blob: d57ad90b107a016560b089b6c616b6be5a47dacc [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson664b5112009-12-16 20:23:42 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Christian Heimes969fe572008-01-25 11:23:10 +000058#ifdef _OSF_SOURCE
59/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60extern double copysign(double, double);
61#endif
62
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000063/*
64 sin(pi*x), giving accurate results for all finite x (especially x
65 integral or close to an integer). This is here for use in the
66 reflection formula for the gamma function. It conforms to IEEE
67 754-2008 for finite arguments, but not for infinities or nans.
68*/
Tim Petersa40c7932001-09-05 22:36:56 +000069
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000070static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson45f992a2009-12-19 11:20:49 +000071static const double sqrtpi = 1.772453850905516027298167483341145182798;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000072
73static double
74sinpi(double x)
75{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +000076 double y, r;
77 int n;
78 /* this function should only ever be called for finite arguments */
79 assert(Py_IS_FINITE(x));
80 y = fmod(fabs(x), 2.0);
81 n = (int)round(2.0*y);
82 assert(0 <= n && n <= 4);
83 switch (n) {
84 case 0:
85 r = sin(pi*y);
86 break;
87 case 1:
88 r = cos(pi*(y-0.5));
89 break;
90 case 2:
91 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
92 -0.0 instead of 0.0 when y == 1.0. */
93 r = sin(pi*(1.0-y));
94 break;
95 case 3:
96 r = -cos(pi*(y-1.5));
97 break;
98 case 4:
99 r = sin(pi*(y-2.0));
100 break;
101 default:
102 assert(0); /* should never get here */
103 r = -1.23e200; /* silence gcc warning */
104 }
105 return copysign(1.0, x)*r;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000106}
107
108/* Implementation of the real gamma function. In extensive but non-exhaustive
109 random tests, this function proved accurate to within <= 10 ulps across the
110 entire float domain. Note that accuracy may depend on the quality of the
111 system math functions, the pow function in particular. Special cases
112 follow C99 annex F. The parameters and method are tailored to platforms
113 whose double format is the IEEE 754 binary64 format.
114
115 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
116 and g=6.024680040776729583740234375; these parameters are amongst those
117 used by the Boost library. Following Boost (again), we re-express the
118 Lanczos sum as a rational function, and compute it that way. The
119 coefficients below were computed independently using MPFR, and have been
120 double-checked against the coefficients in the Boost source code.
121
122 For x < 0.0 we use the reflection formula.
123
124 There's one minor tweak that deserves explanation: Lanczos' formula for
125 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
126 values, x+g-0.5 can be represented exactly. However, in cases where it
127 can't be represented exactly the small error in x+g-0.5 can be magnified
128 significantly by the pow and exp calls, especially for large x. A cheap
129 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
130 involved in the computation of x+g-0.5 (that is, e = computed value of
131 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
132
133 Correction factor
134 -----------------
135 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
136 double, and e is tiny. Then:
137
138 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
139 = pow(y, x-0.5)/exp(y) * C,
140
141 where the correction_factor C is given by
142
143 C = pow(1-e/y, x-0.5) * exp(e)
144
145 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
146
147 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
148
149 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
150
151 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
152
153 Note that for accuracy, when computing r*C it's better to do
154
155 r + e*g/y*r;
156
157 than
158
159 r * (1 + e*g/y);
160
161 since the addition in the latter throws away most of the bits of
162 information in e*g/y.
163*/
164
165#define LANCZOS_N 13
166static const double lanczos_g = 6.024680040776729583740234375;
167static const double lanczos_g_minus_half = 5.524680040776729583740234375;
168static const double lanczos_num_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000169 23531376880.410759688572007674451636754734846804940,
170 42919803642.649098768957899047001988850926355848959,
171 35711959237.355668049440185451547166705960488635843,
172 17921034426.037209699919755754458931112671403265390,
173 6039542586.3520280050642916443072979210699388420708,
174 1439720407.3117216736632230727949123939715485786772,
175 248874557.86205415651146038641322942321632125127801,
176 31426415.585400194380614231628318205362874684987640,
177 2876370.6289353724412254090516208496135991145378768,
178 186056.26539522349504029498971604569928220784236328,
179 8071.6720023658162106380029022722506138218516325024,
180 210.82427775157934587250973392071336271166969580291,
181 2.5066282746310002701649081771338373386264310793408
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000182};
183
184/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
185static const double lanczos_den_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000186 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
187 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000188
189/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
190#define NGAMMA_INTEGRAL 23
191static const double gamma_integral[NGAMMA_INTEGRAL] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000192 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
193 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
194 1307674368000.0, 20922789888000.0, 355687428096000.0,
195 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
196 51090942171709440000.0, 1124000727777607680000.0,
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000197};
198
199/* Lanczos' sum L_g(x), for positive x */
200
201static double
202lanczos_sum(double x)
203{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000204 double num = 0.0, den = 0.0;
205 int i;
206 assert(x > 0.0);
207 /* evaluate the rational function lanczos_sum(x). For large
208 x, the obvious algorithm risks overflow, so we instead
209 rescale the denominator and numerator of the rational
210 function by x**(1-LANCZOS_N) and treat this as a
211 rational function in 1/x. This also reduces the error for
212 larger x values. The choice of cutoff point (5.0 below) is
213 somewhat arbitrary; in tests, smaller cutoff values than
214 this resulted in lower accuracy. */
215 if (x < 5.0) {
216 for (i = LANCZOS_N; --i >= 0; ) {
217 num = num * x + lanczos_num_coeffs[i];
218 den = den * x + lanczos_den_coeffs[i];
219 }
220 }
221 else {
222 for (i = 0; i < LANCZOS_N; i++) {
223 num = num / x + lanczos_num_coeffs[i];
224 den = den / x + lanczos_den_coeffs[i];
225 }
226 }
227 return num/den;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000228}
229
230static double
231m_tgamma(double x)
232{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000233 double absx, r, y, z, sqrtpow;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000234
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000235 /* special cases */
236 if (!Py_IS_FINITE(x)) {
237 if (Py_IS_NAN(x) || x > 0.0)
238 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
239 else {
240 errno = EDOM;
241 return Py_NAN; /* tgamma(-inf) = nan, invalid */
242 }
243 }
244 if (x == 0.0) {
245 errno = EDOM;
246 return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
247 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000248
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000249 /* integer arguments */
250 if (x == floor(x)) {
251 if (x < 0.0) {
252 errno = EDOM; /* tgamma(n) = nan, invalid for */
253 return Py_NAN; /* negative integers n */
254 }
255 if (x <= NGAMMA_INTEGRAL)
256 return gamma_integral[(int)x - 1];
257 }
258 absx = fabs(x);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000259
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000260 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
261 if (absx < 1e-20) {
262 r = 1.0/x;
263 if (Py_IS_INFINITY(r))
264 errno = ERANGE;
265 return r;
266 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000267
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000268 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
269 x > 200, and underflows to +-0.0 for x < -200, not a negative
270 integer. */
271 if (absx > 200.0) {
272 if (x < 0.0) {
273 return 0.0/sinpi(x);
274 }
275 else {
276 errno = ERANGE;
277 return Py_HUGE_VAL;
278 }
279 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000280
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000281 y = absx + lanczos_g_minus_half;
282 /* compute error in sum */
283 if (absx > lanczos_g_minus_half) {
284 /* note: the correction can be foiled by an optimizing
285 compiler that (incorrectly) thinks that an expression like
286 a + b - a - b can be optimized to 0.0. This shouldn't
287 happen in a standards-conforming compiler. */
288 double q = y - absx;
289 z = q - lanczos_g_minus_half;
290 }
291 else {
292 double q = y - lanczos_g_minus_half;
293 z = q - absx;
294 }
295 z = z * lanczos_g / y;
296 if (x < 0.0) {
297 r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
298 r -= z * r;
299 if (absx < 140.0) {
300 r /= pow(y, absx - 0.5);
301 }
302 else {
303 sqrtpow = pow(y, absx / 2.0 - 0.25);
304 r /= sqrtpow;
305 r /= sqrtpow;
306 }
307 }
308 else {
309 r = lanczos_sum(absx) / exp(y);
310 r += z * r;
311 if (absx < 140.0) {
312 r *= pow(y, absx - 0.5);
313 }
314 else {
315 sqrtpow = pow(y, absx / 2.0 - 0.25);
316 r *= sqrtpow;
317 r *= sqrtpow;
318 }
319 }
320 if (Py_IS_INFINITY(r))
321 errno = ERANGE;
322 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000323}
324
Christian Heimes53876d92008-04-19 00:31:39 +0000325/*
Mark Dickinson05d2e082009-12-11 20:17:17 +0000326 lgamma: natural log of the absolute value of the Gamma function.
