blob: da38305aa43c36fdcf41063c343a1d4089b8c795 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
24Number-theoretic and representation functions:
25
26
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
82 loss of precision by tracking multiple intermediate partial sums. The
83 algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
84 typical case where the rounding mode is half-even.
85
86 .. note::
87
Mark Dickinson4aab7112008-08-01 09:14:03 +000088 The accuracy of fsum() may be impaired on builds that use
89 extended precision addition and then double-round the results.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000090
91 .. versionadded:: 2.6
92
93
Christian Heimes072c0f12008-01-03 23:01:04 +000094.. function:: isinf(x)
95
96 Checks if the float *x* is positive or negative infinite.
97
Christian Heimes072c0f12008-01-03 23:01:04 +000098
99.. function:: isnan(x)
100
101 Checks if the float *x* is a NaN (not a number). NaNs are part of the
102 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
103 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
104 a NaN.
105
Christian Heimes072c0f12008-01-03 23:01:04 +0000106
Georg Brandl116aa622007-08-15 14:28:22 +0000107.. function:: ldexp(x, i)
108
109 Return ``x * (2**i)``. This is essentially the inverse of function
110 :func:`frexp`.
111
112
113.. function:: modf(x)
114
115 Return the fractional and integer parts of *x*. Both results carry the sign of
116 *x*, and both are floats.
117
Christian Heimes400adb02008-02-01 08:12:03 +0000118
119.. function:: trunc(x)
120
121 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
122 a long integer). Delegates to ``x.__trunc__()``.
123
Christian Heimes400adb02008-02-01 08:12:03 +0000124
Georg Brandl116aa622007-08-15 14:28:22 +0000125Note that :func:`frexp` and :func:`modf` have a different call/return pattern
126than their C equivalents: they take a single argument and return a pair of
127values, rather than returning their second return value through an 'output
128parameter' (there is no such thing in Python).
129
130For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
131floating-point numbers of sufficiently large magnitude are exact integers.
132Python floats typically carry no more than 53 bits of precision (the same as the
133platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
134necessarily has no fractional bits.
135
136Power and logarithmic functions:
137
Georg Brandl116aa622007-08-15 14:28:22 +0000138.. function:: exp(x)
139
140 Return ``e**x``.
141
142
143.. function:: log(x[, base])
144
145 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
146 return the natural logarithm of *x* (that is, the logarithm to base *e*).
147
Georg Brandl116aa622007-08-15 14:28:22 +0000148
Christian Heimes53876d92008-04-19 00:31:39 +0000149.. function:: log1p(x)
150
151 Return the natural logarithm of *1+x* (base *e*). The
152 result is calculated in a way which is accurate for *x* near zero.
153
Christian Heimes53876d92008-04-19 00:31:39 +0000154
Georg Brandl116aa622007-08-15 14:28:22 +0000155.. function:: log10(x)
156
157 Return the base-10 logarithm of *x*.
158
159
160.. function:: pow(x, y)
161
Christian Heimesa342c012008-04-20 21:01:16 +0000162 Return ``x`` raised to the power ``y``. Exceptional cases follow
163 Annex 'F' of the C99 standard as far as possible. In particular,
164 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
165 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
166 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
167 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000168
Georg Brandl116aa622007-08-15 14:28:22 +0000169
170.. function:: sqrt(x)
171
172 Return the square root of *x*.
173
174Trigonometric functions:
175
176
177.. function:: acos(x)
178
179 Return the arc cosine of *x*, in radians.
180
181
182.. function:: asin(x)
183
184 Return the arc sine of *x*, in radians.
185
186
187.. function:: atan(x)
188
189 Return the arc tangent of *x*, in radians.
190
191
192.. function:: atan2(y, x)
193
194 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
195 The vector in the plane from the origin to point ``(x, y)`` makes this angle
196 with the positive X axis. The point of :func:`atan2` is that the signs of both
197 inputs are known to it, so it can compute the correct quadrant for the angle.
198 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
199 -1)`` is ``-3*pi/4``.
200
201
202.. function:: cos(x)
203
204 Return the cosine of *x* radians.
205
206
207.. function:: hypot(x, y)
208
209 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
210 from the origin to point ``(x, y)``.
211
212
213.. function:: sin(x)
214
215 Return the sine of *x* radians.
216
217
218.. function:: tan(x)
219
220 Return the tangent of *x* radians.
221
222Angular conversion:
223
224
225.. function:: degrees(x)
226
227 Converts angle *x* from radians to degrees.
228
229
230.. function:: radians(x)
231
232 Converts angle *x* from degrees to radians.
233
234Hyperbolic functions:
235
236
Christian Heimesa342c012008-04-20 21:01:16 +0000237.. function:: acosh(x)
238
239 Return the inverse hyperbolic cosine of *x*.
240
Christian Heimesa342c012008-04-20 21:01:16 +0000241
242.. function:: asinh(x)
243
244 Return the inverse hyperbolic sine of *x*.
245
Christian Heimesa342c012008-04-20 21:01:16 +0000246
247.. function:: atanh(x)
248
249 Return the inverse hyperbolic tangent of *x*.
250
Christian Heimesa342c012008-04-20 21:01:16 +0000251
Georg Brandl116aa622007-08-15 14:28:22 +0000252.. function:: cosh(x)
253
254 Return the hyperbolic cosine of *x*.
255
256
257.. function:: sinh(x)
258
259 Return the hyperbolic sine of *x*.
260
261
262.. function:: tanh(x)
263
264 Return the hyperbolic tangent of *x*.
265
Christian Heimes53876d92008-04-19 00:31:39 +0000266
Christian Heimes53876d92008-04-19 00:31:39 +0000267
Georg Brandl116aa622007-08-15 14:28:22 +0000268The module also defines two mathematical constants:
269
270
271.. data:: pi
272
273 The mathematical constant *pi*.
274
275
276.. data:: e
277
278 The mathematical constant *e*.
279
Christian Heimes53876d92008-04-19 00:31:39 +0000280
Georg Brandl116aa622007-08-15 14:28:22 +0000281.. note::
282
283 The :mod:`math` module consists mostly of thin wrappers around the platform C
284 math library functions. Behavior in exceptional cases is loosely specified
285 by the C standards, and Python inherits much of its math-function
286 error-reporting behavior from the platform C implementation. As a result,
287 the specific exceptions raised in error cases (and even whether some
288 arguments are considered to be exceptional at all) are not defined in any
289 useful cross-platform or cross-release way. For example, whether
290 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
291 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
292 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
293
Christian Heimesa342c012008-04-20 21:01:16 +0000294 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Christian Heimes53876d92008-04-19 00:31:39 +0000295 Signaling *NaN*s raise an exception. The exception type still depends on the
296 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
297 and :exc:`OverflowError` for errno *ERANGE*.
298
Georg Brandl116aa622007-08-15 14:28:22 +0000299
300.. seealso::
301
302 Module :mod:`cmath`
303 Complex number versions of many of these functions.