blob: 986b241e29aa4c3b1689862d06b9960be7e68225 [file] [log] [blame]
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001/* Complex math module */
2
3/* much code borrowed from mathmodule.c */
4
Roger E. Masse24070ca1996-12-09 22:59:53 +00005#include "Python.h"
Mark Dickinsonf3718592009-12-21 15:27:41 +00006#include "_math.h"
Christian Heimes53876d92008-04-19 00:31:39 +00007/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
8 float.h. We assume that FLT_RADIX is either 2 or 16. */
9#include <float.h>
Guido van Rossum71aa32f1996-01-12 01:34:57 +000010
Christian Heimes53876d92008-04-19 00:31:39 +000011#if (FLT_RADIX != 2 && FLT_RADIX != 16)
12#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
Guido van Rossum71aa32f1996-01-12 01:34:57 +000013#endif
14
Christian Heimes53876d92008-04-19 00:31:39 +000015#ifndef M_LN2
16#define M_LN2 (0.6931471805599453094) /* natural log of 2 */
17#endif
Guido van Rossum71aa32f1996-01-12 01:34:57 +000018
Christian Heimes53876d92008-04-19 00:31:39 +000019#ifndef M_LN10
20#define M_LN10 (2.302585092994045684) /* natural log of 10 */
21#endif
22
23/*
24 CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
25 inverse trig and inverse hyperbolic trig functions. Its log is used in the
26 evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary
27 overflow.
28 */
29
30#define CM_LARGE_DOUBLE (DBL_MAX/4.)
31#define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
32#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
33#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
34
Antoine Pitrouf95a1b32010-05-09 15:52:27 +000035/*
Christian Heimes53876d92008-04-19 00:31:39 +000036 CM_SCALE_UP is an odd integer chosen such that multiplication by
37 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
38 CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
39 square roots accurately when the real and imaginary parts of the argument
40 are subnormal.
41*/
42
43#if FLT_RADIX==2
44#define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
45#elif FLT_RADIX==16
46#define CM_SCALE_UP (4*DBL_MANT_DIG+1)
47#endif
48#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
Guido van Rossum71aa32f1996-01-12 01:34:57 +000049
50/* forward declarations */
Christian Heimes53876d92008-04-19 00:31:39 +000051static Py_complex c_asinh(Py_complex);
52static Py_complex c_atanh(Py_complex);
53static Py_complex c_cosh(Py_complex);
54static Py_complex c_sinh(Py_complex);
Jeremy Hylton938ace62002-07-17 16:30:39 +000055static Py_complex c_sqrt(Py_complex);
Christian Heimes53876d92008-04-19 00:31:39 +000056static Py_complex c_tanh(Py_complex);
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +000057static PyObject * math_error(void);
Guido van Rossum71aa32f1996-01-12 01:34:57 +000058
Christian Heimes53876d92008-04-19 00:31:39 +000059/* Code to deal with special values (infinities, NaNs, etc.). */
60
61/* special_type takes a double and returns an integer code indicating
62 the type of the double as follows:
63*/
64
65enum special_types {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +000066 ST_NINF, /* 0, negative infinity */
67 ST_NEG, /* 1, negative finite number (nonzero) */
68 ST_NZERO, /* 2, -0. */
69 ST_PZERO, /* 3, +0. */
70 ST_POS, /* 4, positive finite number (nonzero) */
71 ST_PINF, /* 5, positive infinity */
72 ST_NAN /* 6, Not a Number */
Christian Heimes53876d92008-04-19 00:31:39 +000073};
74
75static enum special_types
76special_type(double d)
77{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +000078 if (Py_IS_FINITE(d)) {
79 if (d != 0) {
80 if (copysign(1., d) == 1.)
81 return ST_POS;
82 else
83 return ST_NEG;
84 }
85 else {
86 if (copysign(1., d) == 1.)
87 return ST_PZERO;
88 else
89 return ST_NZERO;
90 }
91 }
92 if (Py_IS_NAN(d))
93 return ST_NAN;
94 if (copysign(1., d) == 1.)