327 For large arguments, Lanczos' formula works extremely well here.
328*/
329
330static double
331m_lgamma(double x)
332{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000333 double r, absx;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000334
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000335 /* special cases */
336 if (!Py_IS_FINITE(x)) {
337 if (Py_IS_NAN(x))
338 return x; /* lgamma(nan) = nan */
339 else
340 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
341 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000342
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000343 /* integer arguments */
344 if (x == floor(x) && x <= 2.0) {
345 if (x <= 0.0) {
346 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
347 return Py_HUGE_VAL; /* integers n <= 0 */
348 }
349 else {
350 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
351 }
352 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000353
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000354 absx = fabs(x);
355 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
356 if (absx < 1e-20)
357 return -log(absx);
Mark Dickinson05d2e082009-12-11 20:17:17 +0000358
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000359 /* Lanczos' formula */
360 if (x > 0.0) {
361 /* we could save a fraction of a ulp in accuracy by having a
362 second set of numerator coefficients for lanczos_sum that
363 absorbed the exp(-lanczos_g) term, and throwing out the
364 lanczos_g subtraction below; it's probably not worth it. */
365 r = log(lanczos_sum(x)) - lanczos_g +
366 (x-0.5)*(log(x+lanczos_g-0.5)-1);
367 }
368 else {
369 r = log(pi) - log(fabs(sinpi(absx))) - log(absx) -
370 (log(lanczos_sum(absx)) - lanczos_g +
371 (absx-0.5)*(log(absx+lanczos_g-0.5)-1));
372 }
373 if (Py_IS_INFINITY(r))
374 errno = ERANGE;
375 return r;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000376}
377
Mark Dickinson45f992a2009-12-19 11:20:49 +0000378/*
379 Implementations of the error function erf(x) and the complementary error
380 function erfc(x).
381
382 Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
383 Cambridge University Press), we use a series approximation for erf for
384 small x, and a continued fraction approximation for erfc(x) for larger x;
385 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
386 this gives us erf(x) and erfc(x) for all x.
387
388 The series expansion used is:
389
390 erf(x) = x*exp(-x*x)/sqrt(pi) * [
391 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
392
393 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
394 This series converges well for smallish x, but slowly for larger x.
395
396 The continued fraction expansion used is:
397
398 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
399 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
400
401 after the first term, the general term has the form:
402
403 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
404
405 This expansion converges fast for larger x, but convergence becomes
406 infinitely slow as x approaches 0.0. The (somewhat naive) continued
407 fraction evaluation algorithm used below also risks overflow for large x;
408 but for large x, erfc(x) == 0.0 to within machine precision. (For
409 example, erfc(30.0) is approximately 2.56e-393).
410
411 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
412 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
413 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
414 numbers of terms to use for the relevant expansions. */
415
416#define ERF_SERIES_CUTOFF 1.5
417#define ERF_SERIES_TERMS 25
418#define ERFC_CONTFRAC_CUTOFF 30.0
419#define ERFC_CONTFRAC_TERMS 50
420
421/*
422 Error function, via power series.
423
424 Given a finite float x, return an approximation to erf(x).
425 Converges reasonably fast for small x.
426*/
427
428static double
429m_erf_series(double x)
430{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000431 double x2, acc, fk;
432 int i;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000433
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000434 x2 = x * x;
435 acc = 0.0;
436 fk = (double)ERF_SERIES_TERMS + 0.5;
437 for (i = 0; i < ERF_SERIES_TERMS; i++) {
438 acc = 2.0 + x2 * acc / fk;
439 fk -= 1.0;
440 }
441 return acc * x * exp(-x2) / sqrtpi;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000442}
443
444/*
445 Complementary error function, via continued fraction expansion.
446
447 Given a positive float x, return an approximation to erfc(x). Converges
448 reasonably fast for x large (say, x > 2.0), and should be safe from
449 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
450 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
451 than the smallest representable nonzero float. */
452
453static double
454m_erfc_contfrac(double x)
455{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000456 double x2, a, da, p, p_last, q, q_last, b;
457 int i;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000458
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000459 if (x >= ERFC_CONTFRAC_CUTOFF)
460 return 0.0;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000461
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000462 x2 = x*x;
463 a = 0.0;
464 da = 0.5;
465 p = 1.0; p_last = 0.0;
466 q = da + x2; q_last = 1.0;
467 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
468 double temp;
469 a += da;
470 da += 2.0;
471 b = da + x2;
472 temp = p; p = b*p - a*p_last; p_last = temp;
473 temp = q; q = b*q - a*q_last; q_last = temp;
474 }
475 return p / q * x * exp(-x2) / sqrtpi;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000476}
477
478/* Error function erf(x), for general x */
479
480static double
481m_erf(double x)
482{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000483 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000484
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000485 if (Py_IS_NAN(x))
486 return x;
487 absx = fabs(x);
488 if (absx < ERF_SERIES_CUTOFF)
489 return m_erf_series(x);
490 else {
491 cf = m_erfc_contfrac(absx);
492 return x > 0.0 ? 1.0 - cf : cf - 1.0;
493 }
Mark Dickinson45f992a2009-12-19 11:20:49 +0000494}
495
496/* Complementary error function erfc(x), for general x. */
497
498static double
499m_erfc(double x)
500{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000501 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000502
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000503 if (Py_IS_NAN(x))
504 return x;
505 absx = fabs(x);
506 if (absx < ERF_SERIES_CUTOFF)
507 return 1.0 - m_erf_series(x);
508 else {
509 cf = m_erfc_contfrac(absx);
510 return x > 0.0 ? cf : 2.0 - cf;
511 }
Mark Dickinson45f992a2009-12-19 11:20:49 +0000512}
Mark Dickinson05d2e082009-12-11 20:17:17 +0000513
514/*
Christian Heimese57950f2008-04-21 13:08:03 +0000515 wrapper for atan2 that deals directly with special cases before
516 delegating to the platform libm for the remaining cases. This
517 is necessary to get consistent behaviour across platforms.
518 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
519 always follow C99.
520*/
521
522static double
523m_atan2(double y, double x)
524{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000525 if (Py_IS_NAN(x) || Py_IS_NAN(y))
526 return Py_NAN;
527 if (Py_IS_INFINITY(y)) {
528 if (Py_IS_INFINITY(x)) {
529 if (copysign(1., x) == 1.)
530 /* atan2(+-inf, +inf) == +-pi/4 */
531 return copysign(0.25*Py_MATH_PI, y);
532 else
533 /* atan2(+-inf, -inf) == +-pi*3/4 */
534 return copysign(0.75*Py_MATH_PI, y);
535 }
536 /* atan2(+-inf, x) == +-pi/2 for finite x */
537 return copysign(0.5*Py_MATH_PI, y);
538 }
539 if (Py_IS_INFINITY(x) || y == 0.) {
540 if (copysign(1., x) == 1.)
541 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
542 return copysign(0., y);
543 else
544 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
545 return copysign(Py_MATH_PI, y);
546 }
547 return atan2(y, x);
Christian Heimese57950f2008-04-21 13:08:03 +0000548}
549
550/*
Mark Dickinsone675f082008-12-11 21:56:00 +0000551 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
552 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
553 special values directly, passing positive non-special values through to
554 the system log/log10.
