blob: 79ef30d7d18d174f311af4ef2d12fe3a1f10194d [file] [log] [blame]
Guido van Rossume7b146f2000-02-04 15:28:42 +00001"""Random variable generators.
Guido van Rossumff03b1a1994-03-09 12:55:02 +00002
Tim Petersd7b5e882001-01-25 03:36:26 +00003 integers
4 --------
5 uniform within range
6
7 sequences
8 ---------
9 pick random element
Raymond Hettingerf24eb352002-11-12 17:41:57 +000010 pick random sample
Raymond Hettingere8f1e002016-09-06 17:15:29 -070011 pick weighted random sample
Tim Petersd7b5e882001-01-25 03:36:26 +000012 generate random permutation
13
Guido van Rossume7b146f2000-02-04 15:28:42 +000014 distributions on the real line:
15 ------------------------------
Tim Petersd7b5e882001-01-25 03:36:26 +000016 uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +000017 triangular
Guido van Rossume7b146f2000-02-04 15:28:42 +000018 normal (Gaussian)
19 lognormal
20 negative exponential
21 gamma
22 beta
Raymond Hettinger40f62172002-12-29 23:03:38 +000023 pareto
24 Weibull
Guido van Rossumff03b1a1994-03-09 12:55:02 +000025
Guido van Rossume7b146f2000-02-04 15:28:42 +000026 distributions on the circle (angles 0 to 2pi)
27 ---------------------------------------------
28 circular uniform
29 von Mises
30
Raymond Hettinger40f62172002-12-29 23:03:38 +000031General notes on the underlying Mersenne Twister core generator:
Guido van Rossume7b146f2000-02-04 15:28:42 +000032
Raymond Hettinger40f62172002-12-29 23:03:38 +000033* The period is 2**19937-1.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000034* It is one of the most extensively tested generators in existence.
Thomas Wouters0e3f5912006-08-11 14:57:12 +000035* The random() method is implemented in C, executes in a single Python step,
36 and is, therefore, threadsafe.
Tim Peterse360d952001-01-26 10:00:39 +000037
Guido van Rossume7b146f2000-02-04 15:28:42 +000038"""
Guido van Rossumd03e1191998-05-29 17:51:31 +000039
Raymond Hettinger2f726e92003-10-05 09:09:15 +000040from warnings import warn as _warn
Raymond Hettinger91e27c22005-08-19 01:36:35 +000041from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
Tim Petersd7b5e882001-01-25 03:36:26 +000042from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
Raymond Hettingerc1c43ca2004-09-05 00:00:42 +000043from os import urandom as _urandom
Christian Heimesf1dc3ee2013-10-13 02:04:20 +020044from _collections_abc import Set as _Set, Sequence as _Sequence
Raymond Hettinger3fcf0022010-12-08 01:13:53 +000045from hashlib import sha512 as _sha512
Raymond Hettinger53822032019-02-16 13:30:51 -080046from itertools import accumulate as _accumulate, repeat as _repeat
Raymond Hettingercfd31f02019-02-13 02:04:17 -080047from bisect import bisect as _bisect
Antoine Pitrou346cbd32017-05-27 17:50:54 +020048import os as _os
Guido van Rossumff03b1a1994-03-09 12:55:02 +000049
Raymond Hettingerf24eb352002-11-12 17:41:57 +000050__all__ = ["Random","seed","random","uniform","randint","choice","sample",
Skip Montanaro0de65802001-02-15 22:15:14 +000051 "randrange","shuffle","normalvariate","lognormvariate",
Christian Heimesfe337bf2008-03-23 21:54:12 +000052 "expovariate","vonmisesvariate","gammavariate","triangular",
Raymond Hettingerf8a52d32003-08-05 12:23:19 +000053 "gauss","betavariate","paretovariate","weibullvariate",
Raymond Hettinger28aa4a02016-09-07 00:08:44 -070054 "getstate","setstate", "getrandbits", "choices",
Raymond Hettinger23f12412004-09-13 22:23:21 +000055 "SystemRandom"]
Tim Petersd7b5e882001-01-25 03:36:26 +000056
57NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000058TWOPI = 2.0*_pi
Tim Petersd7b5e882001-01-25 03:36:26 +000059LOG4 = _log(4.0)
Tim Petersd7b5e882001-01-25 03:36:26 +000060SG_MAGICCONST = 1.0 + _log(4.5)
Raymond Hettinger2f726e92003-10-05 09:09:15 +000061BPF = 53 # Number of bits in a float
Tim Peters7c2a85b2004-08-31 02:19:55 +000062RECIP_BPF = 2**-BPF
Tim Petersd7b5e882001-01-25 03:36:26 +000063
Raymond Hettinger356a4592004-08-30 06:14:31 +000064
Tim Petersd7b5e882001-01-25 03:36:26 +000065# Translated by Guido van Rossum from C source provided by
Raymond Hettinger40f62172002-12-29 23:03:38 +000066# Adrian Baddeley. Adapted by Raymond Hettinger for use with
Raymond Hettinger3fa19d72004-08-31 01:05:15 +000067# the Mersenne Twister and os.urandom() core generators.
Tim Petersd7b5e882001-01-25 03:36:26 +000068
Raymond Hettinger145a4a02003-01-07 10:25:55 +000069import _random
Raymond Hettinger40f62172002-12-29 23:03:38 +000070
Raymond Hettinger145a4a02003-01-07 10:25:55 +000071class Random(_random.Random):
Raymond Hettingerc32f0332002-05-23 19:44:49 +000072 """Random number generator base class used by bound module functions.
73
74 Used to instantiate instances of Random to get generators that don't
Raymond Hettinger28de64f2008-01-13 23:40:30 +000075 share state.
