blob: ed0ed9b01363c24c45d7c035716a5451b59571fc [file] [log] [blame]
Guido van Rossum5fdeeea1994-01-02 01:22:07 +00001\section{Built-in Types}
2
3The following sections describe the standard types that are built into
4the interpreter. These are the numeric types, sequence types, and
5several others, including types themselves. There is no explicit
6Boolean type; use integers instead.
7\indexii{built-in}{types}
8\indexii{Boolean}{type}
9
10Some operations are supported by several object types; in particular,
11all objects can be compared, tested for truth value, and converted to
12a string (with the \code{`{\rm \ldots}`} notation). The latter conversion is
13implicitly used when an object is written by the \code{print} statement.
14\stindex{print}
15
16\subsection{Truth Value Testing}
17
18Any object can be tested for truth value, for use in an \code{if} or
19\code{while} condition or as operand of the Boolean operations below.
Guido van Rossumecde7811995-03-28 13:35:14 +000020The following values are considered false:
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000021\stindex{if}
22\stindex{while}
23\indexii{truth}{value}
24\indexii{Boolean}{operations}
25\index{false}
26
27\begin{itemize}
28\renewcommand{\indexsubitem}{(Built-in object)}
29
30\item \code{None}
31 \ttindex{None}
32
33\item zero of any numeric type, e.g., \code{0}, \code{0L}, \code{0.0}.
34
35\item any empty sequence, e.g., \code{''}, \code{()}, \code{[]}.
36
37\item any empty mapping, e.g., \code{\{\}}.
38
Guido van Rossumecde7811995-03-28 13:35:14 +000039\item instances of user-defined classes, if the class defines a
40 \code{__nonzero__()} or \code{__len__()} method, when that
41 method returns zero.
42
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000043\end{itemize}
44
Guido van Rossumecde7811995-03-28 13:35:14 +000045All other values are considered true --- so objects of many types are
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000046always true.
47\index{true}
48
Guido van Rossumecde7811995-03-28 13:35:14 +000049Operations and built-in functions that have a Boolean result always
50return \code{0} for false and \code{1} for true, unless otherwise
51stated. (Important exception: the Boolean operations \samp{or} and
52\samp{and} always return one of their operands.)
53
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000054\subsection{Boolean Operations}
55
Guido van Rossumecde7811995-03-28 13:35:14 +000056These are the Boolean operations, ordered by ascending priority:
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000057\indexii{Boolean}{operations}
58
59\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes}
60 \lineiii{\var{x} or \var{y}}{if \var{x} is false, then \var{y}, else \var{x}}{(1)}
Guido van Rossumecde7811995-03-28 13:35:14 +000061 \hline
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000062 \lineiii{\var{x} and \var{y}}{if \var{x} is false, then \var{x}, else \var{y}}{(1)}
Guido van Rossumecde7811995-03-28 13:35:14 +000063 \hline
64 \lineiii{not \var{x}}{if \var{x} is false, then \code{1}, else \code{0}}{(2)}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000065\end{tableiii}
66\opindex{and}
67\opindex{or}
68\opindex{not}
69
70\noindent
71Notes:
72
73\begin{description}
74
75\item[(1)]
76These only evaluate their second argument if needed for their outcome.
77
Guido van Rossumecde7811995-03-28 13:35:14 +000078\item[(2)]
79\samp{not} has a lower priority than non-Boolean operators, so e.g.
80\code{not a == b} is interpreted as \code{not(a == b)}, and
81\code{a == not b} is a syntax error.
82
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000083\end{description}
84
85\subsection{Comparisons}
86
Guido van Rossumecde7811995-03-28 13:35:14 +000087Comparison operations are supported by all objects. They all have the
88same priority (which is higher than that of the Boolean operations).
89Comparisons can be chained arbitrarily, e.g. \code{x < y <= z} is
90equivalent to \code{x < y and y <= z}, except that \code{y} is
91evaluated only once (but in both cases \code{z} is not evaluated at
92all when \code{x < y} is found to be false).
93\indexii{chaining}{comparisons}
94
95This table summarizes the comparison operations:
Guido van Rossum5fdeeea1994-01-02 01:22:07 +000096
97\begin{tableiii}{|c|l|c|}{code}{Operation}{Meaning}{Notes}
98 \lineiii{<}{strictly less than}{}
99 \lineiii{<=}{less than or equal}{}
100 \lineiii{>}{strictly greater than}{}
101 \lineiii{>=}{greater than or equal}{}
102 \lineiii{==}{equal}{}
103 \lineiii{<>}{not equal}{(1)}
104 \lineiii{!=}{not equal}{(1)}
105 \lineiii{is}{object identity}{}
106 \lineiii{is not}{negated object identity}{}
107\end{tableiii}
108\indexii{operator}{comparison}
109\opindex{==} % XXX *All* others have funny characters < ! >
110\opindex{is}
111\opindex{is not}
112
113\noindent
114Notes:
115
116\begin{description}
117
118\item[(1)]
119\code{<>} and \code{!=} are alternate spellings for the same operator.
