT(switch_mutex); |
| 234 | #endif |
| 235 | COND_INIT(gil_cond); |
| 236 | #ifdef FORCE_SWITCHING |
| 237 | COND_INIT(switch_cond); |
| 238 | #endif |
| 239 | gil_locked = 0; |
| 240 | gil_last_holder = NULL; |
| 241 | } |
| 242 | |
| 243 | static void recreate_gil(void) |
| 244 | { |
| 245 | create_gil(); |
| 246 | } |
| 247 | |
| 248 | static void drop_gil(PyThreadState *tstate) |
| 249 | { |
| 250 | /* NOTE: tstate is allowed to be NULL. */ |
| 251 | if (!gil_locked) |
| 252 | Py_FatalError("drop_gil: GIL is not locked"); |
| 253 | if (tstate != NULL && tstate != gil_last_holder) |
| 254 | Py_FatalError("drop_gil: wrong thread state"); |
| 255 | |
| 256 | MUTEX_LOCK(gil_mutex); |
| 257 | gil_locked = 0; |
| 258 | COND_SIGNAL(gil_cond); |
| 259 | #ifdef FORCE_SWITCHING |
| 260 | COND_PREPARE(switch_cond); |
| 261 | #endif |
| 262 | MUTEX_UNLOCK(gil_mutex); |
| 263 | |
| 264 | #ifdef FORCE_SWITCHING |
| 265 | if (gil_drop_request) { |
| 266 | MUTEX_LOCK(switch_mutex); |
| 267 | /* Not switched yet => wait */ |
| 268 | if (gil_last_holder == tstate) |
| 269 | COND_WAIT(switch_cond, switch_mutex); |
| 270 | MUTEX_UNLOCK(switch_mutex); |
| 271 | } |
| 272 | #endif |
| 273 | } |
| 274 | |
| 275 | static void take_gil(PyThreadState *tstate) |
| 276 | { |
| 277 | int err; |
| 278 | if (tstate == NULL) |
| 279 | Py_FatalError("take_gil: NULL tstate"); |
| 280 | |
| 281 | err = errno; |
| 282 | MUTEX_LOCK(gil_mutex); |
| 283 | |
| 284 | if (!gil_locked) |
| 285 | goto _ready; |
| 286 | |
| 287 | COND_PREPARE(gil_cond); |
| 288 | while (gil_locked) { |
| 289 | int timed_out = 0; |
| 290 | unsigned long saved_switchnum; |
| 291 | |
| 292 | saved_switchnum = gil_switch_number; |
| 293 | COND_TIMED_WAIT(gil_cond, gil_mutex, INTERVAL, timed_out); |
| 294 | /* If we timed out and no switch occurred in the meantime, it is time |
| 295 | to ask the GIL-holding thread to drop it. */ |
| 296 | if (timed_out && gil_locked && gil_switch_number == saved_switchnum) { |
| 297 | SET_GIL_DROP_REQUEST(); |
| 298 | } |
| 299 | } |
| 300 | _ready: |
| 301 | #ifdef FORCE_SWITCHING |
| 302 | /* This mutex must be taken before modifying gil_last_holder (see drop_gil()). */ |
| 303 | MUTEX_LOCK(switch_mutex); |
| 304 | #endif |
| 305 | /* We now hold the GIL */ |
| 306 | gil_locked = 1; |
| 307 | |
| 308 | if (tstate != gil_last_holder) { |
| 309 | gil_last_holder = tstate; |
| 310 | ++gil_switch_number; |
| 311 | } |
| 312 | #ifdef FORCE_SWITCHING |
| 313 | COND_SIGNAL(switch_cond); |
| 314 | MUTEX_UNLOCK(switch_mutex); |
| 315 | #endif |
| 316 | if (gil_drop_request) { |
| 317 | RESET_GIL_DROP_REQUEST(); |
| 318 | } |
| 319 | if (tstate->async_exc != NULL) { |
| 320 | _PyEval_SignalAsyncExc(); |
| 321 | } |
| 322 | |
| 323 | MUTEX_UNLOCK(gil_mutex); |
| 324 | errno = err; |
| 325 | } |
| 326 | |
| 327 | void _PyEval_SetSwitchInterval(unsigned long microseconds) |
| 328 | { |
| 329 | gil_interval = microseconds; |
| 330 | } |
| 331 | |
| 332 | unsigned long _PyEval_GetSwitchInterval() |
| 333 | { |
| 334 | return gil_interval; |
| 335 | } |