95 return ST_PINF;
96 else
97 return ST_NINF;
Christian Heimes53876d92008-04-19 00:31:39 +000098}
99
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000100#define SPECIAL_VALUE(z, table) \
101 if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
102 errno = 0; \
103 return table[special_type((z).real)] \
104 [special_type((z).imag)]; \
105 }
Christian Heimes53876d92008-04-19 00:31:39 +0000106
107#define P Py_MATH_PI
108#define P14 0.25*Py_MATH_PI
109#define P12 0.5*Py_MATH_PI
110#define P34 0.75*Py_MATH_PI
Christian Heimesa342c012008-04-20 21:01:16 +0000111#define INF Py_HUGE_VAL
112#define N Py_NAN
Christian Heimes53876d92008-04-19 00:31:39 +0000113#define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
114
115/* First, the C functions that do the real work. Each of the c_*
116 functions computes and returns the C99 Annex G recommended result
117 and also sets errno as follows: errno = 0 if no floating-point
118 exception is associated with the result; errno = EDOM if C99 Annex
119 G recommends raising divide-by-zero or invalid for this result; and
120 errno = ERANGE where the overflow floating-point signal should be
121 raised.
122*/
123
Christian Heimesa342c012008-04-20 21:01:16 +0000124static Py_complex acos_special_values[7][7];
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000125
Tim Peters14e26402001-02-20 20:15:19 +0000126static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000127c_acos(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000128{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000129 Py_complex s1, s2, r;
Christian Heimes53876d92008-04-19 00:31:39 +0000130
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000131 SPECIAL_VALUE(z, acos_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000132
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000133 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
134 /* avoid unnecessary overflow for large arguments */
135 r.real = atan2(fabs(z.imag), z.real);
136 /* split into cases to make sure that the branch cut has the
137 correct continuity on systems with unsigned zeros */
138 if (z.real < 0.) {
139 r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
140 M_LN2*2., z.imag);
141 } else {
142 r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
143 M_LN2*2., -z.imag);
144 }
145 } else {
146 s1.real = 1.-z.real;
147 s1.imag = -z.imag;
148 s1 = c_sqrt(s1);
149 s2.real = 1.+z.real;
150 s2.imag = z.imag;
151 s2 = c_sqrt(s2);
152 r.real = 2.*atan2(s1.real, s2.real);
153 r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
154 }
155 errno = 0;
156 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000157}
158
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000159PyDoc_STRVAR(c_acos_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000160"acos(x)\n"
161"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000162"Return the arc cosine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000163
164
Christian Heimesa342c012008-04-20 21:01:16 +0000165static Py_complex acosh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000166
Tim Peters14e26402001-02-20 20:15:19 +0000167static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000168c_acosh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000169{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000170 Py_complex s1, s2, r;
Christian Heimes53876d92008-04-19 00:31:39 +0000171
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000172 SPECIAL_VALUE(z, acosh_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000173
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000174 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
175 /* avoid unnecessary overflow for large arguments */
176 r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
177 r.imag = atan2(z.imag, z.real);
178 } else {
179 s1.real = z.real - 1.;
180 s1.imag = z.imag;
181 s1 = c_sqrt(s1);
182 s2.real = z.real + 1.;
183 s2.imag = z.imag;
184 s2 = c_sqrt(s2);
185 r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
186 r.imag = 2.*atan2(s1.imag, s2.real);
187 }
188 errno = 0;
189 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000190}
191
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000192PyDoc_STRVAR(c_acosh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000193"acosh(x)\n"
194"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000195"Return the hyperbolic arccosine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000196
197
Tim Peters14e26402001-02-20 20:15:19 +0000198static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000199c_asin(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000200{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000201 /* asin(z) = -i asinh(iz) */
202 Py_complex s, r;
203 s.real = -z.imag;
204 s.imag = z.real;
205 s = c_asinh(s);
206 r.real = s.imag;
207 r.imag = -s.real;
208 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000209}
210
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000211PyDoc_STRVAR(c_asin_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000212"asin(x)\n"
213"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000214"Return the arc sine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000215
216
Christian Heimesa342c012008-04-20 21:01:16 +0000217static Py_complex asinh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000218
Tim Peters14e26402001-02-20 20:15:19 +0000219static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000220c_asinh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000221{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000222 Py_complex s1, s2, r;
Christian Heimes53876d92008-04-19 00:31:39 +0000223
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000224 SPECIAL_VALUE(z, asinh_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000225
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000226 if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
227 if (z.imag >= 0.) {
228 r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
229 M_LN2*2., z.real);
230 } else {
231 r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
232 M_LN2*2., -z.real);
233 }
234 r.imag = atan2(z.imag, fabs(z.real));
235 } else {
236 s1.real = 1.+z.imag;
237 s1.imag = -z.real;
238 s1 = c_sqrt(s1);
239 s2.real = 1.-z.imag;
240 s2.imag = z.real;
241 s2 = c_sqrt(s2);
242 r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
243 r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
244 }
245 errno = 0;
246 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000247}
248
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000249PyDoc_STRVAR(c_asinh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000250"asinh(x)\n"
251"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000252"Return the hyperbolic arc sine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000253
254
Tim Peters14e26402001-02-20 20:15:19 +0000255static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000256c_atan(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000257{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000258 /* atan(z) = -i atanh(iz) */
259 Py_complex s, r;
260 s.real = -z.imag;
261 s.imag = z.real;
262 s = c_atanh(s);
263 r.real = s.imag;
264 r.imag = -s.real;
265 return r;
Christian Heimes53876d92008-04-19 00:31:39 +0000266}
267
Christian Heimese57950f2008-04-21 13:08:03 +0000268/* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
269 C99 for atan2(0., 0.). */
Christian Heimes53876d92008-04-19 00:31:39 +0000270static double
271c_atan2(Py_complex z)
272{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000273 if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
274 return Py_NAN;
275 if (Py_IS_INFINITY(z.imag)) {
276 if (Py_IS_INFINITY(z.real)) {
277 if (copysign(1., z.real) == 1.)