120(I couldn't choose between \ABC{} and \C{}! :-)
121\indexii{\ABC{}}{language}
122\indexii{\C{}}{language}
123
124\end{description}
125
126Objects of different types, except different numeric types, never
127compare equal; such objects are ordered consistently but arbitrarily
128(so that sorting a heterogeneous array yields a consistent result).
129Furthermore, some types (e.g., windows) support only a degenerate
130notion of comparison where any two objects of that type are unequal.
131Again, such objects are ordered arbitrarily but consistently.
132\indexii{types}{numeric}
133\indexii{objects}{comparing}
134
135(Implementation note: objects of different types except numbers are
136ordered by their type names; objects of the same types that don't
137support proper comparison are ordered by their address.)
138
139Two more operations with the same syntactic priority, \code{in} and
140\code{not in}, are supported only by sequence types (below).
141\opindex{in}
142\opindex{not in}
143
144\subsection{Numeric Types}
145
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000146There are four numeric types: \dfn{plain integers}, \dfn{long integers},
147\dfn{floating point numbers}, and \dfn{complex numbers}.
148Plain integers (also just called \dfn{integers})
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000149are implemented using \code{long} in \C{}, which gives them at least 32
150bits of precision. Long integers have unlimited precision. Floating
151point numbers are implemented using \code{double} in \C{}. All bets on
152their precision are off unless you happen to know the machine you are
153working with.
154\indexii{numeric}{types}
155\indexii{integer}{types}
156\indexii{integer}{type}
157\indexiii{long}{integer}{type}
158\indexii{floating point}{type}
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000159\indexii{complex number}{type}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000160\indexii{\C{}}{language}
161
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000162Complex numbers have a real and imaginary part, which are both
163implemented using \code{double} in \C{}. To extract these parts from
164a complex number \code{z}, use \code{z.real} and \code{z.imag}.
165
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000166Numbers are created by numeric literals or as the result of built-in
167functions and operators. Unadorned integer literals (including hex
168and octal numbers) yield plain integers. Integer literals with an \samp{L}
169or \samp{l} suffix yield long integers
170(\samp{L} is preferred because \code{1l} looks too much like eleven!).
171Numeric literals containing a decimal point or an exponent sign yield
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000172floating point numbers. Appending \code{j} or \code{J} to a numeric
173literal yields a complex number.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000174\indexii{numeric}{literals}
175\indexii{integer}{literals}
176\indexiii{long}{integer}{literals}
177\indexii{floating point}{literals}
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000178\indexii{complex number}{literals}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000179\indexii{hexadecimal}{literals}
180\indexii{octal}{literals}
181
182Python fully supports mixed arithmetic: when a binary arithmetic
183operator has operands of different numeric types, the operand with the
184``smaller'' type is converted to that of the other, where plain
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000185integer is smaller than long integer is smaller than floating point is
186smaller than complex.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000187Comparisons between numbers of mixed type use the same rule.%
188\footnote{As a consequence, the list \code{[1, 2]} is considered equal
189 to \code{[1.0, 2.0]}, and similar for tuples.}
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000190The functions \code{int()}, \code{long()}, \code{float()},
191and \code{complex()} can be used
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000192to coerce numbers to a specific type.
193\index{arithmetic}
194\bifuncindex{int}
195\bifuncindex{long}
196\bifuncindex{float}
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000197\bifuncindex{complex}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000198
Guido van Rossumecde7811995-03-28 13:35:14 +0000199All numeric types support the following operations, sorted by
200ascending priority (operations in the same box have the same
201priority; all numeric operations have a higher priority than
202comparison operations):
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000203
204\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000205 \lineiii{\var{x} + \var{y}}{sum of \var{x} and \var{y}}{}
206 \lineiii{\var{x} - \var{y}}{difference of \var{x} and \var{y}}{}
Guido van Rossumecde7811995-03-28 13:35:14 +0000207 \hline
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000208 \lineiii{\var{x} * \var{y}}{product of \var{x} and \var{y}}{}
Guido van Rossumecde7811995-03-28 13:35:14 +0000209 \lineiii{\var{x} / \var{y}}{quotient of \var{x} and \var{y}}{(1)}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000210 \lineiii{\var{x} \%{} \var{y}}{remainder of \code{\var{x} / \var{y}}}{}
Guido van Rossumecde7811995-03-28 13:35:14 +0000211 \hline
212 \lineiii{-\var{x}}{\var{x} negated}{}
213 \lineiii{+\var{x}}{\var{x} unchanged}{}
214 \hline
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000215 \lineiii{abs(\var{x})}{absolute value or magnitude of \var{x}}{}
Guido van Rossumecde7811995-03-28 13:35:14 +0000216 \lineiii{int(\var{x})}{\var{x} converted to integer}{(2)}
217 \lineiii{long(\var{x})}{\var{x} converted to long integer}{(2)}
218 \lineiii{float(\var{x})}{\var{x} converted to floating point}{}
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000219 \lineiii{complex(\var{re},\var{im})}{a complex number with real part \var{re}, imaginary part \var{im}. \var{im} defaults to zero.}{}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000220 \lineiii{divmod(\var{x}, \var{y})}{the pair \code{(\var{x} / \var{y}, \var{x} \%{} \var{y})}}{(3)}
221 \lineiii{pow(\var{x}, \var{y})}{\var{x} to the power \var{y}}{}
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000222 \lineiii{\var{x}**\var{y}}{\var{x} to the power \var{y}}{}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000223\end{tableiii}
224\indexiii{operations on}{numeric}{types}
225
226\noindent
227Notes:
228\begin{description}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000229
Guido van Rossumecde7811995-03-28 13:35:14 +0000230\item[(1)]
Guido van Rossum0dbd1fd1995-08-10 14:22:39 +0000231For (plain or long) integer division, the result is an integer.
