blob: ec3955dabfb16c495034239eb4552b3a4b189d79 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
Mark Dickinson603b7532010-04-06 19:55:03 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000038
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000100.. function:: isfinite(x)
101
102 Return ``True`` if *x* is neither an infinity nor a NaN, and
103 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
104
Mark Dickinsonc7622422010-07-11 19:47:37 +0000105 .. versionadded:: 3.2
106
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000107
Christian Heimes072c0f12008-01-03 23:01:04 +0000108.. function:: isinf(x)
109
Mark Dickinsonc7622422010-07-11 19:47:37 +0000110 Return ``True`` if *x* is a positive or negative infinity, and
111 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000112
Christian Heimes072c0f12008-01-03 23:01:04 +0000113
114.. function:: isnan(x)
115
Mark Dickinsonc7622422010-07-11 19:47:37 +0000116 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000117
Christian Heimes072c0f12008-01-03 23:01:04 +0000118
Georg Brandl116aa622007-08-15 14:28:22 +0000119.. function:: ldexp(x, i)
120
121 Return ``x * (2**i)``. This is essentially the inverse of function
122 :func:`frexp`.
123
124
125.. function:: modf(x)
126
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000127 Return the fractional and integer parts of *x*. Both results carry the sign
128 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000129
Christian Heimes400adb02008-02-01 08:12:03 +0000130
131.. function:: trunc(x)
132
133 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000134 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000135
Christian Heimes400adb02008-02-01 08:12:03 +0000136
Georg Brandl116aa622007-08-15 14:28:22 +0000137Note that :func:`frexp` and :func:`modf` have a different call/return pattern
138than their C equivalents: they take a single argument and return a pair of
139values, rather than returning their second return value through an 'output
140parameter' (there is no such thing in Python).
141
142For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
143floating-point numbers of sufficiently large magnitude are exact integers.
144Python floats typically carry no more than 53 bits of precision (the same as the
145platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
146necessarily has no fractional bits.
147
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000148
149Power and logarithmic functions
150-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000151
Georg Brandl116aa622007-08-15 14:28:22 +0000152.. function:: exp(x)
153
154 Return ``e**x``.
155
156
Mark Dickinson664b5112009-12-16 20:23:42 +0000157.. function:: expm1(x)
158
159 Return ``e**x - 1``. For small floats *x*, the subtraction in
160 ``exp(x) - 1`` can result in a significant loss of precision; the
161 :func:`expm1` function provides a way to compute this quantity to
162 full precision::
163
164 >>> from math import exp, expm1
165 >>> exp(1e-5) - 1 # gives result accurate to 11 places
166 1.0000050000069649e-05
167 >>> expm1(1e-5) # result accurate to full precision
168 1.0000050000166668e-05
169
Mark Dickinson45f992a2009-12-19 11:20:49 +0000170 .. versionadded:: 3.2
171
Mark Dickinson664b5112009-12-16 20:23:42 +0000172
Georg Brandl116aa622007-08-15 14:28:22 +0000173.. function:: log(x[, base])
174
Georg Brandla6053b42009-09-01 08:11:14 +0000175 With one argument, return the natural logarithm of *x* (to base *e*).
176
177 With two arguments, return the logarithm of *x* to the given *base*,
178 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000179
Georg Brandl116aa622007-08-15 14:28:22 +0000180
Christian Heimes53876d92008-04-19 00:31:39 +0000181.. function:: log1p(x)
182
183 Return the natural logarithm of *1+x* (base *e*). The
184 result is calculated in a way which is accurate for *x* near zero.
185
Christian Heimes53876d92008-04-19 00:31:39 +0000186
Georg Brandl116aa622007-08-15 14:28:22 +0000187.. function:: log10(x)
188
Georg Brandla6053b42009-09-01 08:11:14 +0000189 Return the base-10 logarithm of *x*. This is usually more accurate
190 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000191
192
193.. function:: pow(x, y)
194
Christian Heimesa342c012008-04-20 21:01:16 +0000195 Return ``x`` raised to the power ``y``. Exceptional cases follow
196 Annex 'F' of the C99 standard as far as possible. In particular,
197 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
198 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
199 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
200 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000201
Georg Brandl116aa622007-08-15 14:28:22 +0000202
203.. function:: sqrt(x)