Raymond Hettingerc32f0332002-05-23 19:44:49 +000076
77 Class Random can also be subclassed if you want to use a different basic
78 generator of your own devising: in that case, override the following
Raymond Hettinger28de64f2008-01-13 23:40:30 +000079 methods: random(), seed(), getstate(), and setstate().
Benjamin Petersond18de0e2008-07-31 20:21:46 +000080 Optionally, implement a getrandbits() method so that randrange()
Raymond Hettinger2f726e92003-10-05 09:09:15 +000081 can cover arbitrarily large ranges.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +000082
Raymond Hettingerc32f0332002-05-23 19:44:49 +000083 """
Tim Petersd7b5e882001-01-25 03:36:26 +000084
Christian Heimescbf3b5c2007-12-03 21:02:03 +000085 VERSION = 3 # used by getstate/setstate
Tim Petersd7b5e882001-01-25 03:36:26 +000086
87 def __init__(self, x=None):
88 """Initialize an instance.
89
90 Optional argument x controls seeding, as for Random.seed().
91 """
92
93 self.seed(x)
Raymond Hettinger40f62172002-12-29 23:03:38 +000094 self.gauss_next = None
Tim Petersd7b5e882001-01-25 03:36:26 +000095
Wolfgang Maierba3a87a2018-04-17 17:16:17 +020096 def __init_subclass__(cls, **kwargs):
97 """Control how subclasses generate random integers.
98
99 The algorithm a subclass can use depends on the random() and/or
100 getrandbits() implementation available to it and determines
101 whether it can generate random integers from arbitrarily large
102 ranges.
103 """
104
Serhiy Storchakaec1622d2018-05-08 15:45:15 +0300105 for c in cls.__mro__:
106 if '_randbelow' in c.__dict__:
107 # just inherit it
108 break
109 if 'getrandbits' in c.__dict__:
110 cls._randbelow = cls._randbelow_with_getrandbits
111 break
112 if 'random' in c.__dict__:
113 cls._randbelow = cls._randbelow_without_getrandbits
114 break
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200115
Raymond Hettingerf763a722010-09-07 00:38:15 +0000116 def seed(self, a=None, version=2):
Tim Peters0de88fc2001-02-01 04:59:18 +0000117 """Initialize internal state from hashable object.
Tim Petersd7b5e882001-01-25 03:36:26 +0000118
Raymond Hettinger23f12412004-09-13 22:23:21 +0000119 None or no argument seeds from current time or from an operating
120 system specific randomness source if available.
Tim Peters0de88fc2001-02-01 04:59:18 +0000121
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000122 If *a* is an int, all bits are used.
Raymond Hettingerf763a722010-09-07 00:38:15 +0000123
Raymond Hettinger16eb8272016-09-04 11:17:28 -0700124 For version 2 (the default), all of the bits are used if *a* is a str,
125 bytes, or bytearray. For version 1 (provided for reproducing random
126 sequences from older versions of Python), the algorithm for str and
127 bytes generates a narrower range of seeds.
128
Tim Petersd7b5e882001-01-25 03:36:26 +0000129 """
130
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700131 if version == 1 and isinstance(a, (str, bytes)):
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700132 a = a.decode('latin-1') if isinstance(a, bytes) else a
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700133 x = ord(a[0]) << 7 if a else 0
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700134 for c in map(ord, a):
135 x = ((1000003 * x) ^ c) & 0xFFFFFFFFFFFFFFFF
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700136 x ^= len(a)
137 a = -2 if x == -1 else x
138
Raymond Hettinger2f9cc7a2016-08-31 23:00:32 -0700139 if version == 2 and isinstance(a, (str, bytes, bytearray)):
140 if isinstance(a, str):
141 a = a.encode()
142 a += _sha512(a).digest()
143 a = int.from_bytes(a, 'big')
Raymond Hettingerf763a722010-09-07 00:38:15 +0000144
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000145 super().seed(a)
Tim Peters46c04e12002-05-05 20:40:00 +0000146 self.gauss_next = None
147
Tim Peterscd804102001-01-25 20:25:57 +0000148 def getstate(self):
149 """Return internal state; can be passed to setstate() later."""
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000150 return self.VERSION, super().getstate(), self.gauss_next
Tim Peterscd804102001-01-25 20:25:57 +0000151
152 def setstate(self, state):
153 """Restore internal state from object returned by getstate()."""
154 version = state[0]
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000155 if version == 3:
Raymond Hettinger40f62172002-12-29 23:03:38 +0000156 version, internalstate, self.gauss_next = state
Guido van Rossumcd16bf62007-06-13 18:07:49 +0000157 super().setstate(internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000158 elif version == 2:
159 version, internalstate, self.gauss_next = state
160 # In version 2, the state was saved as signed ints, which causes
161 # inconsistencies between 32/64-bit systems. The state is
162 # really unsigned 32-bit ints, so we convert negative ints from
163 # version 2 to positive longs for version 3.
164 try:
Raymond Hettingerc585eec2010-09-07 15:00:15 +0000165 internalstate = tuple(x % (2**32) for x in internalstate)
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000166 except ValueError as e:
167 raise TypeError from e
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000168 super().setstate(internalstate)
Tim Peterscd804102001-01-25 20:25:57 +0000169 else:
170 raise ValueError("state with version %s passed to "
171 "Random.setstate() of version %s" %
172 (version, self.VERSION))
173
Tim Peterscd804102001-01-25 20:25:57 +0000174## ---- Methods below this point do not need to be overridden when
175## ---- subclassing for the purpose of using a different core generator.
176
177## -------------------- pickle support -------------------
178
R David Murrayd9ebf4d2013-04-02 13:10:52 -0400179 # Issue 17489: Since __reduce__ was defined to fix #759889 this is no
180 # longer called; we leave it here because it has been here since random was
181 # rewritten back in 2001 and why risk breaking something.