232The result is always rounded towards minus infinity: 1/2 is 0,
233(-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000234\indexii{integer}{division}
235\indexiii{long}{integer}{division}
236
Guido van Rossumecde7811995-03-28 13:35:14 +0000237\item[(2)]
238Conversion from floating point to (long or plain) integer may round or
239truncate as in \C{}; see functions \code{floor()} and \code{ceil()} in
240module \code{math} for well-defined conversions.
241\bifuncindex{floor}
242\bifuncindex{ceil}
243\indexii{numeric}{conversions}
Fred Drake8274f321997-12-15 22:19:46 +0000244\refbimodindex{math}
Guido van Rossumecde7811995-03-28 13:35:14 +0000245\indexii{\C{}}{language}
246
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000247\item[(3)]
248See the section on built-in functions for an exact definition.
249
250\end{description}
251% XXXJH exceptions: overflow (when? what operations?) zerodivision
252
Guido van Rossum470be141995-03-17 16:07:09 +0000253\subsubsection{Bit-string Operations on Integer Types}
Guido van Rossum86cb0921995-03-20 12:59:56 +0000254\nodename{Bit-string Operations}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000255
256Plain and long integer types support additional operations that make
257sense only for bit-strings. Negative numbers are treated as their 2's
Guido van Rossumecde7811995-03-28 13:35:14 +0000258complement value (for long integers, this assumes a sufficiently large
259number of bits that no overflow occurs during the operation).
260
261The priorities of the binary bit-wise operations are all lower than
262the numeric operations and higher than the comparisons; the unary
Guido van Rossume903aab1997-12-18 16:28:56 +0000263operation \samp{\~} has the same priority as the other unary numeric
Guido van Rossumecde7811995-03-28 13:35:14 +0000264operations (\samp{+} and \samp{-}).
265
266This table lists the bit-string operations sorted in ascending
267priority (operations in the same box have the same priority):
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000268
269\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000270 \lineiii{\var{x} | \var{y}}{bitwise \dfn{or} of \var{x} and \var{y}}{}
Guido van Rossumecde7811995-03-28 13:35:14 +0000271 \hline
272 \lineiii{\var{x} \^{} \var{y}}{bitwise \dfn{exclusive or} of \var{x} and \var{y}}{}
273 \hline
274 \lineiii{\var{x} \&{} \var{y}}{bitwise \dfn{and} of \var{x} and \var{y}}{}
275 \hline
276 \lineiii{\var{x} << \var{n}}{\var{x} shifted left by \var{n} bits}{(1), (2)}
277 \lineiii{\var{x} >> \var{n}}{\var{x} shifted right by \var{n} bits}{(1), (3)}
278 \hline
279 \hline
280 \lineiii{\~\var{x}}{the bits of \var{x} inverted}{}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000281\end{tableiii}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000282\indexiii{operations on}{integer}{types}
283\indexii{bit-string}{operations}
284\indexii{shifting}{operations}
285\indexii{masking}{operations}
286
Guido van Rossumecde7811995-03-28 13:35:14 +0000287\noindent
288Notes:
289\begin{description}
290\item[(1)] Negative shift counts are illegal.
291\item[(2)] A left shift by \var{n} bits is equivalent to
292multiplication by \code{pow(2, \var{n})} without overflow check.
293\item[(3)] A right shift by \var{n} bits is equivalent to
294division by \code{pow(2, \var{n})} without overflow check.
295\end{description}
296
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000297\subsection{Sequence Types}
298
299There are three sequence types: strings, lists and tuples.