278 /* atan2(+-inf, +inf) == +-pi/4 */
279 return copysign(0.25*Py_MATH_PI, z.imag);
280 else
281 /* atan2(+-inf, -inf) == +-pi*3/4 */
282 return copysign(0.75*Py_MATH_PI, z.imag);
283 }
284 /* atan2(+-inf, x) == +-pi/2 for finite x */
285 return copysign(0.5*Py_MATH_PI, z.imag);
286 }
287 if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
288 if (copysign(1., z.real) == 1.)
289 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
290 return copysign(0., z.imag);
291 else
292 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
293 return copysign(Py_MATH_PI, z.imag);
294 }
295 return atan2(z.imag, z.real);
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000296}
297
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000298PyDoc_STRVAR(c_atan_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000299"atan(x)\n"
300"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000301"Return the arc tangent of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000302
303
Christian Heimesa342c012008-04-20 21:01:16 +0000304static Py_complex atanh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000305
Tim Peters14e26402001-02-20 20:15:19 +0000306static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000307c_atanh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000308{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000309 Py_complex r;
310 double ay, h;
Christian Heimes53876d92008-04-19 00:31:39 +0000311
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000312 SPECIAL_VALUE(z, atanh_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000313
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000314 /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
315 if (z.real < 0.) {
316 return c_neg(c_atanh(c_neg(z)));
317 }
Christian Heimes53876d92008-04-19 00:31:39 +0000318
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000319 ay = fabs(z.imag);
320 if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
321 /*
322 if abs(z) is large then we use the approximation
323 atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
324 of z.imag)
325 */
326 h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
327 r.real = z.real/4./h/h;
328 /* the two negations in the next line cancel each other out
329 except when working with unsigned zeros: they're there to
330 ensure that the branch cut has the correct continuity on
331 systems that don't support signed zeros */
332 r.imag = -copysign(Py_MATH_PI/2., -z.imag);
333 errno = 0;
334 } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
335 /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
336 if (ay == 0.) {
337 r.real = INF;
338 r.imag = z.imag;
339 errno = EDOM;
340 } else {
341 r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
342 r.imag = copysign(atan2(2., -ay)/2, z.imag);
343 errno = 0;
344 }
345 } else {
346 r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
347 r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
348 errno = 0;
349 }
350 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000351}
352
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000353PyDoc_STRVAR(c_atanh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000354"atanh(x)\n"
355"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000356"Return the hyperbolic arc tangent of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000357
358
Tim Peters14e26402001-02-20 20:15:19 +0000359static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000360c_cos(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000361{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000362 /* cos(z) = cosh(iz) */
363 Py_complex r;
364 r.real = -z.imag;
365 r.imag = z.real;
366 r = c_cosh(r);
367 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000368}
369
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000370PyDoc_STRVAR(c_cos_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000371"cos(x)\n"
Mark Dickinson1bd2e292009-02-28 15:53:24 +0000372"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000373"Return the cosine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000374
375
Christian Heimes53876d92008-04-19 00:31:39 +0000376/* cosh(infinity + i*y) needs to be dealt with specially */
Christian Heimesa342c012008-04-20 21:01:16 +0000377static Py_complex cosh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000378
Tim Peters14e26402001-02-20 20:15:19 +0000379static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000380c_cosh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000381{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000382 Py_complex r;
383 double x_minus_one;
Christian Heimes53876d92008-04-19 00:31:39 +0000384
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000385 /* special treatment for cosh(+/-inf + iy) if y is not a NaN */
386 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
387 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
388 (z.imag != 0.)) {
389 if (z.real > 0) {
390 r.real = copysign(INF, cos(z.imag));
391 r.imag = copysign(INF, sin(z.imag));
392 }
393 else {
394 r.real = copysign(INF, cos(z.imag));
395 r.imag = -copysign(INF, sin(z.imag));
396 }
397 }
398 else {