555 */
556
557static double
558m_log(double x)
559{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000560 if (Py_IS_FINITE(x)) {
561 if (x > 0.0)
562 return log(x);
563 errno = EDOM;
564 if (x == 0.0)
565 return -Py_HUGE_VAL; /* log(0) = -inf */
566 else
567 return Py_NAN; /* log(-ve) = nan */
568 }
569 else if (Py_IS_NAN(x))
570 return x; /* log(nan) = nan */
571 else if (x > 0.0)
572 return x; /* log(inf) = inf */
573 else {
574 errno = EDOM;
575 return Py_NAN; /* log(-inf) = nan */
576 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000577}
578
579static double
580m_log10(double x)
581{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000582 if (Py_IS_FINITE(x)) {
583 if (x > 0.0)
584 return log10(x);
585 errno = EDOM;
586 if (x == 0.0)
587 return -Py_HUGE_VAL; /* log10(0) = -inf */
588 else
589 return Py_NAN; /* log10(-ve) = nan */
590 }
591 else if (Py_IS_NAN(x))
592 return x; /* log10(nan) = nan */
593 else if (x > 0.0)
594 return x; /* log10(inf) = inf */
595 else {
596 errno = EDOM;
597 return Py_NAN; /* log10(-inf) = nan */
598 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000599}
600
601
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000602/* Call is_error when errno != 0, and where x is the result libm
603 * returned. is_error will usually set up an exception and return
604 * true (1), but may return false (0) without setting up an exception.
605 */
606static int
607is_error(double x)
608{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000609 int result = 1; /* presumption of guilt */
610 assert(errno); /* non-zero errno is a precondition for calling */
611 if (errno == EDOM)
612 PyErr_SetString(PyExc_ValueError, "math domain error");
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000613
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000614 else if (errno == ERANGE) {
615 /* ANSI C generally requires libm functions to set ERANGE
616 * on overflow, but also generally *allows* them to set
617 * ERANGE on underflow too. There's no consistency about
618 * the latter across platforms.
619 * Alas, C99 never requires that errno be set.
620 * Here we suppress the underflow errors (libm functions
621 * should return a zero on underflow, and +- HUGE_VAL on
622 * overflow, so testing the result for zero suffices to
623 * distinguish the cases).
624 *
625 * On some platforms (Ubuntu/ia64) it seems that errno can be
626 * set to ERANGE for subnormal results that do *not* underflow
627 * to zero. So to be safe, we'll ignore ERANGE whenever the
628 * function result is less than one in absolute value.
629 */
630 if (fabs(x) < 1.0)
631 result = 0;
632 else
633 PyErr_SetString(PyExc_OverflowError,
634 "math range error");
635 }
636 else
637 /* Unexpected math error */
638 PyErr_SetFromErrno(PyExc_ValueError);
639 return result;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000640}
641
Mark Dickinsone675f082008-12-11 21:56:00 +0000642/*
Christian Heimes53876d92008-04-19 00:31:39 +0000643 math_1 is used to wrap a libm function f that takes a double
644 arguments and returns a double.
645
646 The error reporting follows these rules, which are designed to do
647 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
648 platforms.
649
650 - a NaN result from non-NaN inputs causes ValueError to be raised
651 - an infinite result from finite inputs causes OverflowError to be
652 raised if can_overflow is 1, or raises ValueError if can_overflow
653 is 0.
654 - if the result is finite and errno == EDOM then ValueError is
655 raised
656 - if the result is finite and nonzero and errno == ERANGE then
657 OverflowError is raised
658
659 The last rule is used to catch overflow on platforms which follow
660 C89 but for which HUGE_VAL is not an infinity.
661
662 For the majority of one-argument functions these rules are enough
663 to ensure that Python's functions behave as specified in 'Annex F'
664 of the C99 standard, with the 'invalid' and 'divide-by-zero'
665 floating-point exceptions mapping to Python's ValueError and the
666 'overflow' floating-point exception mapping to OverflowError.
667 math_1 only works for functions that don't have singularities *and*
668 the possibility of overflow; fortunately, that covers everything we
669 care about right now.
670*/
671
Barry Warsaw8b43b191996-12-09 22:32:36 +0000672static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000673math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000674 PyObject *(*from_double_func) (double),
675 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000676{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000677 double x, r;
678 x = PyFloat_AsDouble(arg);
679 if (x == -1.0 && PyErr_Occurred())
680 return NULL;
681 errno = 0;
682 PyFPE_START_PROTECT("in math_1", return 0);
683 r = (*func)(x);
684 PyFPE_END_PROTECT(r);
685 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
686 PyErr_SetString(PyExc_ValueError,
687 "math domain error"); /* invalid arg */
688 return NULL;
689 }
690 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
691 if (can_overflow)
692 PyErr_SetString(PyExc_OverflowError,
693 "math range error"); /* overflow */
694 else
695 PyErr_SetString(PyExc_ValueError,
696 "math domain error"); /* singularity */
697 return NULL;
698 }
699 if (Py_IS_FINITE(r) && errno && is_error(r))
700 /* this branch unnecessary on most platforms */
701 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000702
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000703 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000704}
705
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000706/* variant of math_1, to be used when the function being wrapped is known to
707 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
708 errno = ERANGE for overflow). */
709
710static PyObject *
711math_1a(PyObject *arg, double (*func) (double))
712{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000713 double x, r;
714 x = PyFloat_AsDouble(arg);
715 if (x == -1.0 && PyErr_Occurred())
716 return NULL;
717 errno = 0;
718 PyFPE_START_PROTECT("in math_1a", return 0);
719 r = (*func)(x);
720 PyFPE_END_PROTECT(r);
721 if (errno && is_error(r))
722 return NULL;
723 return PyFloat_FromDouble(r);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000724}
725
Christian Heimes53876d92008-04-19 00:31:39 +0000726/*
727 math_2 is used to wrap a libm function f that takes two double
728 arguments and returns a double.
729
730 The error reporting follows these rules, which are designed to do
731 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
732 platforms.
733
734 - a NaN result from non-NaN inputs causes ValueError to be raised
735 - an infinite result from finite inputs causes OverflowError to be
736 raised.