Guido van Rossumecde7811995-03-28 13:35:14 +0000300
301Strings literals are written in single or double quotes:
302\code{'xyzzy'}, \code{"frobozz"}. See Chapter 2 of the Python
303Reference Manual for more about string literals. Lists are
304constructed with square brackets, separating items with commas:
305\code{[a, b, c]}. Tuples are constructed by the comma operator (not
306within square brackets), with or without enclosing parentheses, but an
307empty tuple must have the enclosing parentheses, e.g.,
308\code{a, b, c} or \code{()}. A single item tuple must have a trailing
309comma, e.g., \code{(d,)}.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000310\indexii{sequence}{types}
311\indexii{string}{type}
312\indexii{tuple}{type}
313\indexii{list}{type}
314
Guido van Rossumecde7811995-03-28 13:35:14 +0000315Sequence types support the following operations. The \samp{in} and
Fred Drake120ac201997-10-13 20:48:17 +0000316\samp{not in} operations have the same priorities as the comparison
Guido van Rossumecde7811995-03-28 13:35:14 +0000317operations. The \samp{+} and \samp{*} operations have the same
318priority as the corresponding numeric operations.\footnote{They must
319have since the parser can't tell the type of the operands.}
320
Guido van Rossum96628a91995-04-10 11:34:00 +0000321This table lists the sequence operations sorted in ascending priority
Guido van Rossumecde7811995-03-28 13:35:14 +0000322(operations in the same box have the same priority). In the table,
323\var{s} and \var{t} are sequences of the same type; \var{n}, \var{i}
324and \var{j} are integers:
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000325
326\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes}
Guido van Rossumecde7811995-03-28 13:35:14 +0000327 \lineiii{\var{x} in \var{s}}{\code{1} if an item of \var{s} is equal to \var{x}, else \code{0}}{}
328 \lineiii{\var{x} not in \var{s}}{\code{0} if an item of \var{s} is
329equal to \var{x}, else \code{1}}{}
330 \hline
331 \lineiii{\var{s} + \var{t}}{the concatenation of \var{s} and \var{t}}{}
332 \hline
333 \lineiii{\var{s} * \var{n}{\rm ,} \var{n} * \var{s}}{\var{n} copies of \var{s} concatenated}{}
334 \hline
335 \lineiii{\var{s}[\var{i}]}{\var{i}'th item of \var{s}, origin 0}{(1)}
336 \lineiii{\var{s}[\var{i}:\var{j}]}{slice of \var{s} from \var{i} to \var{j}}{(1), (2)}
337 \hline
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000338 \lineiii{len(\var{s})}{length of \var{s}}{}
339 \lineiii{min(\var{s})}{smallest item of \var{s}}{}
340 \lineiii{max(\var{s})}{largest item of \var{s}}{}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000341\end{tableiii}
342\indexiii{operations on}{sequence}{types}
343\bifuncindex{len}
344\bifuncindex{min}
345\bifuncindex{max}
346\indexii{concatenation}{operation}
347\indexii{repetition}{operation}
348\indexii{subscript}{operation}
349\indexii{slice}{operation}
350\opindex{in}
351\opindex{not in}
352
353\noindent
354Notes:
355
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000356\begin{description}
357
358\item[(1)] If \var{i} or \var{j} is negative, the index is relative to
359 the end of the string, i.e., \code{len(\var{s}) + \var{i}} or
360 \code{len(\var{s}) + \var{j}} is substituted. But note that \code{-0} is
361 still \code{0}.
362
363\item[(2)] The slice of \var{s} from \var{i} to \var{j} is defined as
364 the sequence of items with index \var{k} such that \code{\var{i} <=
365 \var{k} < \var{j}}. If \var{i} or \var{j} is greater than
366 \code{len(\var{s})}, use \code{len(\var{s})}. If \var{i} is omitted,
367 use \code{0}. If \var{j} is omitted, use \code{len(\var{s})}. If
368 \var{i} is greater than or equal to \var{j}, the slice is empty.
369
370\end{description}
371
Guido van Rossum470be141995-03-17 16:07:09 +0000372\subsubsection{More String Operations}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000373
374String objects have one unique built-in operation: the \code{\%}
375operator (modulo) with a string left argument interprets this string
376as a C sprintf format string to be applied to the right argument, and
377returns the string resulting from this formatting operation.
378
Guido van Rossum8b605eb1994-06-23 12:14:07 +0000379The right argument should be a tuple with one item for each argument
380required by the format string; if the string requires a single
381argument, the right argument may also be a single non-tuple object.%
382\footnote{A tuple object in this case should be a singleton.}
383The following format characters are understood:
384\%, c, s, i, d, u, o, x, X, e, E, f, g, G.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000385Width and precision may be a * to specify that an integer argument
386specifies the actual width or precision. The flag characters -, +,
387blank, \# and 0 are understood. The size specifiers h, l or L may be
Guido van Rossum17383111994-04-21 10:32:28 +0000388present but are ignored. The \code{\%s} conversion takes any Python
389object and converts it to a string using \code{str()} before
390formatting it. The ANSI features \code{\%p} and \code{\%n}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000391are not supported. Since Python strings have an explicit length,
Guido van Rossum470be141995-03-17 16:07:09 +0000392\code{\%s} conversions don't assume that \code{'\e0'} is the end of
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000393the string.
394
Guido van Rossume6ef0321994-05-09 14:54:24 +0000395For safety reasons, floating point precisions are clipped to 50;
396\code{\%f} conversions for numbers whose absolute value is over 1e25
397are replaced by \code{\%g} conversions.%
398\footnote{These numbers are fairly arbitrary. They are intended to
399avoid printing endless strings of meaningless digits without hampering
400correct use and without having to know the exact precision of floating
401point values on a particular machine.}
402All other errors raise exceptions.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000403
Guido van Rossum17383111994-04-21 10:32:28 +0000404If the right argument is a dictionary (or any kind of mapping), then
405the formats in the string must have a parenthesized key into that
406dictionary inserted immediately after the \code{\%} character, and
407each format formats the corresponding entry from the mapping. E.g.
Guido van Rossum6c9db411997-07-17 16:05:47 +0000408\bcode\begin{verbatim}
409>>> count = 2
410>>> language = 'Python'
411>>> print '%(language)s has %(count)03d quote types.' % vars()
412Python has 002 quote types.