204
205 Return the square root of *x*.
206
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000207Trigonometric functions
208-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000209
210
211.. function:: acos(x)
212
213 Return the arc cosine of *x*, in radians.
214
215
216.. function:: asin(x)
217
218 Return the arc sine of *x*, in radians.
219
220
221.. function:: atan(x)
222
223 Return the arc tangent of *x*, in radians.
224
225
226.. function:: atan2(y, x)
227
228 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
229 The vector in the plane from the origin to point ``(x, y)`` makes this angle
230 with the positive X axis. The point of :func:`atan2` is that the signs of both
231 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000232 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000233 -1)`` is ``-3*pi/4``.
234
235
236.. function:: cos(x)
237
238 Return the cosine of *x* radians.
239
240
241.. function:: hypot(x, y)
242
243 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
244 from the origin to point ``(x, y)``.
245
246
247.. function:: sin(x)
248
249 Return the sine of *x* radians.
250
251
252.. function:: tan(x)
253
254 Return the tangent of *x* radians.
255
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000256Angular conversion
257------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000258
259
260.. function:: degrees(x)
261
262 Converts angle *x* from radians to degrees.
263
264
265.. function:: radians(x)
266
267 Converts angle *x* from degrees to radians.
268
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000269Hyperbolic functions
270--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000271
272
Christian Heimesa342c012008-04-20 21:01:16 +0000273.. function:: acosh(x)
274
275 Return the inverse hyperbolic cosine of *x*.
276
Christian Heimesa342c012008-04-20 21:01:16 +0000277
278.. function:: asinh(x)
279
280 Return the inverse hyperbolic sine of *x*.
281
Christian Heimesa342c012008-04-20 21:01:16 +0000282
283.. function:: atanh(x)
284
285 Return the inverse hyperbolic tangent of *x*.
286
Christian Heimesa342c012008-04-20 21:01:16 +0000287
Georg Brandl116aa622007-08-15 14:28:22 +0000288.. function:: cosh(x)
289
290 Return the hyperbolic cosine of *x*.
291
292
293.. function:: sinh(x)
294
295 Return the hyperbolic sine of *x*.
296
297
298.. function:: tanh(x)
299
300 Return the hyperbolic tangent of *x*.
301
Christian Heimes53876d92008-04-19 00:31:39 +0000302
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000303Special functions
304-----------------
305
Mark Dickinson45f992a2009-12-19 11:20:49 +0000306.. function:: erf(x)
307
308 Return the error function at *x*.
309
310 .. versionadded:: 3.2
311
312
313.. function:: erfc(x)
314
315 Return the complementary error function at *x*.
316
317 .. versionadded:: 3.2
318
319
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000320.. function:: gamma(x)
321
322 Return the Gamma function at *x*.
323
Mark Dickinson56e09662009-10-01 16:13:29 +0000324 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000325
326
Mark Dickinson05d2e082009-12-11 20:17:17 +0000327.. function:: lgamma(x)
328
329 Return the natural logarithm of the absolute value of the Gamma
330 function at *x*.
331
Mark Dickinson45f992a2009-12-19 11:20:49 +0000332 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000333
334
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000335Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000336---------
Georg Brandl116aa622007-08-15 14:28:22 +0000337
338.. data:: pi
339
Mark Dickinson603b7532010-04-06 19:55:03 +0000340 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000341
342
343.. data:: e
344
Mark Dickinson603b7532010-04-06 19:55:03 +0000345 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000346
Christian Heimes53876d92008-04-19 00:31:39 +0000347
Georg Brandl495f7b52009-10-27 15:28:25 +0000348.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000349
350 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000351 math library functions. Behavior in exceptional cases follows Annex F of
352 the C99 standard where appropriate. The current implementation will raise
353 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
354 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
355 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000356 ``exp(1000.0)``). A NaN will not be returned from any of the functions
357 above unless one or more of the input arguments was a NaN; in that case,
358 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000359 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
360 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000361
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000362 Note that Python makes no effort to distinguish signaling NaNs from
363 quiet NaNs, and behavior for signaling NaNs remains unspecified.
364 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000365
Georg Brandl116aa622007-08-15 14:28:22 +0000366
367.. seealso::
368
369 Module :mod:`cmath`
370 Complex number versions of many of these functions.