737 - if the result is finite and errno == EDOM then ValueError is
738 raised
739 - if the result is finite and nonzero and errno == ERANGE then
740 OverflowError is raised
741
742 The last rule is used to catch overflow on platforms which follow
743 C89 but for which HUGE_VAL is not an infinity.
744
745 For most two-argument functions (copysign, fmod, hypot, atan2)
746 these rules are enough to ensure that Python's functions behave as
747 specified in 'Annex F' of the C99 standard, with the 'invalid' and
748 'divide-by-zero' floating-point exceptions mapping to Python's
749 ValueError and the 'overflow' floating-point exception mapping to
750 OverflowError.
751*/
752
753static PyObject *
754math_1(PyObject *arg, double (*func) (double), int can_overflow)
755{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000756 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000757}
758
759static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +0000760math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000761{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000762 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000763}
764
Barry Warsaw8b43b191996-12-09 22:32:36 +0000765static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000766math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000767{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000768 PyObject *ox, *oy;
769 double x, y, r;
770 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
771 return NULL;
772 x = PyFloat_AsDouble(ox);
773 y = PyFloat_AsDouble(oy);
774 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
775 return NULL;
776 errno = 0;
777 PyFPE_START_PROTECT("in math_2", return 0);
778 r = (*func)(x, y);
779 PyFPE_END_PROTECT(r);
780 if (Py_IS_NAN(r)) {
781 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
782 errno = EDOM;
783 else
784 errno = 0;
785 }
786 else if (Py_IS_INFINITY(r)) {
787 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
788 errno = ERANGE;
789 else
790 errno = 0;
791 }
792 if (errno && is_error(r))
793 return NULL;
794 else
795 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000796}
797
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000798#define FUNC1(funcname, func, can_overflow, docstring) \
799 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
800 return math_1(args, func, can_overflow); \
801 }\
802 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000803
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000804#define FUNC1A(funcname, func, docstring) \
805 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
806 return math_1a(args, func); \
807 }\
808 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000809
Fred Drake40c48682000-07-03 18:11:56 +0000810#define FUNC2(funcname, func, docstring) \
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000811 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
812 return math_2(args, func, #funcname); \
813 }\
814 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000815
Christian Heimes53876d92008-04-19 00:31:39 +0000816FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000817 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000818FUNC1(acosh, m_acosh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000819 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
820FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000821 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000822FUNC1(asinh, m_asinh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000823 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
824FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000825 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Christian Heimese57950f2008-04-21 13:08:03 +0000826FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000827 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
828 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000829FUNC1(atanh, m_atanh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000830 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000831
832static PyObject * math_ceil(PyObject *self, PyObject *number) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000833 static PyObject *ceil_str = NULL;
834 PyObject *method;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000835
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000836 if (ceil_str == NULL) {
837 ceil_str = PyUnicode_InternFromString("__ceil__");
838 if (ceil_str == NULL)
839 return NULL;
840 }
Guido van Rossum13e05de2007-08-23 22:56:55 +0000841
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000842 method = _PyType_Lookup(Py_TYPE(number), ceil_str);
843 if (method == NULL)
844 return math_1_to_int(number, ceil, 0);
845 else
846 return PyObject_CallFunction(method, "O", number);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000847}
848
849PyDoc_STRVAR(math_ceil_doc,
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000850 "ceil(x)\n\nReturn the ceiling of x as an int.\n"
851 "This is the smallest integral value >= x.");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000852
Christian Heimes072c0f12008-01-03 23:01:04 +0000853FUNC2(copysign, copysign,
Benjamin Petersona0dfa822009-11-13 02:25:08 +0000854 "copysign(x, y)\n\nReturn x with the sign of y.")
Christian Heimes53876d92008-04-19 00:31:39 +0000855FUNC1(cos, cos, 0,
856 "cos(x)\n\nReturn the cosine of x (measured in radians).")
857FUNC1(cosh, cosh, 1,
858 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +0000859FUNC1A(erf, m_erf,
860 "erf(x)\n\nError function at x.")
861FUNC1A(erfc, m_erfc,
862 "erfc(x)\n\nComplementary error function at x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000863FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000864 "exp(x)\n\nReturn e raised to the power of x.")
Mark Dickinson664b5112009-12-16 20:23:42 +0000865FUNC1(expm1, m_expm1, 1,
866 "expm1(x)\n\nReturn exp(x)-1.\n"
867 "This function avoids the loss of precision involved in the direct "
868 "evaluation of exp(x)-1 for small x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000869FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000870 "fabs(x)\n\nReturn the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000871
872static PyObject * math_floor(PyObject *self, PyObject *number) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000873 static PyObject *floor_str = NULL;
874 PyObject *method;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000875
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000876 if (floor_str == NULL) {
877 floor_str = PyUnicode_InternFromString("__floor__");
878 if (floor_str == NULL)
879 return NULL;
880 }
Guido van Rossum13e05de2007-08-23 22:56:55 +0000881
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000882 method = _PyType_Lookup(Py_TYPE(number), floor_str);
883 if (method == NULL)
884 return math_1_to_int(number, floor, 0);
885 else
886 return PyObject_CallFunction(method, "O", number);
Guido van Rossum13e05de2007-08-23 22:56:55 +0000887}
888
889PyDoc_STRVAR(math_floor_doc,
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000890 "floor(x)\n\nReturn the floor of x as an int.\n"
891 "This is the largest integral value <= x.");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000892
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000893FUNC1A(gamma, m_tgamma,
894 "gamma(x)\n\nGamma function at x.")
Mark Dickinson05d2e082009-12-11 20:17:17 +0000895FUNC1A(lgamma, m_lgamma,
896 "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000897FUNC1(log1p, m_log1p, 1,
Benjamin Petersona0dfa822009-11-13 02:25:08 +0000898 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
899 "The result is computed in a way which is accurate for x near zero.")
Christian Heimes53876d92008-04-19 00:31:39 +0000900FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000901 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000902FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000903 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000904FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000905 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000906FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000907 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000908FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000909 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000910
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000911/* Precision summation function as msum() by Raymond Hettinger in
912 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
913 enhanced with the exact partials sum and roundoff from Mark
914 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
915 See those links for more details, proofs and other references.
916
917 Note 1: IEEE 754R floating point semantics are assumed,
918 but the current implementation does not re-establish special
919 value semantics across iterations (i.e. handling -Inf + Inf).
920
921 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000922 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000923 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
924 overflow of the first partial sum.
925
Benjamin Petersonfea6a942008-07-02 16:11:42 +0000926 Note 3: The intermediate values lo, yr, and hi are declared volatile so
927 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Georg Brandlf78e02b2008-06-10 17:40:04 +0000928 Also, the volatile declaration forces the values to be stored in memory as
929 regular doubles instead of extended long precision (80-bit) values. This
Benjamin Petersonfea6a942008-07-02 16:11:42 +0000930 prevents double rounding because any addition or subtraction of two doubles
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000931 can be resolved exactly into double-sized hi and lo values. As long as the
Georg Brandlf78e02b2008-06-10 17:40:04 +0000932 hi value gets forced into a double before yr and lo are computed, the extra
933 bits in downstream extended precision operations (x87 for example) will be
934 exactly zero and therefore can be losslessly stored back into a double,
935 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000936
937 Note 4: A similar implementation is in Modules/cmathmodule.c.
938 Be sure to update both when making changes.
939
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000940 Note 5: The signature of math.fsum() differs from __builtin__.sum()
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000941 because the start argument doesn't make sense in the context of
942 accurate summation. Since the partials table is collapsed before
943 returning a result, sum(seq2, start=sum(seq1)) may not equal the
944 accurate result returned by sum(itertools.chain(seq1, seq2)).
945*/
946
947#define NUM_PARTIALS 32 /* initial partials array size, on stack */
948
949/* Extend the partials array p[] by doubling its size. */
950static int /* non-zero on error */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000951_fsum_realloc(double **p_ptr, Py_ssize_t n,
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000952 double *ps, Py_ssize_t *m_ptr)
953{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000954 void *v = NULL;
955 Py_ssize_t m = *m_ptr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000956
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000957 m += m; /* double */
958 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
959 double *p = *p_ptr;
960 if (p == ps) {
961 v = PyMem_Malloc(sizeof(double) * m);
962 if (v != NULL)
963 memcpy(v, ps, sizeof(double) * n);
964 }
965 else
966 v = PyMem_Realloc(p, sizeof(double) * m);
967 }
968 if (v == NULL) { /* size overflow or no memory */
969 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
970 return 1;
971 }
972 *p_ptr = (double*) v;
973 *m_ptr = m;
974 return 0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000975}
976
977/* Full precision summation of a sequence of floats.
978
979 def msum(iterable):
980 partials = [] # sorted, non-overlapping partial sums
981 for x in iterable:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000982 i = 0
983 for y in partials:
984 if abs(x) < abs(y):
985 x, y = y, x
986 hi = x + y
987 lo = y - (hi - x)
988 if lo:
989 partials[i] = lo
990 i += 1
991 x = hi
992 partials[i:] = [x]
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000993 return sum_exact(partials)
994
995 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
996 are exactly equal to x+y. The inner loop applies hi/lo summation to each
997 partial so that the list of partial sums remains exact.
998
999 Sum_exact() adds the partial sums exactly and correctly rounds the final
1000 result (using the round-half-to-even rule). The items in partials remain
1001 non-zero, non-special, non-overlapping and strictly increasing in
1002 magnitude, but possibly not all having the same sign.