413>>>
414\end{verbatim}\ecode
Fred Drake4bf12961996-10-11 16:33:48 +0000415In this case no * specifiers may occur in a format (since they
416require a sequential parameter list).
Guido van Rossum17383111994-04-21 10:32:28 +0000417
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000418Additional string operations are defined in standard module
Fred Drake8274f321997-12-15 22:19:46 +0000419\code{string} and in built-in module \code{re}.
420\refstmodindex{string}
421\refbimodindex{re}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000422
Guido van Rossum470be141995-03-17 16:07:09 +0000423\subsubsection{Mutable Sequence Types}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000424
425List objects support additional operations that allow in-place
426modification of the object.
427These operations would be supported by other mutable sequence types
428(when added to the language) as well.
429Strings and tuples are immutable sequence types and such objects cannot
430be modified once created.
431The following operations are defined on mutable sequence types (where
432\var{x} is an arbitrary object):
433\indexiii{mutable}{sequence}{types}
434\indexii{list}{type}
435
436\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes}
437 \lineiii{\var{s}[\var{i}] = \var{x}}
438 {item \var{i} of \var{s} is replaced by \var{x}}{}
439 \lineiii{\var{s}[\var{i}:\var{j}] = \var{t}}
440 {slice of \var{s} from \var{i} to \var{j} is replaced by \var{t}}{}
441 \lineiii{del \var{s}[\var{i}:\var{j}]}
442 {same as \code{\var{s}[\var{i}:\var{j}] = []}}{}
443 \lineiii{\var{s}.append(\var{x})}
Guido van Rossume6ef0321994-05-09 14:54:24 +0000444 {same as \code{\var{s}[len(\var{s}):len(\var{s})] = [\var{x}]}}{}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000445 \lineiii{\var{s}.count(\var{x})}
446 {return number of \var{i}'s for which \code{\var{s}[\var{i}] == \var{x}}}{}
447 \lineiii{\var{s}.index(\var{x})}
448 {return smallest \var{i} such that \code{\var{s}[\var{i}] == \var{x}}}{(1)}
449 \lineiii{\var{s}.insert(\var{i}, \var{x})}
Guido van Rossum95a5b9c1995-07-07 23:03:07 +0000450 {same as \code{\var{s}[\var{i}:\var{i}] = [\var{x}]}
451 if \code{\var{i} >= 0}}{}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000452 \lineiii{\var{s}.remove(\var{x})}
453 {same as \code{del \var{s}[\var{s}.index(\var{x})]}}{(1)}
454 \lineiii{\var{s}.reverse()}
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000455 {reverses the items of \var{s} in place}{(3)}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000456 \lineiii{\var{s}.sort()}
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000457 {sort the items of \var{s} in place}{(2), (3)}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000458\end{tableiii}
459\indexiv{operations on}{mutable}{sequence}{types}
460\indexiii{operations on}{sequence}{types}
461\indexiii{operations on}{list}{type}
462\indexii{subscript}{assignment}
463\indexii{slice}{assignment}
464\stindex{del}
465\renewcommand{\indexsubitem}{(list method)}
466\ttindex{append}
467\ttindex{count}
468\ttindex{index}
469\ttindex{insert}
470\ttindex{remove}
471\ttindex{reverse}
472\ttindex{sort}
473
474\noindent
475Notes:
476\begin{description}
477\item[(1)] Raises an exception when \var{x} is not found in \var{s}.
478
479\item[(2)] The \code{sort()} method takes an optional argument
480 specifying a comparison function of two arguments (list items) which
481 should return \code{-1}, \code{0} or \code{1} depending on whether the
482 first argument is considered smaller than, equal to, or larger than the
483 second argument. Note that this slows the sorting process down
Guido van Rossum470be141995-03-17 16:07:09 +0000484 considerably; e.g. to sort a list in reverse order it is much faster
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000485 to use calls to \code{sort()} and \code{reverse()} than to use
486 \code{sort()} with a comparison function that reverses the ordering of
487 the elements.
Guido van Rossum3a0d8501997-06-02 17:18:00 +0000488
489\item[(3)] The \code{sort()} and \code{reverse()} methods modify the
490list in place for economy of space when sorting or reversing a large
491list. They don't return the sorted or reversed list to remind you of
492this side effect.
493
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000494\end{description}
495
496\subsection{Mapping Types}
497
498A \dfn{mapping} object maps values of one type (the key type) to
499arbitrary objects. Mappings are mutable objects. There is currently
Guido van Rossum470be141995-03-17 16:07:09 +0000500only one standard mapping type, the \dfn{dictionary}. A dictionary's keys are
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000501almost arbitrary values. The only types of values not acceptable as
502keys are values containing lists or dictionaries or other mutable
503types that are compared by value rather than by object identity.
504Numeric types used for keys obey the normal rules for numeric
505comparison: if two numbers compare equal (e.g. 1 and 1.0) then they
506can be used interchangeably to index the same dictionary entry.