Tim Peterscd804102001-01-25 20:25:57 +0000182 def __getstate__(self): # for pickle
183 return self.getstate()
184
185 def __setstate__(self, state): # for pickle
186 self.setstate(state)
187
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000188 def __reduce__(self):
189 return self.__class__, (), self.getstate()
190
Tim Peterscd804102001-01-25 20:25:57 +0000191## -------------------- integer methods -------------------
192
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700193 def randrange(self, start, stop=None, step=1, _int=int):
Tim Petersd7b5e882001-01-25 03:36:26 +0000194 """Choose a random item from range(start, stop[, step]).
195
196 This fixes the problem with randint() which includes the
197 endpoint; in Python this is usually not what you want.
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000198
Tim Petersd7b5e882001-01-25 03:36:26 +0000199 """
200
201 # This code is a bit messy to make it fast for the
Tim Peters9146f272002-08-16 03:41:39 +0000202 # common case while still doing adequate error checking.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700203 istart = _int(start)
Tim Petersd7b5e882001-01-25 03:36:26 +0000204 if istart != start:
Collin Winterce36ad82007-08-30 01:19:48 +0000205 raise ValueError("non-integer arg 1 for randrange()")
Raymond Hettinger3051cc32010-09-07 00:48:40 +0000206 if stop is None:
Tim Petersd7b5e882001-01-25 03:36:26 +0000207 if istart > 0:
Raymond Hettinger05156612010-09-07 04:44:52 +0000208 return self._randbelow(istart)
Collin Winterce36ad82007-08-30 01:19:48 +0000209 raise ValueError("empty range for randrange()")
Tim Peters9146f272002-08-16 03:41:39 +0000210
211 # stop argument supplied.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700212 istop = _int(stop)
Tim Petersd7b5e882001-01-25 03:36:26 +0000213 if istop != stop:
Collin Winterce36ad82007-08-30 01:19:48 +0000214 raise ValueError("non-integer stop for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000215 width = istop - istart
216 if step == 1 and width > 0:
Raymond Hettingerc3246972010-09-07 09:32:57 +0000217 return istart + self._randbelow(width)
Tim Petersd7b5e882001-01-25 03:36:26 +0000218 if step == 1:
Kumar Akshay2433a2a2019-01-22 00:49:59 +0530219 raise ValueError("empty range for randrange() (%d, %d, %d)" % (istart, istop, width))
Tim Peters9146f272002-08-16 03:41:39 +0000220
221 # Non-unit step argument supplied.
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700222 istep = _int(step)
Tim Petersd7b5e882001-01-25 03:36:26 +0000223 if istep != step:
Collin Winterce36ad82007-08-30 01:19:48 +0000224 raise ValueError("non-integer step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000225 if istep > 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000226 n = (width + istep - 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000227 elif istep < 0:
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000228 n = (width + istep + 1) // istep
Tim Petersd7b5e882001-01-25 03:36:26 +0000229 else:
Collin Winterce36ad82007-08-30 01:19:48 +0000230 raise ValueError("zero step for randrange()")
Tim Petersd7b5e882001-01-25 03:36:26 +0000231
232 if n <= 0:
Collin Winterce36ad82007-08-30 01:19:48 +0000233 raise ValueError("empty range for randrange()")
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000234
Raymond Hettinger05156612010-09-07 04:44:52 +0000235 return istart + istep*self._randbelow(n)
Tim Petersd7b5e882001-01-25 03:36:26 +0000236
237 def randint(self, a, b):
Tim Peterscd804102001-01-25 20:25:57 +0000238 """Return random integer in range [a, b], including both end points.
Tim Petersd7b5e882001-01-25 03:36:26 +0000239 """
240
241 return self.randrange(a, b+1)
242
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200243 def _randbelow_with_getrandbits(self, n):
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000244 "Return a random int in the range [0,n). Raises ValueError if n==0."
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000245
Raymond Hettingerc3246972010-09-07 09:32:57 +0000246 getrandbits = self.getrandbits
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200247 k = n.bit_length() # don't use (n-1) here because n can be 1
248 r = getrandbits(k) # 0 <= r < 2**k
249 while r >= n:
250 r = getrandbits(k)
251 return r
252
253 def _randbelow_without_getrandbits(self, n, int=int, maxsize=1<<BPF):
254 """Return a random int in the range [0,n). Raises ValueError if n==0.
255
256 The implementation does not use getrandbits, but only random.
257 """
258
259 random = self.random
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000260 if n >= maxsize:
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000261 _warn("Underlying random() generator does not supply \n"
Raymond Hettingerf015b3f2010-09-07 20:04:42 +0000262 "enough bits to choose from a population range this large.\n"
263 "To remove the range limitation, add a getrandbits() method.")
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000264 return int(random() * n)
Wolfgang Maier091e95e2018-04-05 17:19:44 +0200265 if n == 0:
266 raise ValueError("Boundary cannot be zero")
Raymond Hettingere4a3e992010-09-08 00:30:28 +0000267 rem = maxsize % n
268 limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
269 r = random()
270 while r >= limit:
271 r = random()
272 return int(r*maxsize) % n
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000273
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200274 _randbelow = _randbelow_with_getrandbits
275
Tim Peterscd804102001-01-25 20:25:57 +0000276## -------------------- sequence methods -------------------
277
Tim Petersd7b5e882001-01-25 03:36:26 +0000278 def choice(self, seq):
279 """Choose a random element from a non-empty sequence."""
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000280 try:
281 i = self._randbelow(len(seq))
282 except ValueError:
Raymond Hettingerbb2839b2016-12-27 01:06:52 -0800283 raise IndexError('Cannot choose from an empty sequence') from None
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000284 return seq[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000285
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700286 def shuffle(self, x, random=None):
Antoine Pitrou5e394332012-11-04 02:10:33 +0100287 """Shuffle list x in place, and return None.