399 r = cosh_special_values[special_type(z.real)]
400 [special_type(z.imag)];
401 }
402 /* need to set errno = EDOM if y is +/- infinity and x is not
403 a NaN */
404 if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
405 errno = EDOM;
406 else
407 errno = 0;
408 return r;
409 }
Christian Heimes53876d92008-04-19 00:31:39 +0000410
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000411 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
412 /* deal correctly with cases where cosh(z.real) overflows but
413 cosh(z) does not. */
414 x_minus_one = z.real - copysign(1., z.real);
415 r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
416 r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
417 } else {
418 r.real = cos(z.imag) * cosh(z.real);
419 r.imag = sin(z.imag) * sinh(z.real);
420 }
421 /* detect overflow, and set errno accordingly */
422 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
423 errno = ERANGE;
424 else
425 errno = 0;
426 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000427}
428
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000429PyDoc_STRVAR(c_cosh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000430"cosh(x)\n"
Mark Dickinson1bd2e292009-02-28 15:53:24 +0000431"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000432"Return the hyperbolic cosine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000433
434
Christian Heimes53876d92008-04-19 00:31:39 +0000435/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
436 finite y */
Christian Heimesa342c012008-04-20 21:01:16 +0000437static Py_complex exp_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000438
Tim Peters14e26402001-02-20 20:15:19 +0000439static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000440c_exp(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000441{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000442 Py_complex r;
443 double l;
Christian Heimes53876d92008-04-19 00:31:39 +0000444
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000445 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
446 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
447 && (z.imag != 0.)) {
448 if (z.real > 0) {
449 r.real = copysign(INF, cos(z.imag));
450 r.imag = copysign(INF, sin(z.imag));
451 }
452 else {
453 r.real = copysign(0., cos(z.imag));
454 r.imag = copysign(0., sin(z.imag));
455 }
456 }
457 else {
458 r = exp_special_values[special_type(z.real)]
459 [special_type(z.imag)];
460 }
461 /* need to set errno = EDOM if y is +/- infinity and x is not
462 a NaN and not -infinity */
463 if (Py_IS_INFINITY(z.imag) &&
464 (Py_IS_FINITE(z.real) ||
465 (Py_IS_INFINITY(z.real) && z.real > 0)))
466 errno = EDOM;
467 else
468 errno = 0;
469 return r;
470 }
Christian Heimes53876d92008-04-19 00:31:39 +0000471
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000472 if (z.real > CM_LOG_LARGE_DOUBLE) {
473 l = exp(z.real-1.);
474 r.real = l*cos(z.imag)*Py_MATH_E;
475 r.imag = l*sin(z.imag)*Py_MATH_E;
476 } else {
477 l = exp(z.real);
478 r.real = l*cos(z.imag);
479 r.imag = l*sin(z.imag);
480 }
481 /* detect overflow, and set errno accordingly */
482 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
483 errno = ERANGE;
484 else
485 errno = 0;
486 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000487}
488
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000489PyDoc_STRVAR(c_exp_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000490"exp(x)\n"
491"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000492"Return the exponential value e**x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000493
494
Christian Heimesa342c012008-04-20 21:01:16 +0000495static Py_complex log_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000496
Tim Peters14e26402001-02-20 20:15:19 +0000497static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000498c_log(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000499{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000500 /*
501 The usual formula for the real part is log(hypot(z.real, z.imag)).
502 There are four situations where this formula is potentially
503 problematic:
Christian Heimes53876d92008-04-19 00:31:39 +0000504
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000505 (1) the absolute value of z is subnormal. Then hypot is subnormal,
506 so has fewer than the usual number of bits of accuracy, hence may
507 have large relative error. This then gives a large absolute error
508 in the log. This can be solved by rescaling z by a suitable power
509 of 2.
Christian Heimes53876d92008-04-19 00:31:39 +0000510
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000511 (2) the absolute value of z is greater than DBL_MAX (e.g. when both
512 z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
513 Again, rescaling solves this.
Christian Heimes53876d92008-04-19 00:31:39 +0000514
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000515 (3) the absolute value of z is close to 1. In this case it's
516 difficult to achieve good accuracy, at least in part because a
517 change of 1ulp in the real or imaginary part of z can result in a
518 change of billions of ulps in the correctly rounded answer.
