blob: 5d09b4c3c7897e54a7596c2c376c5c312976de82 [file] [log] [blame]
Christian Heimes53876d92008-04-19 00:31:39 +00001#include "Python.h"
2
Mark Dickinson87ec0852009-02-09 17:15:59 +00003#ifdef X87_DOUBLE_ROUNDING
4/* On x86 platforms using an x87 FPU, this function is called from the
5 Py_FORCE_DOUBLE macro (defined in pymath.h) to force a floating-point
6 number out of an 80-bit x87 FPU register and into a 64-bit memory location,
7 thus rounding from extended precision to double precision. */
8double _Py_force_double(double x)
9{
10 volatile double y;
11 y = x;
12 return y;
13}
14#endif
15
Christian Heimes53876d92008-04-19 00:31:39 +000016#ifndef HAVE_HYPOT
17double hypot(double x, double y)
18{
19 double yx;
20
21 x = fabs(x);
22 y = fabs(y);
23 if (x < y) {
24 double temp = x;
25 x = y;
26 y = temp;
27 }
28 if (x == 0.)
29 return 0.;
30 else {
31 yx = y/x;
32 return x*sqrt(1.+yx*yx);
33 }
34}
35#endif /* HAVE_HYPOT */
36
37#ifndef HAVE_COPYSIGN
38static double
39copysign(double x, double y)
40{
41 /* use atan2 to distinguish -0. from 0. */
42 if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
43 return fabs(x);
44 } else {
45 return -fabs(x);
46 }
47}
48#endif /* HAVE_COPYSIGN */
49
50#ifndef HAVE_LOG1P
Andrew MacIntyre45612572008-09-22 14:49:01 +000051#include <float.h>
52
Christian Heimes53876d92008-04-19 00:31:39 +000053double
54log1p(double x)
55{
56 /* For x small, we use the following approach. Let y be the nearest
57 float to 1+x, then
58
59 1+x = y * (1 - (y-1-x)/y)
60
61 so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
62 the second term is well approximated by (y-1-x)/y. If abs(x) >=
63 DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
64 then y-1-x will be exactly representable, and is computed exactly
65 by (y-1)-x.
66
67 If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
68 round-to-nearest then this method is slightly dangerous: 1+x could
69 be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
70 case y-1-x will not be exactly representable any more and the
71 result can be off by many ulps. But this is easily fixed: for a
72 floating-point number |x| < DBL_EPSILON/2., the closest
73 floating-point number to log(1+x) is exactly x.
74 */
75
76 double y;
77 if (fabs(x) < DBL_EPSILON/2.) {
78 return x;
79 } else if (-0.5 <= x && x <= 1.) {
80 /* WARNING: it's possible than an overeager compiler
81 will incorrectly optimize the following two lines
82 to the equivalent of "return log(1.+x)". If this
83 happens, then results from log1p will be inaccurate
84 for small x. */
85 y = 1.+x;
86 return log(y)-((y-1.)-x)/y;
87 } else {
88 /* NaNs and infinities should end up here */
89 return log(1.+x);
90 }
91}
92#endif /* HAVE_LOG1P */
93
94/*
95 * ====================================================
96 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
97 *
98 * Developed at SunPro, a Sun Microsystems, Inc. business.
99 * Permission to use, copy, modify, and distribute this
100 * software is freely granted, provided that this notice
101 * is preserved.
102 * ====================================================
103 */
104
105static const double ln2 = 6.93147180559945286227E-01;
106static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
107static const double two_pow_p28 = 268435456.0; /* 2**28 */
108static const double zero = 0.0;
109
110/* asinh(x)
111 * Method :
112 * Based on
113 * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
114 * we have
115 * asinh(x) := x if 1+x*x=1,
116 * := sign(x)*(log(x)+ln2)) for large |x|, else
117 * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
118 * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
119 */
120
121#ifndef HAVE_ASINH
122double
123asinh(double x)
124{
125 double w;
126 double absx = fabs(x);
127
128 if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
129 return x+x;
130 }
131 if (absx < two_pow_m28) { /* |x| < 2**-28 */
132 return x; /* return x inexact except 0 */
133 }
134 if (absx > two_pow_p28) { /* |x| > 2**28 */
135 w = log(absx)+ln2;
136 }
137 else if (absx > 2.0) { /* 2 < |x| < 2**28 */
138 w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
139 }
140 else { /* 2**-28 <= |x| < 2= */
141 double t = x*x;
142 w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
143 }
144 return copysign(w, x);
145
146}
147#endif /* HAVE_ASINH */
148
149/* acosh(x)
150 * Method :
151 * Based on
152 * acosh(x) = log [ x + sqrt(x*x-1) ]
153 * we have
154 * acosh(x) := log(x)+ln2, if x is large; else
155 * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
156 * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
157 *
158 * Special cases:
159 * acosh(x) is NaN with signal if x<1.
160 * acosh(NaN) is NaN without signal.
161 */
162
163#ifndef HAVE_ACOSH
164double
165acosh(double x)
166{
167 if (Py_IS_NAN(x)) {
168 return x+x;
169 }
170 if (x < 1.) { /* x < 1; return a signaling NaN */
171 errno = EDOM;
172#ifdef Py_NAN
173 return Py_NAN;
174#else
175 return (x-x)/(x-x);
176#endif
177 }
178 else if (x >= two_pow_p28) { /* x > 2**28 */
179 if (Py_IS_INFINITY(x)) {
180 return x+x;
181 } else {
182 return log(x)+ln2; /* acosh(huge)=log(2x) */
183 }
184 }
185 else if (x == 1.) {
186 return 0.0; /* acosh(1) = 0 */
187 }
188 else if (x > 2.) { /* 2 < x < 2**28 */
189 double t = x*x;
190 return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
191 }
192 else { /* 1 < x <= 2 */
193 double t = x - 1.0;
194 return log1p(t + sqrt(2.0*t + t*t));
195 }
196}
197#endif /* HAVE_ACOSH */
198
199/* atanh(x)
200 * Method :
201 * 1.Reduced x to positive by atanh(-x) = -atanh(x)
202 * 2.For x>=0.5
203 * 1 2x x
204 * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
205 * 2 1 - x 1 - x
206 *
207 * For x<0.5
208 * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
209 *
210 * Special cases:
211 * atanh(x) is NaN if |x| >= 1 with signal;
212 * atanh(NaN) is that NaN with no signal;
213 *
214 */
215
216#ifndef HAVE_ATANH
217double
218atanh(double x)
219{
220 double absx;
221 double t;
222
223 if (Py_IS_NAN(x)) {
224 return x+x;
225 }
226 absx = fabs(x);
227 if (absx >= 1.) { /* |x| >= 1 */
228 errno = EDOM;
229#ifdef Py_NAN
230 return Py_NAN;
231#else
232 return x/zero;
233#endif
234 }
235 if (absx < two_pow_m28) { /* |x| < 2**-28 */
236 return x;
237 }
238 if (absx < 0.5) { /* |x| < 0.5 */
239 t = absx+absx;
240 t = 0.5 * log1p(t + t*absx / (1.0 - absx));
241 }
242 else { /* 0.5 <= |x| <= 1.0 */
243 t = 0.5 * log1p((absx + absx) / (1.0 - absx));
244 }
245 return copysign(t, x);
246}
247#endif /* HAVE_ATANH */