Tim Petersd7b5e882001-01-25 03:36:26 +0000288
Antoine Pitrou5e394332012-11-04 02:10:33 +0100289 Optional argument random is a 0-argument function returning a
290 random float in [0.0, 1.0); if it is the default None, the
291 standard random.random will be used.
Senthil Kumaranf8ce51a2013-09-11 22:54:31 -0700292
Tim Petersd7b5e882001-01-25 03:36:26 +0000293 """
294
Raymond Hettinger8fe47c32013-10-05 21:48:21 -0700295 if random is None:
296 randbelow = self._randbelow
297 for i in reversed(range(1, len(x))):
298 # pick an element in x[:i+1] with which to exchange x[i]
299 j = randbelow(i+1)
300 x[i], x[j] = x[j], x[i]
301 else:
302 _int = int
303 for i in reversed(range(1, len(x))):
304 # pick an element in x[:i+1] with which to exchange x[i]
305 j = _int(random() * (i+1))
306 x[i], x[j] = x[j], x[i]
Tim Petersd7b5e882001-01-25 03:36:26 +0000307
Raymond Hettingerfdbe5222003-06-13 07:01:51 +0000308 def sample(self, population, k):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000309 """Chooses k unique random elements from a population sequence or set.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000310
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000311 Returns a new list containing elements from the population while
312 leaving the original population unchanged. The resulting list is
313 in selection order so that all sub-slices will also be valid random
314 samples. This allows raffle winners (the sample) to be partitioned
315 into grand prize and second place winners (the subslices).
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000316
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000317 Members of the population need not be hashable or unique. If the
318 population contains repeats, then each occurrence is a possible
319 selection in the sample.
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000320
Guido van Rossum805365e2007-05-07 22:24:25 +0000321 To choose a sample in a range of integers, use range as an argument.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000322 This is especially fast and space efficient for sampling from a
Guido van Rossum805365e2007-05-07 22:24:25 +0000323 large population: sample(range(10000000), 60)
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000324 """
325
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000326 # Sampling without replacement entails tracking either potential
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000327 # selections (the pool) in a list or previous selections in a set.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000328
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000329 # When the number of selections is small compared to the
330 # population, then tracking selections is efficient, requiring
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000331 # only a small set and an occasional reselection. For
Jeremy Hylton2b55d352004-02-23 17:27:57 +0000332 # a larger number of selections, the pool tracking method is
333 # preferred since the list takes less space than the
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000334 # set and it doesn't suffer from frequent reselections.
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000335
Raymond Hettinger7fc633f2018-12-04 00:13:38 -0800336 # The number of calls to _randbelow() is kept at or near k, the
337 # theoretical minimum. This is important because running time
338 # is dominated by _randbelow() and because it extracts the
339 # least entropy from the underlying random number generators.
340
341 # Memory requirements are kept to the smaller of a k-length
342 # set or an n-length list.
343
344 # There are other sampling algorithms that do not require
345 # auxiliary memory, but they were rejected because they made
346 # too many calls to _randbelow(), making them slower and
347 # causing them to eat more entropy than necessary.
348
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000349 if isinstance(population, _Set):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000350 population = tuple(population)
Raymond Hettinger57d1a882011-02-23 00:46:28 +0000351 if not isinstance(population, _Sequence):
352 raise TypeError("Population must be a sequence or set. For dicts, use list(d).")
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000353 randbelow = self._randbelow
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000354 n = len(population)
355 if not 0 <= k <= n:
Raymond Hettingerbf871262016-11-21 14:34:33 -0800356 raise ValueError("Sample larger than population or is negative")
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000357 result = [None] * k
Raymond Hettinger91e27c22005-08-19 01:36:35 +0000358 setsize = 21 # size of a small set minus size of an empty list
359 if k > 5:
Tim Peters9e34c042005-08-26 15:20:46 +0000360 setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
Raymond Hettinger1acde192008-01-14 01:00:53 +0000361 if n <= setsize:
362 # An n-length list is smaller than a k-length set
Raymond Hettinger311f4192002-11-18 09:01:24 +0000363 pool = list(population)
Guido van Rossum805365e2007-05-07 22:24:25 +0000364 for i in range(k): # invariant: non-selected at [0,n-i)
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000365 j = randbelow(n-i)
Raymond Hettinger311f4192002-11-18 09:01:24 +0000366 result[i] = pool[j]
Raymond Hettinger8b9aa8d2003-01-04 05:20:33 +0000367 pool[j] = pool[n-i-1] # move non-selected item into vacancy
Raymond Hettingerc0b40342002-11-13 15:26:37 +0000368 else:
Raymond Hettinger1acde192008-01-14 01:00:53 +0000369 selected = set()
370 selected_add = selected.add
371 for i in range(k):
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000372 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000373 while j in selected:
Raymond Hettinger05a505f2010-09-07 19:19:33 +0000374 j = randbelow(n)
Raymond Hettinger1acde192008-01-14 01:00:53 +0000375 selected_add(j)
376 result[i] = population[j]
Raymond Hettinger311f4192002-11-18 09:01:24 +0000377 return result
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000378
Raymond Hettinger9016f282016-09-26 21:45:57 -0700379 def choices(self, population, weights=None, *, cum_weights=None, k=1):
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700380 """Return a k sized list of population elements chosen with replacement.
381
382 If the relative weights or cumulative weights are not specified,
383 the selections are made with equal probability.