1003
1004 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
1005*/
1006
1007static PyObject*
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001008math_fsum(PyObject *self, PyObject *seq)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001009{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001010 PyObject *item, *iter, *sum = NULL;
1011 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
1012 double x, y, t, ps[NUM_PARTIALS], *p = ps;
1013 double xsave, special_sum = 0.0, inf_sum = 0.0;
1014 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001015
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001016 iter = PyObject_GetIter(seq);
1017 if (iter == NULL)
1018 return NULL;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001019
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001020 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001021
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001022 for(;;) { /* for x in iterable */
1023 assert(0 <= n && n <= m);
1024 assert((m == NUM_PARTIALS && p == ps) ||
1025 (m > NUM_PARTIALS && p != NULL));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001026
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001027 item = PyIter_Next(iter);
1028 if (item == NULL) {
1029 if (PyErr_Occurred())
1030 goto _fsum_error;
1031 break;
1032 }
1033 x = PyFloat_AsDouble(item);
1034 Py_DECREF(item);
1035 if (PyErr_Occurred())
1036 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001037
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001038 xsave = x;
1039 for (i = j = 0; j < n; j++) { /* for y in partials */
1040 y = p[j];
1041 if (fabs(x) < fabs(y)) {
1042 t = x; x = y; y = t;
1043 }
1044 hi = x + y;
1045 yr = hi - x;
1046 lo = y - yr;
1047 if (lo != 0.0)
1048 p[i++] = lo;
1049 x = hi;
1050 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001051
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001052 n = i; /* ps[i:] = [x] */
1053 if (x != 0.0) {
1054 if (! Py_IS_FINITE(x)) {
1055 /* a nonfinite x could arise either as
1056 a result of intermediate overflow, or
1057 as a result of a nan or inf in the
1058 summands */
1059 if (Py_IS_FINITE(xsave)) {
1060 PyErr_SetString(PyExc_OverflowError,
1061 "intermediate overflow in fsum");
1062 goto _fsum_error;
1063 }
1064 if (Py_IS_INFINITY(xsave))
1065 inf_sum += xsave;
1066 special_sum += xsave;
1067 /* reset partials */
1068 n = 0;
1069 }
1070 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1071 goto _fsum_error;
1072 else
1073 p[n++] = x;
1074 }
1075 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001076
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001077 if (special_sum != 0.0) {
1078 if (Py_IS_NAN(inf_sum))
1079 PyErr_SetString(PyExc_ValueError,
1080 "-inf + inf in fsum");
1081 else
1082 sum = PyFloat_FromDouble(special_sum);
1083 goto _fsum_error;
1084 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001085
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001086 hi = 0.0;
1087 if (n > 0) {
1088 hi = p[--n];
1089 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1090 inexact. */
1091 while (n > 0) {
1092 x = hi;
1093 y = p[--n];
1094 assert(fabs(y) < fabs(x));
1095 hi = x + y;
1096 yr = hi - x;
1097 lo = y - yr;
1098 if (lo != 0.0)
1099 break;
1100 }
1101 /* Make half-even rounding work across multiple partials.
1102 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1103 digit to two instead of down to zero (the 1e-16 makes the 1
1104 slightly closer to two). With a potential 1 ULP rounding
1105 error fixed-up, math.fsum() can guarantee commutativity. */
1106 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1107 (lo > 0.0 && p[n-1] > 0.0))) {
1108 y = lo * 2.0;
1109 x = hi + y;
1110 yr = x - hi;
1111 if (y == yr)
1112 hi = x;
1113 }
1114 }
1115 sum = PyFloat_FromDouble(hi);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001116
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001117_fsum_error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001118 PyFPE_END_PROTECT(hi)
1119 Py_DECREF(iter);
1120 if (p != ps)
1121 PyMem_Free(p);
1122 return sum;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001123}
1124
1125#undef NUM_PARTIALS
1126
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001127PyDoc_STRVAR(math_fsum_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001128"fsum(iterable)\n\n\
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001129Return an accurate floating point sum of values in the iterable.\n\
1130Assumes IEEE-754 floating point arithmetic.");
1131
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001132/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
1133 * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
1134 * count_leading_zero_bits(x)
1135 */
1136
1137/* XXX: This routine does more or less the same thing as
1138 * bits_in_digit() in Objects/longobject.c. Someday it would be nice to
1139 * consolidate them. On BSD, there's a library function called fls()
1140 * that we could use, and GCC provides __builtin_clz().
1141 */
1142
1143static unsigned long
1144bit_length(unsigned long n)
1145{
1146 unsigned long len = 0;
1147 while (n != 0) {
1148 ++len;
1149 n >>= 1;
1150 }
1151 return len;
1152}
1153
1154static unsigned long
1155count_set_bits(unsigned long n)
1156{
1157 unsigned long count = 0;
1158 while (n != 0) {
1159 ++count;
1160 n &= n - 1; /* clear least significant bit */
1161 }
1162 return count;
1163}
1164
1165/* Divide-and-conquer factorial algorithm
1166 *
1167 * Based on the formula and psuedo-code provided at:
1168 * http://www.luschny.de/math/factorial/binarysplitfact.html
1169 *
1170 * Faster algorithms exist, but they're more complicated and depend on
1171 * a fast prime factoriazation algorithm.
1172 *
1173 * Notes on the algorithm
1174 * ----------------------
1175 *
1176 * factorial(n) is written in the form 2**k * m, with m odd. k and m are
1177 * computed separately, and then combined using a left shift.
1178 *
1179 * The function factorial_odd_part computes the odd part m (i.e., the greatest
1180 * odd divisor) of factorial(n), using the formula:
1181 *
1182 * factorial_odd_part(n) =
1183 *
1184 * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
1185 *
1186 * Example: factorial_odd_part(20) =
1187 *
1188 * (1) *
1189 * (1) *
1190 * (1 * 3 * 5) *
1191 * (1 * 3 * 5 * 7 * 9)
1192 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1193 *
1194 * Here i goes from large to small: the first term corresponds to i=4 (any
1195 * larger i gives an empty product), and the last term corresponds to i=0.
1196 * Each term can be computed from the last by multiplying by the extra odd
1197 * numbers required: e.g., to get from the penultimate term to the last one,
1198 * we multiply by (11 * 13 * 15 * 17 * 19).
1199 *
1200 * To see a hint of why this formula works, here are the same numbers as above
1201 * but with the even parts (i.e., the appropriate powers of 2) included. For
1202 * each subterm in the product for i, we multiply that subterm by 2**i:
1203 *
1204 * factorial(20) =
1205 *
1206 * (16) *
1207 * (8) *
1208 * (4 * 12 * 20) *
1209 * (2 * 6 * 10 * 14 * 18) *
1210 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1211 *
1212 * The factorial_partial_product function computes the product of all odd j in
1213 * range(start, stop) for given start and stop. It's used to compute the
1214 * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
1215 * operates recursively, repeatedly splitting the range into two roughly equal
1216 * pieces until the subranges are small enough to be computed using only C
1217 * integer arithmetic.
1218 *
1219 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
1220 * the factorial) is computed independently in the main math_factorial
1221 * function. By standard results, its value is:
1222 *
1223 * two_valuation = n//2 + n//4 + n//8 + ....
1224 *
1225 * It can be shown (e.g., by complete induction on n) that two_valuation is
1226 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
1227 * '1'-bits in the binary expansion of n.
1228 */
1229
1230/* factorial_partial_product: Compute product(range(start, stop, 2)) using
1231 * divide and conquer. Assumes start and stop are odd and stop > start.
1232 * max_bits must be >= bit_length(stop - 2). */
1233
1234static PyObject *
1235factorial_partial_product(unsigned long start, unsigned long stop,
1236 unsigned long max_bits)
1237{
1238 unsigned long midpoint, num_operands;
1239 PyObject *left = NULL, *right = NULL, *result = NULL;
1240
1241 /* If the return value will fit an unsigned long, then we can
1242 * multiply in a tight, fast loop where each multiply is O(1).
1243 * Compute an upper bound on the number of bits required to store
1244 * the answer.
1245 *
1246 * Storing some integer z requires floor(lg(z))+1 bits, which is
1247 * conveniently the value returned by bit_length(z). The
1248 * product x*y will require at most
1249 * bit_length(x) + bit_length(y) bits to store, based
1250 * on the idea that lg product = lg x + lg y.
