blob: 5d6f951a1c00529edb59637dab938f9e668ec76d [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
Mark Dickinson603b7532010-04-06 19:55:03 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000038
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
Ezio Melotti40507922013-01-11 09:09:07 +020080.. testsetup::
81 >>> from math import fsum
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000082
83 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000085
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000087 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000088 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
89 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000090
Raymond Hettingerf3936f82009-02-19 05:48:05 +000091 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
92 typical case where the rounding mode is half-even. On some non-Windows
93 builds, the underlying C library uses extended precision addition and may
94 occasionally double-round an intermediate sum causing it to be off in its
95 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000096
Raymond Hettinger477be822009-02-19 06:44:30 +000097 For further discussion and two alternative approaches, see the `ASPN cookbook
98 recipes for accurate floating point summation
99 <http://code.activestate.com/recipes/393090/>`_\.
100
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000101
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000102.. function:: isfinite(x)
103
104 Return ``True`` if *x* is neither an infinity nor a NaN, and
105 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
106
Mark Dickinsonc7622422010-07-11 19:47:37 +0000107 .. versionadded:: 3.2
108
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000109
Christian Heimes072c0f12008-01-03 23:01:04 +0000110.. function:: isinf(x)
111
Mark Dickinsonc7622422010-07-11 19:47:37 +0000112 Return ``True`` if *x* is a positive or negative infinity, and
113 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000114
Christian Heimes072c0f12008-01-03 23:01:04 +0000115
116.. function:: isnan(x)
117
Mark Dickinsonc7622422010-07-11 19:47:37 +0000118 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000119
Christian Heimes072c0f12008-01-03 23:01:04 +0000120
Georg Brandl116aa622007-08-15 14:28:22 +0000121.. function:: ldexp(x, i)
122
123 Return ``x * (2**i)``. This is essentially the inverse of function
124 :func:`frexp`.
125
126
127.. function:: modf(x)
128
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000129 Return the fractional and integer parts of *x*. Both results carry the sign
130 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000131
Christian Heimes400adb02008-02-01 08:12:03 +0000132
133.. function:: trunc(x)
134
135 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000136 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000137
Christian Heimes400adb02008-02-01 08:12:03 +0000138
Georg Brandl116aa622007-08-15 14:28:22 +0000139Note that :func:`frexp` and :func:`modf` have a different call/return pattern
140than their C equivalents: they take a single argument and return a pair of
141values, rather than returning their second return value through an 'output
142parameter' (there is no such thing in Python).
143
144For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
145floating-point numbers of sufficiently large magnitude are exact integers.
146Python floats typically carry no more than 53 bits of precision (the same as the
147platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
148necessarily has no fractional bits.
149
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000150
151Power and logarithmic functions
152-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000153
Georg Brandl116aa622007-08-15 14:28:22 +0000154.. function:: exp(x)
155
156 Return ``e**x``.
157
158
Mark Dickinson664b5112009-12-16 20:23:42 +0000159.. function:: expm1(x)
160
Raymond Hettinger1081d482011-03-31 12:04:53 -0700161 Return ``e**x - 1``. For small floats *x*, the subtraction in ``exp(x) - 1``
162 can result in a `significant loss of precision
163 <http://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
164 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000165
166 >>> from math import exp, expm1
167 >>> exp(1e-5) - 1 # gives result accurate to 11 places
168 1.0000050000069649e-05
169 >>> expm1(1e-5) # result accurate to full precision
170 1.0000050000166668e-05
171
Mark Dickinson45f992a2009-12-19 11:20:49 +0000172 .. versionadded:: 3.2
173
Mark Dickinson664b5112009-12-16 20:23:42 +0000174
Georg Brandl116aa622007-08-15 14:28:22 +0000175.. function:: log(x[, base])
176
Georg Brandla6053b42009-09-01 08:11:14 +0000177 With one argument, return the natural logarithm of *x* (to base *e*).
178
179 With two arguments, return the logarithm of *x* to the given *base*,
180 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000181
Georg Brandl116aa622007-08-15 14:28:22 +0000182
Christian Heimes53876d92008-04-19 00:31:39 +0000183.. function:: log1p(x)
184
185 Return the natural logarithm of *1+x* (base *e*). The
186 result is calculated in a way which is accurate for *x* near zero.
187
Christian Heimes53876d92008-04-19 00:31:39 +0000188
Georg Brandl116aa622007-08-15 14:28:22 +0000189.. function:: log10(x)
190
Georg Brandla6053b42009-09-01 08:11:14 +0000191 Return the base-10 logarithm of *x*. This is usually more accurate
192 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000193
194
195.. function:: pow(x, y)
196
Christian Heimesa342c012008-04-20 21:01:16 +0000197 Return ``x`` raised to the power ``y``. Exceptional cases follow
198 Annex 'F' of the C99 standard as far as possible. In particular,
199 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
200 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
201 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
202 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000203
Georg Brandl116aa622007-08-15 14:28:22 +0000204
205.. function:: sqrt(x)
206
207 Return the square root of *x*.
208
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000209Trigonometric functions
210-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000211
212
213.. function:: acos(x)
214
215 Return the arc cosine of *x*, in radians.
216
217
218.. function:: asin(x)
219
220 Return the arc sine of *x*, in radians.
221
222
223.. function:: atan(x)
224
225 Return the arc tangent of *x*, in radians.
226
227
228.. function:: atan2(y, x)
229
230 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
231 The vector in the plane from the origin to point ``(x, y)`` makes this angle
232 with the positive X axis. The point of :func:`atan2` is that the signs of both
233 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000234 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000235 -1)`` is ``-3*pi/4``.