384
385 """
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700386 random = self.random
Raymond Hettingere69cd162018-07-04 15:28:20 -0700387 n = len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700388 if cum_weights is None:
389 if weights is None:
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700390 _int = int
Raymond Hettinger0a18e052018-11-09 02:39:50 -0800391 n += 0.0 # convert to float for a small speed improvement
Raymond Hettinger53822032019-02-16 13:30:51 -0800392 return [population[_int(random() * n)] for i in _repeat(None, k)]
Raymond Hettingercfd31f02019-02-13 02:04:17 -0800393 cum_weights = list(_accumulate(weights))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700394 elif weights is not None:
Raymond Hettinger24e42392016-11-13 00:42:56 -0500395 raise TypeError('Cannot specify both weights and cumulative weights')
Raymond Hettingere69cd162018-07-04 15:28:20 -0700396 if len(cum_weights) != n:
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700397 raise ValueError('The number of weights does not match the population')
Raymond Hettingercfd31f02019-02-13 02:04:17 -0800398 bisect = _bisect
Raymond Hettinger0a18e052018-11-09 02:39:50 -0800399 total = cum_weights[-1] + 0.0 # convert to float
Raymond Hettingere69cd162018-07-04 15:28:20 -0700400 hi = n - 1
Raymond Hettingerddf71712018-06-27 01:08:31 -0700401 return [population[bisect(cum_weights, random() * total, 0, hi)]
Raymond Hettinger53822032019-02-16 13:30:51 -0800402 for i in _repeat(None, k)]
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700403
Tim Peterscd804102001-01-25 20:25:57 +0000404## -------------------- real-valued distributions -------------------
405
406## -------------------- uniform distribution -------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000407
408 def uniform(self, a, b):
Raymond Hettingerbe40db02009-06-11 23:12:14 +0000409 "Get a random number in the range [a, b) or [a, b] depending on rounding."
Tim Petersd7b5e882001-01-25 03:36:26 +0000410 return a + (b-a) * self.random()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000411
Christian Heimesfe337bf2008-03-23 21:54:12 +0000412## -------------------- triangular --------------------
413
414 def triangular(self, low=0.0, high=1.0, mode=None):
415 """Triangular distribution.
416
417 Continuous distribution bounded by given lower and upper limits,
418 and having a given mode value in-between.
419
420 http://en.wikipedia.org/wiki/Triangular_distribution
421
422 """
423 u = self.random()
Raymond Hettinger978c6ab2014-05-25 17:25:27 -0700424 try:
425 c = 0.5 if mode is None else (mode - low) / (high - low)
426 except ZeroDivisionError:
427 return low
Christian Heimesfe337bf2008-03-23 21:54:12 +0000428 if u > c:
429 u = 1.0 - u
430 c = 1.0 - c
431 low, high = high, low
Raymond Hettingerf5ea83f2017-09-04 16:51:06 -0700432 return low + (high - low) * _sqrt(u * c)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000433
Tim Peterscd804102001-01-25 20:25:57 +0000434## -------------------- normal distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000435
Tim Petersd7b5e882001-01-25 03:36:26 +0000436 def normalvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000437 """Normal distribution.
438
439 mu is the mean, and sigma is the standard deviation.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000440
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000441 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000442 # mu = mean, sigma = standard deviation
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000443
Tim Petersd7b5e882001-01-25 03:36:26 +0000444 # Uses Kinderman and Monahan method. Reference: Kinderman,
445 # A.J. and Monahan, J.F., "Computer generation of random
446 # variables using the ratio of uniform deviates", ACM Trans
447 # Math Software, 3, (1977), pp257-260.
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000448
Tim Petersd7b5e882001-01-25 03:36:26 +0000449 random = self.random
Raymond Hettinger42406e62005-04-30 09:02:51 +0000450 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000451 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000452 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000453 z = NV_MAGICCONST*(u1-0.5)/u2
454 zz = z*z/4.0
455 if zz <= -_log(u2):
456 break
457 return mu + z*sigma
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000458
Tim Peterscd804102001-01-25 20:25:57 +0000459## -------------------- lognormal distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000460
461 def lognormvariate(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000462 """Log normal distribution.
463
464 If you take the natural logarithm of this distribution, you'll get a
465 normal distribution with mean mu and standard deviation sigma.
466 mu can have any value, and sigma must be greater than zero.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000467
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000468 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000469 return _exp(self.normalvariate(mu, sigma))
470
Tim Peterscd804102001-01-25 20:25:57 +0000471## -------------------- exponential distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000472
473 def expovariate(self, lambd):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000474 """Exponential distribution.
475
Mark Dickinson2f947362009-01-07 17:54:07 +0000476 lambd is 1.0 divided by the desired mean. It should be
477 nonzero. (The parameter would be called "lambda", but that is
478 a reserved word in Python.) Returned values range from 0 to
479 positive infinity if lambd is positive, and from negative
480 infinity to 0 if lambd is negative.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000481
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000482 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000483 # lambd: rate lambd = 1/mean
484 # ('lambda' is a Python reserved word)
485
Raymond Hettinger5279fb92011-06-25 11:30:53 +0200486 # we use 1-random() instead of random() to preclude the
487 # possibility of taking the log of zero.
488 return -_log(1.0 - self.random())/lambd
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000489
Tim Peterscd804102001-01-25 20:25:57 +0000490## -------------------- von Mises distribution --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000491
Tim Petersd7b5e882001-01-25 03:36:26 +0000492 def vonmisesvariate(self, mu, kappa):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000493 """Circular data distribution.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000494
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000495 mu is the mean angle, expressed in radians between 0 and 2*pi, and
496 kappa is the concentration parameter, which must be greater than or
497 equal to zero. If kappa is equal to zero, this distribution reduces
498 to a uniform random angle over the range 0 to 2*pi.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000499
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000500 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000501 # mu: mean angle (in radians between 0 and 2*pi)
502 # kappa: concentration parameter kappa (>= 0)
503 # if kappa = 0 generate uniform random angle
504
505 # Based upon an algorithm published in: Fisher, N.I.,
506 # "Statistical Analysis of Circular Data", Cambridge
507 # University Press, 1993.