1251 *
1252 * We know that stop - 2 is the largest number to be multiplied. From
1253 * there, we have: bit_length(answer) <= num_operands *
1254 * bit_length(stop - 2)
1255 */
1256
1257 num_operands = (stop - start) / 2;
1258 /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
1259 * unlikely case of an overflow in num_operands * max_bits. */
1260 if (num_operands <= 8 * SIZEOF_LONG &&
1261 num_operands * max_bits <= 8 * SIZEOF_LONG) {
1262 unsigned long j, total;
1263 for (total = start, j = start + 2; j < stop; j += 2)
1264 total *= j;
1265 return PyLong_FromUnsignedLong(total);
1266 }
1267
1268 /* find midpoint of range(start, stop), rounded up to next odd number. */
1269 midpoint = (start + num_operands) | 1;
1270 left = factorial_partial_product(start, midpoint,
1271 bit_length(midpoint - 2));
1272 if (left == NULL)
1273 goto error;
1274 right = factorial_partial_product(midpoint, stop, max_bits);
1275 if (right == NULL)
1276 goto error;
1277 result = PyNumber_Multiply(left, right);
1278
1279 error:
1280 Py_XDECREF(left);
1281 Py_XDECREF(right);
1282 return result;
1283}
1284
1285/* factorial_odd_part: compute the odd part of factorial(n). */
1286
1287static PyObject *
1288factorial_odd_part(unsigned long n)
1289{
1290 long i;
1291 unsigned long v, lower, upper;
1292 PyObject *partial, *tmp, *inner, *outer;
1293
1294 inner = PyLong_FromLong(1);
1295 if (inner == NULL)
1296 return NULL;
1297 outer = inner;
1298 Py_INCREF(outer);
1299
1300 upper = 3;
1301 for (i = bit_length(n) - 2; i >= 0; i--) {
1302 v = n >> i;
1303 if (v <= 2)
1304 continue;
1305 lower = upper;
1306 /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
1307 upper = (v + 1) | 1;
1308 /* Here inner is the product of all odd integers j in the range (0,
1309 n/2**(i+1)]. The factorial_partial_product call below gives the
1310 product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
1311 partial = factorial_partial_product(lower, upper, bit_length(upper-2));
1312 /* inner *= partial */
1313 if (partial == NULL)
1314 goto error;
1315 tmp = PyNumber_Multiply(inner, partial);
1316 Py_DECREF(partial);
1317 if (tmp == NULL)
1318 goto error;
1319 Py_DECREF(inner);
1320 inner = tmp;
1321 /* Now inner is the product of all odd integers j in the range (0,
1322 n/2**i], giving the inner product in the formula above. */
1323
1324 /* outer *= inner; */
1325 tmp = PyNumber_Multiply(outer, inner);
1326 if (tmp == NULL)
1327 goto error;
1328 Py_DECREF(outer);
1329 outer = tmp;
1330 }
1331
1332 goto done;
1333
1334 error:
1335 Py_DECREF(outer);
1336 done:
1337 Py_DECREF(inner);
1338 return outer;
1339}
1340
1341/* Lookup table for small factorial values */
1342
1343static const unsigned long SmallFactorials[] = {
1344 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1345 362880, 3628800, 39916800, 479001600,
1346#if SIZEOF_LONG >= 8
1347 6227020800, 87178291200, 1307674368000,
1348 20922789888000, 355687428096000, 6402373705728000,
1349 121645100408832000, 2432902008176640000
1350#endif
1351};
1352
Barry Warsaw8b43b191996-12-09 22:32:36 +00001353static PyObject *
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001354math_factorial(PyObject *self, PyObject *arg)
1355{
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001356 long x;
1357 PyObject *result, *odd_part, *two_valuation;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001358
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001359 if (PyFloat_Check(arg)) {
1360 PyObject *lx;
1361 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
1362 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
1363 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001364 "factorial() only accepts integral values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001365 return NULL;
1366 }
1367 lx = PyLong_FromDouble(dx);
1368 if (lx == NULL)
1369 return NULL;
1370 x = PyLong_AsLong(lx);
1371 Py_DECREF(lx);
1372 }
1373 else
1374 x = PyLong_AsLong(arg);
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001375
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001376 if (x == -1 && PyErr_Occurred())
1377 return NULL;
1378 if (x < 0) {
1379 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001380 "factorial() not defined for negative values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001381 return NULL;
1382 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001383
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001384 /* use lookup table if x is small */
1385 if (x < (long)(sizeof(SmallFactorials)/sizeof(SmallFactorials[0])))
1386 return PyLong_FromUnsignedLong(SmallFactorials[x]);
1387
1388 /* else express in the form odd_part * 2**two_valuation, and compute as
1389 odd_part << two_valuation. */
1390 odd_part = factorial_odd_part(x);
1391 if (odd_part == NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001392 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001393 two_valuation = PyLong_FromLong(x - count_set_bits(x));
1394 if (two_valuation == NULL) {
1395 Py_DECREF(odd_part);
1396 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001397 }
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001398 result = PyNumber_Lshift(odd_part, two_valuation);
1399 Py_DECREF(two_valuation);
1400 Py_DECREF(odd_part);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001401 return result;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001402}
1403
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001404PyDoc_STRVAR(math_factorial_doc,
1405"factorial(x) -> Integral\n"
1406"\n"
1407"Find x!. Raise a ValueError if x is negative or non-integral.");
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001408
1409static PyObject *
Christian Heimes400adb02008-02-01 08:12:03 +00001410math_trunc(PyObject *self, PyObject *number)
1411{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001412 static PyObject *trunc_str = NULL;
1413 PyObject *trunc;
Christian Heimes400adb02008-02-01 08:12:03 +00001414
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001415 if (Py_TYPE(number)->tp_dict == NULL) {
1416 if (PyType_Ready(Py_TYPE(number)) < 0)
1417 return NULL;
1418 }
Christian Heimes400adb02008-02-01 08:12:03 +00001419
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001420 if (trunc_str == NULL) {
1421 trunc_str = PyUnicode_InternFromString("__trunc__");
1422 if (trunc_str == NULL)
1423 return NULL;
1424 }
Christian Heimes400adb02008-02-01 08:12:03 +00001425
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001426 trunc = _PyType_Lookup(Py_TYPE(number), trunc_str);
1427 if (trunc == NULL) {
1428 PyErr_Format(PyExc_TypeError,
1429 "type %.100s doesn't define __trunc__ method",
1430 Py_TYPE(number)->tp_name);
1431 return NULL;
1432 }
1433 return PyObject_CallFunctionObjArgs(trunc, number, NULL);
Christian Heimes400adb02008-02-01 08:12:03 +00001434}
1435
1436PyDoc_STRVAR(math_trunc_doc,
1437"trunc(x:Real) -> Integral\n"
1438"\n"
Christian Heimes292d3512008-02-03 16:51:08 +00001439"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Christian Heimes400adb02008-02-01 08:12:03 +00001440
1441static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001442math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001443{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001444 int i;
1445 double x = PyFloat_AsDouble(arg);
1446 if (x == -1.0 && PyErr_Occurred())
1447 return NULL;
1448 /* deal with special cases directly, to sidestep platform
1449 differences */
1450 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
1451 i = 0;
1452 }
1453 else {
1454 PyFPE_START_PROTECT("in math_frexp", return 0);
1455 x = frexp(x, &i);
1456 PyFPE_END_PROTECT(x);
1457 }
1458 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001459}
1460
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001461PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001462"frexp(x)\n"
1463"\n"
1464"Return the mantissa and exponent of x, as pair (m, e).\n"
1465"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001466"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001467
Barry Warsaw8b43b191996-12-09 22:32:36 +00001468static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +00001469math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001470{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001471 double x, r;
1472 PyObject *oexp;
1473 long exp;
1474 int overflow;
1475 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
1476 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001477
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001478 if (PyLong_Check(oexp)) {
1479 /* on overflow, replace exponent with either LONG_MAX
1480 or LONG_MIN, depending on the sign. */
1481 exp = PyLong_AsLongAndOverflow(oexp, &overflow);
1482 if (exp == -1 && PyErr_Occurred())
1483 return NULL;
1484 if (overflow)
1485 exp = overflow < 0 ? LONG_MIN : LONG_MAX;
1486 }
1487 else {
1488 PyErr_SetString(PyExc_TypeError,
1489 "Expected an int or long as second argument "
1490 "to ldexp.");