236
237
238.. function:: cos(x)
239
240 Return the cosine of *x* radians.
241
242
243.. function:: hypot(x, y)
244
245 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
246 from the origin to point ``(x, y)``.
247
248
249.. function:: sin(x)
250
251 Return the sine of *x* radians.
252
253
254.. function:: tan(x)
255
256 Return the tangent of *x* radians.
257
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000258Angular conversion
259------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000260
261
262.. function:: degrees(x)
263
264 Converts angle *x* from radians to degrees.
265
266
267.. function:: radians(x)
268
269 Converts angle *x* from degrees to radians.
270
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000271Hyperbolic functions
272--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000273
Raymond Hettinger1081d482011-03-31 12:04:53 -0700274`Hyperbolic functions <http://en.wikipedia.org/wiki/Hyperbolic_function>`_
275are analogs of trigonometric functions that are based on hyperbolas
276instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000277
Christian Heimesa342c012008-04-20 21:01:16 +0000278.. function:: acosh(x)
279
280 Return the inverse hyperbolic cosine of *x*.
281
Christian Heimesa342c012008-04-20 21:01:16 +0000282
283.. function:: asinh(x)
284
285 Return the inverse hyperbolic sine of *x*.
286
Christian Heimesa342c012008-04-20 21:01:16 +0000287
288.. function:: atanh(x)
289
290 Return the inverse hyperbolic tangent of *x*.
291
Christian Heimesa342c012008-04-20 21:01:16 +0000292
Georg Brandl116aa622007-08-15 14:28:22 +0000293.. function:: cosh(x)
294
295 Return the hyperbolic cosine of *x*.
296
297
298.. function:: sinh(x)
299
300 Return the hyperbolic sine of *x*.
301
302
303.. function:: tanh(x)
304
305 Return the hyperbolic tangent of *x*.
306
Christian Heimes53876d92008-04-19 00:31:39 +0000307
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000308Special functions
309-----------------
310
Mark Dickinson45f992a2009-12-19 11:20:49 +0000311.. function:: erf(x)
312
Raymond Hettinger1081d482011-03-31 12:04:53 -0700313 Return the `error function <http://en.wikipedia.org/wiki/Error_function>`_ at
314 *x*.
315
316 The :func:`erf` function can be used to compute traditional statistical
317 functions such as the `cumulative standard normal distribution
318 <http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
319
320 def phi(x):
321 'Cumulative distribution function for the standard normal distribution'
322 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000323
324 .. versionadded:: 3.2
325
326
327.. function:: erfc(x)
328
Raymond Hettinger1081d482011-03-31 12:04:53 -0700329 Return the complementary error function at *x*. The `complementary error
330 function <http://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700331 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
332 from one would cause a `loss of significance
Raymond Hettinger1081d482011-03-31 12:04:53 -0700333 <http://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000334
335 .. versionadded:: 3.2
336
337
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000338.. function:: gamma(x)
339
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700340 Return the `Gamma function <http://en.wikipedia.org/wiki/Gamma_function>`_ at
341 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000342
Mark Dickinson56e09662009-10-01 16:13:29 +0000343 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000344
345
Mark Dickinson05d2e082009-12-11 20:17:17 +0000346.. function:: lgamma(x)
347
348 Return the natural logarithm of the absolute value of the Gamma
349 function at *x*.
350
Mark Dickinson45f992a2009-12-19 11:20:49 +0000351 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000352
353
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000354Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000355---------
Georg Brandl116aa622007-08-15 14:28:22 +0000356
357.. data:: pi
358
Mark Dickinson603b7532010-04-06 19:55:03 +0000359 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000360
361
362.. data:: e
363
Mark Dickinson603b7532010-04-06 19:55:03 +0000364 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000365
Christian Heimes53876d92008-04-19 00:31:39 +0000366
Georg Brandl495f7b52009-10-27 15:28:25 +0000367.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000368
369 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000370 math library functions. Behavior in exceptional cases follows Annex F of
371 the C99 standard where appropriate. The current implementation will raise
372 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
373 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
374 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000375 ``exp(1000.0)``). A NaN will not be returned from any of the functions
376 above unless one or more of the input arguments was a NaN; in that case,
377 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000378 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
379 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000380
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000381 Note that Python makes no effort to distinguish signaling NaNs from
382 quiet NaNs, and behavior for signaling NaNs remains unspecified.
383 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000384
Georg Brandl116aa622007-08-15 14:28:22 +0000385
386.. seealso::
387
388 Module :mod:`cmath`
389 Complex number versions of many of these functions.