508
509 # Thanks to Magnus Kessler for a correction to the
510 # implementation of step 4.
511
512 random = self.random
513 if kappa <= 1e-6:
514 return TWOPI * random()
515
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200516 s = 0.5 / kappa
517 r = s + _sqrt(1.0 + s * s)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000518
Raymond Hettinger42406e62005-04-30 09:02:51 +0000519 while 1:
Tim Peters0c9886d2001-01-15 01:18:21 +0000520 u1 = random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000521 z = _cos(_pi * u1)
Tim Petersd7b5e882001-01-25 03:36:26 +0000522
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200523 d = z / (r + z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000524 u2 = random()
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200525 if u2 < 1.0 - d * d or u2 <= (1.0 - d) * _exp(d):
Tim Peters0c9886d2001-01-15 01:18:21 +0000526 break
Tim Petersd7b5e882001-01-25 03:36:26 +0000527
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200528 q = 1.0 / r
529 f = (q + z) / (1.0 + q * z)
Tim Petersd7b5e882001-01-25 03:36:26 +0000530 u3 = random()
531 if u3 > 0.5:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000532 theta = (mu + _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000533 else:
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000534 theta = (mu - _acos(f)) % TWOPI
Tim Petersd7b5e882001-01-25 03:36:26 +0000535
536 return theta
537
Tim Peterscd804102001-01-25 20:25:57 +0000538## -------------------- gamma distribution --------------------
Tim Petersd7b5e882001-01-25 03:36:26 +0000539
540 def gammavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000541 """Gamma distribution. Not the gamma function!
542
543 Conditions on the parameters are alpha > 0 and beta > 0.
544
Raymond Hettingera8e4d6e2011-03-22 15:55:51 -0700545 The probability distribution function is:
546
547 x ** (alpha - 1) * math.exp(-x / beta)
548 pdf(x) = --------------------------------------
549 math.gamma(alpha) * beta ** alpha
550
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000551 """
Tim Peters8ac14952002-05-23 15:15:30 +0000552
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000553 # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
Tim Peters8ac14952002-05-23 15:15:30 +0000554
Guido van Rossum570764d2002-05-14 14:08:12 +0000555 # Warning: a few older sources define the gamma distribution in terms
556 # of alpha > -1.0
557 if alpha <= 0.0 or beta <= 0.0:
Collin Winterce36ad82007-08-30 01:19:48 +0000558 raise ValueError('gammavariate: alpha and beta must be > 0.0')
Tim Peters8ac14952002-05-23 15:15:30 +0000559
Tim Petersd7b5e882001-01-25 03:36:26 +0000560 random = self.random
Tim Petersd7b5e882001-01-25 03:36:26 +0000561 if alpha > 1.0:
562
563 # Uses R.C.H. Cheng, "The generation of Gamma
564 # variables with non-integral shape parameters",
565 # Applied Statistics, (1977), 26, No. 1, p71-74
566
Raymond Hettingerca6cdc22002-05-13 23:40:14 +0000567 ainv = _sqrt(2.0 * alpha - 1.0)
568 bbb = alpha - LOG4
569 ccc = alpha + ainv
Tim Peters8ac14952002-05-23 15:15:30 +0000570
Raymond Hettinger42406e62005-04-30 09:02:51 +0000571 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000572 u1 = random()
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000573 if not 1e-7 < u1 < .9999999:
574 continue
575 u2 = 1.0 - random()
Tim Petersd7b5e882001-01-25 03:36:26 +0000576 v = _log(u1/(1.0-u1))/ainv
577 x = alpha*_exp(v)
578 z = u1*u1*u2
579 r = bbb+ccc*v-x
580 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000581 return x * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000582
583 elif alpha == 1.0:
leodema9f396b62017-06-04 07:41:41 +0100584 # expovariate(1/beta)
leodema63d15222018-12-24 07:54:25 +0100585 return -_log(1.0 - random()) * beta
Tim Petersd7b5e882001-01-25 03:36:26 +0000586
587 else: # alpha is between 0 and 1 (exclusive)
588
589 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
590
Raymond Hettinger42406e62005-04-30 09:02:51 +0000591 while 1:
Tim Petersd7b5e882001-01-25 03:36:26 +0000592 u = random()
593 b = (_e + alpha)/_e
594 p = b*u
595 if p <= 1.0:
Raymond Hettinger42406e62005-04-30 09:02:51 +0000596 x = p ** (1.0/alpha)
Tim Petersd7b5e882001-01-25 03:36:26 +0000597 else:
Tim Petersd7b5e882001-01-25 03:36:26 +0000598 x = -_log((b-p)/alpha)
599 u1 = random()
Raymond Hettinger42406e62005-04-30 09:02:51 +0000600 if p > 1.0:
601 if u1 <= x ** (alpha - 1.0):
602 break
603 elif u1 <= _exp(-x):
Tim Petersd7b5e882001-01-25 03:36:26 +0000604 break
Raymond Hettingerb760efb2002-05-14 06:40:34 +0000605 return x * beta
606
Tim Peterscd804102001-01-25 20:25:57 +0000607## -------------------- Gauss (faster alternative) --------------------
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000608
Tim Petersd7b5e882001-01-25 03:36:26 +0000609 def gauss(self, mu, sigma):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000610 """Gaussian distribution.
611
612 mu is the mean, and sigma is the standard deviation. This is
613 slightly faster than the normalvariate() function.