507
508\indexii{mapping}{types}
509\indexii{dictionary}{type}
510
511Dictionaries are created by placing a comma-separated list of
Guido van Rossum1dde7b71996-10-11 15:57:17 +0000512\code{\var{key}:\,\var{value}} pairs within braces, for example:
Guido van Rossumecde7811995-03-28 13:35:14 +0000513\code{\{'jack':\,4098, 'sjoerd':\,4127\}} or
514\code{\{4098:\,'jack', 4127:\,'sjoerd'\}}.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000515
516The following operations are defined on mappings (where \var{a} is a
517mapping, \var{k} is a key and \var{x} is an arbitrary object):
518
519\begin{tableiii}{|c|l|c|}{code}{Operation}{Result}{Notes}
520 \lineiii{len(\var{a})}{the number of items in \var{a}}{}
521 \lineiii{\var{a}[\var{k}]}{the item of \var{a} with key \var{k}}{(1)}
522 \lineiii{\var{a}[\var{k}] = \var{x}}{set \code{\var{a}[\var{k}]} to \var{x}}{}
523 \lineiii{del \var{a}[\var{k}]}{remove \code{\var{a}[\var{k}]} from \var{a}}{(1)}
Guido van Rossum6102b511997-05-28 19:32:11 +0000524 \lineiii{\var{a}.clear()}{remove all items from \code{a}}{}
525 \lineiii{\var{a}.copy()}{a (shallow) copy of \code{a}}{}
526 \lineiii{\var{a}.has_key(\var{k})}{\code{1} if \var{a} has a key \var{k}, else \code{0}}{}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000527 \lineiii{\var{a}.items()}{a copy of \var{a}'s list of (key, item) pairs}{(2)}
528 \lineiii{\var{a}.keys()}{a copy of \var{a}'s list of keys}{(2)}
Fred Drake6b3ed7f1998-01-09 20:36:44 +0000529 \lineiii{\var{a}.update(\var{b})}{\code{for k, v in \var{b}.items(): \var{a}[k] = v}}{(3)}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000530 \lineiii{\var{a}.values()}{a copy of \var{a}'s list of values}{(2)}
Fred Drake6b3ed7f1998-01-09 20:36:44 +0000531 \lineiii{\var{a}.get(\var{k}, \var{f})}{the item of \var{a} with key \var{k}}{(4)}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000532\end{tableiii}
533\indexiii{operations on}{mapping}{types}
534\indexiii{operations on}{dictionary}{type}
535\stindex{del}
536\bifuncindex{len}
537\renewcommand{\indexsubitem}{(dictionary method)}
538\ttindex{keys}
539\ttindex{has_key}
540
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000541\noindent
542Notes:
543\begin{description}
544\item[(1)] Raises an exception if \var{k} is not in the map.
545
Guido van Rossum470be141995-03-17 16:07:09 +0000546\item[(2)] Keys and values are listed in random order.
Guido van Rossum6102b511997-05-28 19:32:11 +0000547
Fred Drake73a973b1998-01-20 05:20:39 +0000548\item[(3)] \var{b} must be of the same type as \var{a}.
Barry Warsawdc0f00a1997-10-06 17:50:48 +0000549
550\item[(4)] Never raises an exception if \var{k} is not in the map,
551instead it returns \var{f}. \var{f} is optional, when not provided
552and \var{k} is not in the map, \code{None} is returned.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000553\end{description}
554
555\subsection{Other Built-in Types}
556
557The interpreter supports several other kinds of objects.
558Most of these support only one or two operations.
559
Guido van Rossum470be141995-03-17 16:07:09 +0000560\subsubsection{Modules}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000561
562The only special operation on a module is attribute access:
563\code{\var{m}.\var{name}}, where \var{m} is a module and \var{name} accesses
564a name defined in \var{m}'s symbol table. Module attributes can be
565assigned to. (Note that the \code{import} statement is not, strictly
566spoken, an operation on a module object; \code{import \var{foo}} does not
567require a module object named \var{foo} to exist, rather it requires
568an (external) \emph{definition} for a module named \var{foo}
569somewhere.)
570
571A special member of every module is \code{__dict__}.
572This is the dictionary containing the module's symbol table.
573Modifying this dictionary will actually change the module's symbol
574table, but direct assignment to the \code{__dict__} attribute is not
575possible (i.e., you can write \code{\var{m}.__dict__['a'] = 1}, which
576defines \code{\var{m}.a} to be \code{1}, but you can't write \code{\var{m}.__dict__ = \{\}}.
577
578Modules are written like this: \code{<module 'sys'>}.
579
Guido van Rossum470be141995-03-17 16:07:09 +0000580\subsubsection{Classes and Class Instances}
Guido van Rossum86cb0921995-03-20 12:59:56 +0000581\nodename{Classes and Instances}
Guido van Rossumecde7811995-03-28 13:35:14 +0000582
583(See Chapters 3 and 7 of the Python Reference Manual for these.)
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000584
Guido van Rossum470be141995-03-17 16:07:09 +0000585\subsubsection{Functions}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000586
587Function objects are created by function definitions. The only
588operation on a function object is to call it:
589\code{\var{func}(\var{argument-list})}.
590
591There are really two flavors of function objects: built-in functions
592and user-defined functions. Both support the same operation (to call
593the function), but the implementation is different, hence the
594different object types.