1491 return NULL;
1492 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001493
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001494 if (x == 0. || !Py_IS_FINITE(x)) {
1495 /* NaNs, zeros and infinities are returned unchanged */
1496 r = x;
1497 errno = 0;
1498 } else if (exp > INT_MAX) {
1499 /* overflow */
1500 r = copysign(Py_HUGE_VAL, x);
1501 errno = ERANGE;
1502 } else if (exp < INT_MIN) {
1503 /* underflow to +-0 */
1504 r = copysign(0., x);
1505 errno = 0;
1506 } else {
1507 errno = 0;
1508 PyFPE_START_PROTECT("in math_ldexp", return 0);
1509 r = ldexp(x, (int)exp);
1510 PyFPE_END_PROTECT(r);
1511 if (Py_IS_INFINITY(r))
1512 errno = ERANGE;
1513 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001514
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001515 if (errno && is_error(r))
1516 return NULL;
1517 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001518}
1519
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001520PyDoc_STRVAR(math_ldexp_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001521"ldexp(x, i)\n\n\
1522Return x * (2**i).");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001523
Barry Warsaw8b43b191996-12-09 22:32:36 +00001524static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001525math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001526{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001527 double y, x = PyFloat_AsDouble(arg);
1528 if (x == -1.0 && PyErr_Occurred())
1529 return NULL;
1530 /* some platforms don't do the right thing for NaNs and
1531 infinities, so we take care of special cases directly. */
1532 if (!Py_IS_FINITE(x)) {
1533 if (Py_IS_INFINITY(x))
1534 return Py_BuildValue("(dd)", copysign(0., x), x);
1535 else if (Py_IS_NAN(x))
1536 return Py_BuildValue("(dd)", x, x);
1537 }
Christian Heimesa342c012008-04-20 21:01:16 +00001538
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001539 errno = 0;
1540 PyFPE_START_PROTECT("in math_modf", return 0);
1541 x = modf(x, &y);
1542 PyFPE_END_PROTECT(x);
1543 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001544}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001545
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001546PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001547"modf(x)\n"
1548"\n"
1549"Return the fractional and integer parts of x. Both results carry the sign\n"
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001550"of x and are floats.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001551
Tim Peters78526162001-09-05 00:53:45 +00001552/* A decent logarithm is easy to compute even for huge longs, but libm can't
1553 do that by itself -- loghelper can. func is log or log10, and name is
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001554 "log" or "log10". Note that overflow of the result isn't possible: a long
1555 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
1556 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00001557 small enough to fit in an IEEE single. log and log10 are even smaller.
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001558 However, intermediate overflow is possible for a long if the number of bits
1559 in that long is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00001560
1561static PyObject*
Thomas Wouters89f507f2006-12-13 04:49:30 +00001562loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00001563{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001564 /* If it is long, do it ourselves. */
1565 if (PyLong_Check(arg)) {
1566 double x;
1567 Py_ssize_t e;
1568 x = _PyLong_Frexp((PyLongObject *)arg, &e);
1569 if (x == -1.0 && PyErr_Occurred())
1570 return NULL;
1571 if (x <= 0.0) {
1572 PyErr_SetString(PyExc_ValueError,
1573 "math domain error");
1574 return NULL;
1575 }
1576 /* Special case for log(1), to make sure we get an
1577 exact result there. */
1578 if (e == 1 && x == 0.5)
1579 return PyFloat_FromDouble(0.0);
1580 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
1581 x = func(x) + func(2.0) * e;
1582 return PyFloat_FromDouble(x);
1583 }
Tim Peters78526162001-09-05 00:53:45 +00001584
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001585 /* Else let libm handle it by itself. */
1586 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00001587}
1588
1589static PyObject *
1590math_log(PyObject *self, PyObject *args)
1591{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001592 PyObject *arg;
1593 PyObject *base = NULL;
1594 PyObject *num, *den;
1595 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001596
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001597 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
1598 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001599
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001600 num = loghelper(arg, m_log, "log");
1601 if (num == NULL || base == NULL)
1602 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001603
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001604 den = loghelper(base, m_log, "log");
1605 if (den == NULL) {
1606 Py_DECREF(num);
1607 return NULL;
1608 }
Raymond Hettinger866964c2002-12-14 19:51:34 +00001609
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001610 ans = PyNumber_TrueDivide(num, den);
1611 Py_DECREF(num);
1612 Py_DECREF(den);
1613 return ans;
Tim Peters78526162001-09-05 00:53:45 +00001614}
1615
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001616PyDoc_STRVAR(math_log_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001617"log(x[, base])\n\n\
1618Return the logarithm of x to the given base.\n\
Raymond Hettinger866964c2002-12-14 19:51:34 +00001619If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +00001620
1621static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001622math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +00001623{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001624 return loghelper(arg, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00001625}
1626
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001627PyDoc_STRVAR(math_log10_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001628"log10(x)\n\nReturn the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +00001629
Christian Heimes53876d92008-04-19 00:31:39 +00001630static PyObject *
1631math_fmod(PyObject *self, PyObject *args)
1632{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001633 PyObject *ox, *oy;
1634 double r, x, y;
1635 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
1636 return NULL;
1637 x = PyFloat_AsDouble(ox);
1638 y = PyFloat_AsDouble(oy);
1639 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1640 return NULL;
1641 /* fmod(x, +/-Inf) returns x for finite x. */
1642 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
1643 return PyFloat_FromDouble(x);
1644 errno = 0;
1645 PyFPE_START_PROTECT("in math_fmod", return 0);
1646 r = fmod(x, y);
1647 PyFPE_END_PROTECT(r);
1648 if (Py_IS_NAN(r)) {
1649 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1650 errno = EDOM;
1651 else
1652 errno = 0;
1653 }
1654 if (errno && is_error(r))
1655 return NULL;
1656 else
1657 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001658}
1659
1660PyDoc_STRVAR(math_fmod_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001661"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
Christian Heimes53876d92008-04-19 00:31:39 +00001662" x % y may differ.");
1663
1664static PyObject *
1665math_hypot(PyObject *self, PyObject *args)
1666{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001667 PyObject *ox, *oy;
1668 double r, x, y;
1669 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
1670 return NULL;
1671 x = PyFloat_AsDouble(ox);
1672 y = PyFloat_AsDouble(oy);
1673 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1674 return NULL;
1675 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
1676 if (Py_IS_INFINITY(x))
1677 return PyFloat_FromDouble(fabs(x));
1678 if (Py_IS_INFINITY(y))
1679 return PyFloat_FromDouble(fabs(y));
1680 errno = 0;
1681 PyFPE_START_PROTECT("in math_hypot", return 0);
1682 r = hypot(x, y);
1683 PyFPE_END_PROTECT(r);
1684 if (Py_IS_NAN(r)) {
1685 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1686 errno = EDOM;
1687 else
1688 errno = 0;
1689 }
1690 else if (Py_IS_INFINITY(r)) {
1691 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1692 errno = ERANGE;
1693 else
1694 errno = 0;
1695 }
1696 if (errno && is_error(r))
1697 return NULL;
1698 else
1699 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001700}
1701
1702PyDoc_STRVAR(math_hypot_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001703"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
Christian Heimes53876d92008-04-19 00:31:39 +00001704
1705/* pow can't use math_2, but needs its own wrapper: the problem is
1706 that an infinite result can arise either as a result of overflow
1707 (in which case OverflowError should be raised) or as a result of
1708 e.g. 0.**-5. (for which ValueError needs to be raised.)