614
615 Not thread-safe without a lock around calls.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000616
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000617 """
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000618
Tim Petersd7b5e882001-01-25 03:36:26 +0000619 # When x and y are two variables from [0, 1), uniformly
620 # distributed, then
621 #
622 # cos(2*pi*x)*sqrt(-2*log(1-y))
623 # sin(2*pi*x)*sqrt(-2*log(1-y))
624 #
625 # are two *independent* variables with normal distribution
626 # (mu = 0, sigma = 1).
627 # (Lambert Meertens)
628 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000629
Tim Petersd7b5e882001-01-25 03:36:26 +0000630 # Multithreading note: When two threads call this function
631 # simultaneously, it is possible that they will receive the
632 # same return value. The window is very small though. To
633 # avoid this, you have to use a lock around all calls. (I
634 # didn't want to slow this down in the serial case by using a
635 # lock here.)
Guido van Rossumd03e1191998-05-29 17:51:31 +0000636
Tim Petersd7b5e882001-01-25 03:36:26 +0000637 random = self.random
638 z = self.gauss_next
639 self.gauss_next = None
640 if z is None:
641 x2pi = random() * TWOPI
642 g2rad = _sqrt(-2.0 * _log(1.0 - random()))
643 z = _cos(x2pi) * g2rad
644 self.gauss_next = _sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000645
Tim Petersd7b5e882001-01-25 03:36:26 +0000646 return mu + z*sigma
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000647
Tim Peterscd804102001-01-25 20:25:57 +0000648## -------------------- beta --------------------
Tim Peters85e2e472001-01-26 06:49:56 +0000649## See
Ezio Melotti20f53f12011-04-15 08:25:16 +0300650## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
Tim Peters85e2e472001-01-26 06:49:56 +0000651## for Ivan Frohne's insightful analysis of why the original implementation:
652##
653## def betavariate(self, alpha, beta):
654## # Discrete Event Simulation in C, pp 87-88.
655##
656## y = self.expovariate(alpha)
657## z = self.expovariate(1.0/beta)
658## return z/(y+z)
659##
660## was dead wrong, and how it probably got that way.
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000661
Tim Petersd7b5e882001-01-25 03:36:26 +0000662 def betavariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000663 """Beta distribution.
664
Thomas Woutersb2137042007-02-01 18:02:27 +0000665 Conditions on the parameters are alpha > 0 and beta > 0.
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000666 Returned values range between 0 and 1.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000667
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000668 """
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000669
Tim Peters85e2e472001-01-26 06:49:56 +0000670 # This version due to Janne Sinkkonen, and matches all the std
671 # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300672 y = self.gammavariate(alpha, 1.0)
Tim Peters85e2e472001-01-26 06:49:56 +0000673 if y == 0:
674 return 0.0
675 else:
Raymond Hettinger650c1c92016-06-25 05:36:42 +0300676 return y / (y + self.gammavariate(beta, 1.0))
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000677
Tim Peterscd804102001-01-25 20:25:57 +0000678## -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000679
Tim Petersd7b5e882001-01-25 03:36:26 +0000680 def paretovariate(self, alpha):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000681 """Pareto distribution. alpha is the shape parameter."""
Tim Petersd7b5e882001-01-25 03:36:26 +0000682 # Jain, pg. 495
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000683
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000684 u = 1.0 - self.random()
Raymond Hettinger8ff10992010-09-08 18:58:33 +0000685 return 1.0 / u ** (1.0/alpha)
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000686
Tim Peterscd804102001-01-25 20:25:57 +0000687## -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000688
Tim Petersd7b5e882001-01-25 03:36:26 +0000689 def weibullvariate(self, alpha, beta):
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000690 """Weibull distribution.
691
692 alpha is the scale parameter and beta is the shape parameter.
Raymond Hettingeref4d4bd2002-05-23 23:58:17 +0000693
Raymond Hettingerc32f0332002-05-23 19:44:49 +0000694 """
Tim Petersd7b5e882001-01-25 03:36:26 +0000695 # Jain, pg. 499; bug fix courtesy Bill Arms
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000696
Raymond Hettinger73ced7e2003-01-04 09:26:32 +0000697 u = 1.0 - self.random()
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000698 return alpha * (-_log(u)) ** (1.0/beta)
Guido van Rossum6c395ba1999-08-18 13:53:28 +0000699
Raymond Hettinger23f12412004-09-13 22:23:21 +0000700## --------------- Operating System Random Source ------------------
Raymond Hettinger356a4592004-08-30 06:14:31 +0000701
Raymond Hettinger23f12412004-09-13 22:23:21 +0000702class SystemRandom(Random):
703 """Alternate random number generator using sources provided
704 by the operating system (such as /dev/urandom on Unix or
705 CryptGenRandom on Windows).
Raymond Hettinger356a4592004-08-30 06:14:31 +0000706
707 Not available on all systems (see os.urandom() for details).
708 """
709
710 def random(self):
711 """Get the next random number in the range [0.0, 1.0)."""
Raymond Hettinger183cd1f2010-09-08 18:48:21 +0000712 return (int.from_bytes(_urandom(7), 'big') >> 3) * RECIP_BPF
Raymond Hettinger356a4592004-08-30 06:14:31 +0000713
714 def getrandbits(self, k):
Serhiy Storchaka95949422013-08-27 19:40:23 +0300715 """getrandbits(k) -> x. Generates an int with k random bits."""
Raymond Hettinger356a4592004-08-30 06:14:31 +0000716 if k <= 0:
717 raise ValueError('number of bits must be greater than zero')
Raymond Hettinger63b17672010-09-08 19:27:59 +0000718 numbytes = (k + 7) // 8 # bits / 8 and rounded up
719 x = int.from_bytes(_urandom(numbytes), 'big')
720 return x >> (numbytes * 8 - k) # trim excess bits
Raymond Hettinger356a4592004-08-30 06:14:31 +0000721
Raymond Hettinger28de64f2008-01-13 23:40:30 +0000722 def seed(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000723 "Stub method. Not used for a system random number generator."