595
596The implementation adds two special read-only attributes:
597\code{\var{f}.func_code} is a function's \dfn{code object} (see below) and
598\code{\var{f}.func_globals} is the dictionary used as the function's
599global name space (this is the same as \code{\var{m}.__dict__} where
600\var{m} is the module in which the function \var{f} was defined).
601
Guido van Rossum470be141995-03-17 16:07:09 +0000602\subsubsection{Methods}
Guido van Rossumea6e19c1995-03-07 10:11:15 +0000603\obindex{method}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000604
605Methods are functions that are called using the attribute notation.
606There are two flavors: built-in methods (such as \code{append()} on
607lists) and class instance methods. Built-in methods are described
608with the types that support them.
609
610The implementation adds two special read-only attributes to class
611instance methods: \code{\var{m}.im_self} is the object whose method this
612is, and \code{\var{m}.im_func} is the function implementing the method.
613Calling \code{\var{m}(\var{arg-1}, \var{arg-2}, {\rm \ldots},
614\var{arg-n})} is completely equivalent to calling
615\code{\var{m}.im_func(\var{m}.im_self, \var{arg-1}, \var{arg-2}, {\rm
616\ldots}, \var{arg-n})}.
617
618(See the Python Reference Manual for more info.)
619
Guido van Rossum470be141995-03-17 16:07:09 +0000620\subsubsection{Code Objects}
Guido van Rossumea6e19c1995-03-07 10:11:15 +0000621\obindex{code}
622
623Code objects are used by the implementation to represent
624``pseudo-compiled'' executable Python code such as a function body.
625They differ from function objects because they don't contain a
626reference to their global execution environment. Code objects are
627returned by the built-in \code{compile()} function and can be
628extracted from function objects through their \code{func_code}
629attribute.
630\bifuncindex{compile}
631\ttindex{func_code}
632
633A code object can be executed or evaluated by passing it (instead of a
634source string) to the \code{exec} statement or the built-in
635\code{eval()} function.
636\stindex{exec}
637\bifuncindex{eval}
638
639(See the Python Reference Manual for more info.)
640
Guido van Rossum470be141995-03-17 16:07:09 +0000641\subsubsection{Type Objects}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000642
643Type objects represent the various object types. An object's type is
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000644accessed by the built-in function \code{type()}. There are no special
Guido van Rossumecde7811995-03-28 13:35:14 +0000645operations on types. The standard module \code{types} defines names
646for all standard built-in types.
647\bifuncindex{type}
Fred Drake8274f321997-12-15 22:19:46 +0000648\refstmodindex{types}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000649
650Types are written like this: \code{<type 'int'>}.
651
Guido van Rossum470be141995-03-17 16:07:09 +0000652\subsubsection{The Null Object}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000653
654This object is returned by functions that don't explicitly return a
655value. It supports no special operations. There is exactly one null
656object, named \code{None} (a built-in name).
657
658It is written as \code{None}.
659
Guido van Rossum470be141995-03-17 16:07:09 +0000660\subsubsection{File Objects}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000661
662File objects are implemented using \C{}'s \code{stdio} package and can be
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000663created with the built-in function \code{open()} described under
Guido van Rossumecde7811995-03-28 13:35:14 +0000664Built-in Functions below. They are also returned by some other
665built-in functions and methods, e.g.\ \code{posix.popen()} and
666\code{posix.fdopen()} and the \code{makefile()} method of socket
667objects.
668\bifuncindex{open}
Fred Drake73a973b1998-01-20 05:20:39 +0000669\refbimodindex{posix}
670\refbimodindex{socket}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000671
672When a file operation fails for an I/O-related reason, the exception
673\code{IOError} is raised. This includes situations where the
674operation is not defined for some reason, like \code{seek()} on a tty
675device or writing a file opened for reading.
676
677Files have the following methods:
678
679
680\renewcommand{\indexsubitem}{(file method)}
681
682\begin{funcdesc}{close}{}
683 Close the file. A closed file cannot be read or written anymore.
684\end{funcdesc}
685
686\begin{funcdesc}{flush}{}
687 Flush the internal buffer, like \code{stdio}'s \code{fflush()}.
688\end{funcdesc}
689
690\begin{funcdesc}{isatty}{}
691 Return \code{1} if the file is connected to a tty(-like) device, else
692 \code{0}.
693\end{funcdesc}
694
Guido van Rossum6c9db411997-07-17 16:05:47 +0000695\begin{funcdesc}{fileno}{}
696Return the integer ``file descriptor'' that is used by the underlying
697implementation to request I/O operations from the operating system.
698This can be useful for other, lower level interfaces that use file
Fred Drake8274f321997-12-15 22:19:46 +0000699descriptors, e.g. module \code{fcntl} or \code{os.read()} and friends.
700\refbimodindex{fcntl}
Guido van Rossum6c9db411997-07-17 16:05:47 +0000701\end{funcdesc}
702
Guido van Rossum0dbd1fd1995-08-10 14:22:39 +0000703\begin{funcdesc}{read}{\optional{size}}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000704 Read at most \var{size} bytes from the file (less if the read hits
705 \EOF{} or no more data is immediately available on a pipe, tty or
Guido van Rossum0dbd1fd1995-08-10 14:22:39 +0000706 similar device). If the \var{size} argument is negative or omitted,
707 read all data until \EOF{} is reached. The bytes are returned as a string
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000708 object. An empty string is returned when \EOF{} is encountered
709 immediately. (For certain files, like ttys, it makes sense to
710 continue reading after an \EOF{} is hit.)