1709*/
1710
1711static PyObject *
1712math_pow(PyObject *self, PyObject *args)
1713{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001714 PyObject *ox, *oy;
1715 double r, x, y;
1716 int odd_y;
Christian Heimes53876d92008-04-19 00:31:39 +00001717
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001718 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
1719 return NULL;
1720 x = PyFloat_AsDouble(ox);
1721 y = PyFloat_AsDouble(oy);
1722 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1723 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +00001724
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001725 /* deal directly with IEEE specials, to cope with problems on various
1726 platforms whose semantics don't exactly match C99 */
1727 r = 0.; /* silence compiler warning */
1728 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
1729 errno = 0;
1730 if (Py_IS_NAN(x))
1731 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
1732 else if (Py_IS_NAN(y))
1733 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
1734 else if (Py_IS_INFINITY(x)) {
1735 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
1736 if (y > 0.)
1737 r = odd_y ? x : fabs(x);
1738 else if (y == 0.)
1739 r = 1.;
1740 else /* y < 0. */
1741 r = odd_y ? copysign(0., x) : 0.;
1742 }
1743 else if (Py_IS_INFINITY(y)) {
1744 if (fabs(x) == 1.0)
1745 r = 1.;
1746 else if (y > 0. && fabs(x) > 1.0)
1747 r = y;
1748 else if (y < 0. && fabs(x) < 1.0) {
1749 r = -y; /* result is +inf */
1750 if (x == 0.) /* 0**-inf: divide-by-zero */
1751 errno = EDOM;
1752 }
1753 else
1754 r = 0.;
1755 }
1756 }
1757 else {
1758 /* let libm handle finite**finite */
1759 errno = 0;
1760 PyFPE_START_PROTECT("in math_pow", return 0);
1761 r = pow(x, y);
1762 PyFPE_END_PROTECT(r);
1763 /* a NaN result should arise only from (-ve)**(finite
1764 non-integer); in this case we want to raise ValueError. */
1765 if (!Py_IS_FINITE(r)) {
1766 if (Py_IS_NAN(r)) {
1767 errno = EDOM;
1768 }
1769 /*
1770 an infinite result here arises either from:
1771 (A) (+/-0.)**negative (-> divide-by-zero)
1772 (B) overflow of x**y with x and y finite
1773 */
1774 else if (Py_IS_INFINITY(r)) {
1775 if (x == 0.)
1776 errno = EDOM;
1777 else
1778 errno = ERANGE;
1779 }
1780 }
1781 }
Christian Heimes53876d92008-04-19 00:31:39 +00001782
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001783 if (errno && is_error(r))
1784 return NULL;
1785 else
1786 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001787}
1788
1789PyDoc_STRVAR(math_pow_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001790"pow(x, y)\n\nReturn x**y (x to the power of y).");
Christian Heimes53876d92008-04-19 00:31:39 +00001791
Christian Heimes072c0f12008-01-03 23:01:04 +00001792static const double degToRad = Py_MATH_PI / 180.0;
1793static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001794
1795static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001796math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001797{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001798 double x = PyFloat_AsDouble(arg);
1799 if (x == -1.0 && PyErr_Occurred())
1800 return NULL;
1801 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001802}
1803
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001804PyDoc_STRVAR(math_degrees_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001805"degrees(x)\n\n\
1806Convert angle x from radians to degrees.");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001807
1808static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001809math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001810{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001811 double x = PyFloat_AsDouble(arg);
1812 if (x == -1.0 && PyErr_Occurred())
1813 return NULL;
1814 return PyFloat_FromDouble(x * degToRad);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001815}
1816
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001817PyDoc_STRVAR(math_radians_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001818"radians(x)\n\n\
1819Convert angle x from degrees to radians.");
Tim Peters78526162001-09-05 00:53:45 +00001820
Christian Heimes072c0f12008-01-03 23:01:04 +00001821static PyObject *
1822math_isnan(PyObject *self, PyObject *arg)
1823{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001824 double x = PyFloat_AsDouble(arg);
1825 if (x == -1.0 && PyErr_Occurred())
1826 return NULL;
1827 return PyBool_FromLong((long)Py_IS_NAN(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00001828}
1829
1830PyDoc_STRVAR(math_isnan_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001831"isnan(x) -> bool\n\n\
1832Check if float x is not a number (NaN).");
Christian Heimes072c0f12008-01-03 23:01:04 +00001833
1834static PyObject *
1835math_isinf(PyObject *self, PyObject *arg)
1836{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001837 double x = PyFloat_AsDouble(arg);
1838 if (x == -1.0 && PyErr_Occurred())
1839 return NULL;
1840 return PyBool_FromLong((long)Py_IS_INFINITY(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00001841}
1842
1843PyDoc_STRVAR(math_isinf_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001844"isinf(x) -> bool\n\n\
1845Check if float x is infinite (positive or negative).");
Christian Heimes072c0f12008-01-03 23:01:04 +00001846
Barry Warsaw8b43b191996-12-09 22:32:36 +00001847static PyMethodDef math_methods[] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001848 {"acos", math_acos, METH_O, math_acos_doc},
1849 {"acosh", math_acosh, METH_O, math_acosh_doc},
1850 {"asin", math_asin, METH_O, math_asin_doc},
1851 {"asinh", math_asinh, METH_O, math_asinh_doc},
1852 {"atan", math_atan, METH_O, math_atan_doc},
1853 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
1854 {"atanh", math_atanh, METH_O, math_atanh_doc},
1855 {"ceil", math_ceil, METH_O, math_ceil_doc},
1856 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
1857 {"cos", math_cos, METH_O, math_cos_doc},
1858 {"cosh", math_cosh, METH_O, math_cosh_doc},
1859 {"degrees", math_degrees, METH_O, math_degrees_doc},
1860 {"erf", math_erf, METH_O, math_erf_doc},
1861 {"erfc", math_erfc, METH_O, math_erfc_doc},
1862 {"exp", math_exp, METH_O, math_exp_doc},
1863 {"expm1", math_expm1, METH_O, math_expm1_doc},
1864 {"fabs", math_fabs, METH_O, math_fabs_doc},
1865 {"factorial", math_factorial, METH_O, math_factorial_doc},
1866 {"floor", math_floor, METH_O, math_floor_doc},
1867 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
1868 {"frexp", math_frexp, METH_O, math_frexp_doc},
1869 {"fsum", math_fsum, METH_O, math_fsum_doc},
1870 {"gamma", math_gamma, METH_O, math_gamma_doc},
1871 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
1872 {"isinf", math_isinf, METH_O, math_isinf_doc},
1873 {"isnan", math_isnan, METH_O, math_isnan_doc},
1874 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
1875 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
1876 {"log", math_log, METH_VARARGS, math_log_doc},
1877 {"log1p", math_log1p, METH_O, math_log1p_doc},
1878 {"log10", math_log10, METH_O, math_log10_doc},
1879 {"modf", math_modf, METH_O, math_modf_doc},
1880 {"pow", math_pow, METH_VARARGS, math_pow_doc},
1881 {"radians", math_radians, METH_O, math_radians_doc},
1882 {"sin", math_sin, METH_O, math_sin_doc},
1883 {"sinh", math_sinh, METH_O, math_sinh_doc},
1884 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1885 {"tan", math_tan, METH_O, math_tan_doc},
1886 {"tanh", math_tanh, METH_O, math_tanh_doc},
1887 {"trunc", math_trunc, METH_O, math_trunc_doc},
1888 {NULL, NULL} /* sentinel */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001889};
1890
Guido van Rossumc6e22901998-12-04 19:26:43 +00001891
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001892PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001893"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001894"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001895
Martin v. Löwis1a214512008-06-11 05:26:20 +00001896
1897static struct PyModuleDef mathmodule = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001898 PyModuleDef_HEAD_INIT,
1899 "math",
1900 module_doc,
1901 -1,
1902 math_methods,
1903 NULL,
1904 NULL,
1905 NULL,
1906 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00001907};
1908
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001909PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00001910PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001911{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001912 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001913
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001914 m = PyModule_Create(&mathmodule);
1915 if (m == NULL)
1916 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00001917
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001918 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1919 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00001920
Christian Heimes53876d92008-04-19 00:31:39 +00001921 finally:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001922 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001923}