Raymond Hettinger356a4592004-08-30 06:14:31 +0000724 return None
Raymond Hettinger356a4592004-08-30 06:14:31 +0000725
726 def _notimplemented(self, *args, **kwds):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000727 "Method should not be called for a system random number generator."
728 raise NotImplementedError('System entropy source does not have state.')
Raymond Hettinger356a4592004-08-30 06:14:31 +0000729 getstate = setstate = _notimplemented
730
Tim Peterscd804102001-01-25 20:25:57 +0000731## -------------------- test program --------------------
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000732
Raymond Hettinger62297132003-08-30 01:24:19 +0000733def _test_generator(n, func, args):
Tim Peters0c9886d2001-01-15 01:18:21 +0000734 import time
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000735 print(n, 'times', func.__name__)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000736 total = 0.0
Tim Peters0c9886d2001-01-15 01:18:21 +0000737 sqsum = 0.0
738 smallest = 1e10
739 largest = -1e10
Victor Stinner8db5b542018-12-17 11:30:34 +0100740 t0 = time.perf_counter()
Tim Peters0c9886d2001-01-15 01:18:21 +0000741 for i in range(n):
Raymond Hettinger62297132003-08-30 01:24:19 +0000742 x = func(*args)
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000743 total += x
Tim Peters0c9886d2001-01-15 01:18:21 +0000744 sqsum = sqsum + x*x
745 smallest = min(x, smallest)
746 largest = max(x, largest)
Victor Stinner8db5b542018-12-17 11:30:34 +0100747 t1 = time.perf_counter()
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000748 print(round(t1-t0, 3), 'sec,', end=' ')
Raymond Hettingerb98154e2003-05-24 17:26:02 +0000749 avg = total/n
Tim Petersd7b5e882001-01-25 03:36:26 +0000750 stddev = _sqrt(sqsum/n - avg*avg)
Raymond Hettinger1f548142014-05-19 20:21:43 +0100751 print('avg %g, stddev %g, min %g, max %g\n' % \
Guido van Rossumbe19ed72007-02-09 05:37:30 +0000752 (avg, stddev, smallest, largest))
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000753
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000754
755def _test(N=2000):
Raymond Hettinger62297132003-08-30 01:24:19 +0000756 _test_generator(N, random, ())
757 _test_generator(N, normalvariate, (0.0, 1.0))
758 _test_generator(N, lognormvariate, (0.0, 1.0))
759 _test_generator(N, vonmisesvariate, (0.0, 1.0))
760 _test_generator(N, gammavariate, (0.01, 1.0))
761 _test_generator(N, gammavariate, (0.1, 1.0))
762 _test_generator(N, gammavariate, (0.1, 2.0))
763 _test_generator(N, gammavariate, (0.5, 1.0))
764 _test_generator(N, gammavariate, (0.9, 1.0))
765 _test_generator(N, gammavariate, (1.0, 1.0))
766 _test_generator(N, gammavariate, (2.0, 1.0))
767 _test_generator(N, gammavariate, (20.0, 1.0))
768 _test_generator(N, gammavariate, (200.0, 1.0))
769 _test_generator(N, gauss, (0.0, 1.0))
770 _test_generator(N, betavariate, (3.0, 3.0))
Christian Heimesfe337bf2008-03-23 21:54:12 +0000771 _test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
Tim Peterscd804102001-01-25 20:25:57 +0000772
Tim Peters715c4c42001-01-26 22:56:56 +0000773# Create one instance, seeded from current time, and export its methods
Raymond Hettinger40f62172002-12-29 23:03:38 +0000774# as module-level functions. The functions share state across all uses
775#(both in the user's code and in the Python libraries), but that's fine
776# for most programs and is easier for the casual user than making them
777# instantiate their own Random() instance.
778
Tim Petersd7b5e882001-01-25 03:36:26 +0000779_inst = Random()
780seed = _inst.seed
781random = _inst.random
782uniform = _inst.uniform
Christian Heimesfe337bf2008-03-23 21:54:12 +0000783triangular = _inst.triangular
Tim Petersd7b5e882001-01-25 03:36:26 +0000784randint = _inst.randint
785choice = _inst.choice
786randrange = _inst.randrange
Raymond Hettingerf24eb352002-11-12 17:41:57 +0000787sample = _inst.sample
Tim Petersd7b5e882001-01-25 03:36:26 +0000788shuffle = _inst.shuffle
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700789choices = _inst.choices
Tim Petersd7b5e882001-01-25 03:36:26 +0000790normalvariate = _inst.normalvariate
791lognormvariate = _inst.lognormvariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000792expovariate = _inst.expovariate
793vonmisesvariate = _inst.vonmisesvariate
794gammavariate = _inst.gammavariate
Tim Petersd7b5e882001-01-25 03:36:26 +0000795gauss = _inst.gauss
796betavariate = _inst.betavariate
797paretovariate = _inst.paretovariate
798weibullvariate = _inst.weibullvariate
799getstate = _inst.getstate
800setstate = _inst.setstate
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000801getrandbits = _inst.getrandbits
Tim Petersd7b5e882001-01-25 03:36:26 +0000802
Antoine Pitrou346cbd32017-05-27 17:50:54 +0200803if hasattr(_os, "fork"):
Gregory P. Smith163468a2017-05-29 10:03:41 -0700804 _os.register_at_fork(after_in_child=_inst.seed)
Antoine Pitrou346cbd32017-05-27 17:50:54 +0200805
806
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000807if __name__ == '__main__':
Tim Petersd7b5e882001-01-25 03:36:26 +0000808 _test()