711\end{funcdesc}
712
Jack Jansen45185771995-08-14 13:38:36 +0000713\begin{funcdesc}{readline}{\optional{size}}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000714 Read one entire line from the file. A trailing newline character is
Guido van Rossum31cce971995-01-04 19:17:34 +0000715 kept in the string%
716\footnote{The advantage of leaving the newline on is that an empty string
717 can be returned to mean \EOF{} without being ambiguous. Another
718 advantage is that (in cases where it might matter, e.g. if you
719 want to make an exact copy of a file while scanning its lines)
720 you can tell whether the last line of a file ended in a newline
721 or not (yes this happens!).}
722 (but may be absent when a file ends with an
Guido van Rossum1dde7b71996-10-11 15:57:17 +0000723 incomplete line). If the \var{size} argument is present and
Guido van Rossum0dbd1fd1995-08-10 14:22:39 +0000724 non-negative, it is a maximum byte count (including the trailing
725 newline) and an incomplete line may be returned.
726 An empty string is returned when \EOF{} is hit
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000727 immediately. Note: unlike \code{stdio}'s \code{fgets()}, the returned
728 string contains null characters (\code{'\e 0'}) if they occurred in the
729 input.
730\end{funcdesc}
731
Guido van Rossum6c9db411997-07-17 16:05:47 +0000732\begin{funcdesc}{readlines}{\optional{sizehint}}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000733 Read until \EOF{} using \code{readline()} and return a list containing
Guido van Rossumeb0f0661997-12-30 20:38:16 +0000734 the lines thus read. If the optional \var{sizehint} argument is
Guido van Rossum6c9db411997-07-17 16:05:47 +0000735 present, instead of reading up to \EOF{}, whole lines totalling
736 approximately \var{sizehint} bytes are read.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000737\end{funcdesc}
738
739\begin{funcdesc}{seek}{offset\, whence}
740 Set the file's current position, like \code{stdio}'s \code{fseek()}.
741 The \var{whence} argument is optional and defaults to \code{0}
742 (absolute file positioning); other values are \code{1} (seek
743 relative to the current position) and \code{2} (seek relative to the
744 file's end). There is no return value.
745\end{funcdesc}
746
747\begin{funcdesc}{tell}{}
748 Return the file's current position, like \code{stdio}'s \code{ftell()}.
749\end{funcdesc}
750
Guido van Rossum316a4301996-05-02 15:28:53 +0000751\begin{funcdesc}{truncate}{\optional{size}}
752Truncate the file's size. If the optional size argument present, the
753file is truncated to (at most) that size. The size defaults to the
754current position. Availability of this function depends on the
Guido van Rossum1dde7b71996-10-11 15:57:17 +0000755operating system version (e.g., not all \UNIX{} versions support this
Guido van Rossum316a4301996-05-02 15:28:53 +0000756operation).
757\end{funcdesc}
758
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000759\begin{funcdesc}{write}{str}
Guido van Rossum316a4301996-05-02 15:28:53 +0000760Write a string to the file. There is no return value. Note: due to
761buffering, the string may not actually show up in the file until
762the \code{flush()} or \code{close()} method is called.
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000763\end{funcdesc}
764
Guido van Rossum8b605eb1994-06-23 12:14:07 +0000765\begin{funcdesc}{writelines}{list}
766Write a list of strings to the file. There is no return value.
767(The name is intended to match \code{readlines}; \code{writelines}
768does not add line separators.)
769\end{funcdesc}
770
Guido van Rossum6c9db411997-07-17 16:05:47 +0000771Classes that are trying to simulate a file object should also have a
772writable \code{softspace} attribute, which should be initialized to
773zero. (\code{softspace} is used by the \code{print} statement.) This
774will be automatic for classes implemented in Python; types implemented
775in C will have to provide a writable \code{softspace} attribute.
776
Guido van Rossum470be141995-03-17 16:07:09 +0000777\subsubsection{Internal Objects}
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000778
779(See the Python Reference Manual for these.)
780
781\subsection{Special Attributes}
782
783The implementation adds a few special read-only attributes to several
784object types, where they are relevant:
785
786\begin{itemize}
787
788\item
789\code{\var{x}.__dict__} is a dictionary of some sort used to store an
790object's (writable) attributes;
791
792\item
793\code{\var{x}.__methods__} lists the methods of many built-in object types,
Guido van Rossumecde7811995-03-28 13:35:14 +0000794e.g., \code{[].__methods__} yields
Guido van Rossum5fdeeea1994-01-02 01:22:07 +0000795\code{['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort']};
796
797\item
798\code{\var{x}.__members__} lists data attributes;
799
800\item
801\code{\var{x}.__class__} is the class to which a class instance belongs;
802
803\item
804\code{\var{x}.__bases__} is the tuple of base classes of a class object.
805
806\end{itemize}