Christian Heimes53876d92008-04-19 00:31:39 +0000519
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000520 (4) z = 0. The simplest thing to do here is to call the
521 floating-point log with an argument of 0, and let its behaviour
522 (returning -infinity, signaling a floating-point exception, setting
523 errno, or whatever) determine that of c_log. So the usual formula
524 is fine here.
Christian Heimes53876d92008-04-19 00:31:39 +0000525
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000526 */
Christian Heimes53876d92008-04-19 00:31:39 +0000527
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000528 Py_complex r;
529 double ax, ay, am, an, h;
Christian Heimes53876d92008-04-19 00:31:39 +0000530
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000531 SPECIAL_VALUE(z, log_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000532
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000533 ax = fabs(z.real);
534 ay = fabs(z.imag);
Christian Heimes53876d92008-04-19 00:31:39 +0000535
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000536 if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
537 r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
538 } else if (ax < DBL_MIN && ay < DBL_MIN) {
539 if (ax > 0. || ay > 0.) {
540 /* catch cases where hypot(ax, ay) is subnormal */
541 r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
542 ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
543 }
544 else {
545 /* log(+/-0. +/- 0i) */
546 r.real = -INF;
547 r.imag = atan2(z.imag, z.real);
548 errno = EDOM;
549 return r;
550 }
551 } else {
552 h = hypot(ax, ay);
553 if (0.71 <= h && h <= 1.73) {
554 am = ax > ay ? ax : ay; /* max(ax, ay) */
555 an = ax > ay ? ay : ax; /* min(ax, ay) */
556 r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
557 } else {
558 r.real = log(h);
559 }
560 }
561 r.imag = atan2(z.imag, z.real);
562 errno = 0;
563 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000564}
565
Guido van Rossumc6e22901998-12-04 19:26:43 +0000566
Tim Peters14e26402001-02-20 20:15:19 +0000567static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000568c_log10(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000569{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000570 Py_complex r;
571 int errno_save;
Christian Heimes53876d92008-04-19 00:31:39 +0000572
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000573 r = c_log(z);
574 errno_save = errno; /* just in case the divisions affect errno */
575 r.real = r.real / M_LN10;
576 r.imag = r.imag / M_LN10;
577 errno = errno_save;
578 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000579}
580
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000581PyDoc_STRVAR(c_log10_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000582"log10(x)\n"
583"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000584"Return the base-10 logarithm of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000585
586
Tim Peters14e26402001-02-20 20:15:19 +0000587static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000588c_sin(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000589{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000590 /* sin(z) = -i sin(iz) */
591 Py_complex s, r;
592 s.real = -z.imag;
593 s.imag = z.real;
594 s = c_sinh(s);
595 r.real = s.imag;
596 r.imag = -s.real;
597 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000598}
599
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000600PyDoc_STRVAR(c_sin_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000601"sin(x)\n"
602"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000603"Return the sine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000604
605
Christian Heimes53876d92008-04-19 00:31:39 +0000606/* sinh(infinity + i*y) needs to be dealt with specially */
Christian Heimesa342c012008-04-20 21:01:16 +0000607static Py_complex sinh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000608
Tim Peters14e26402001-02-20 20:15:19 +0000609static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000610c_sinh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000611{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000612 Py_complex r;
613 double x_minus_one;
Christian Heimes53876d92008-04-19 00:31:39 +0000614
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000615 /* special treatment for sinh(+/-inf + iy) if y is finite and
616 nonzero */
617 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
618 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
619 && (z.imag != 0.)) {
620 if (z.real > 0) {
621 r.real = copysign(INF, cos(z.imag));
622 r.imag = copysign(INF, sin(z.imag));
623 }
624 else {
625 r.real = -copysign(INF, cos(z.imag));
626 r.imag = copysign(INF, sin(z.imag));
627 }
628 }
629 else {
630 r = sinh_special_values[special_type(z.real)]
631 [special_type(z.imag)];
632 }
633 /* need to set errno = EDOM if y is +/- infinity and x is not
634 a NaN */
635 if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
636 errno = EDOM;
637 else
638 errno = 0;
639 return r;
640 }
Christian Heimes53876d92008-04-19 00:31:39 +0000641
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000642 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
643 x_minus_one = z.real - copysign(1., z.real);
644 r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
645 r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
646 } else {
647 r.real = cos(z.imag) * sinh(z.real);
648 r.imag = sin(z.imag) * cosh(z.real);
649 }
650 /* detect overflow, and set errno accordingly */
651 if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
652 errno = ERANGE;
653 else
654 errno = 0;
655 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000656}
657
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000658PyDoc_STRVAR(c_sinh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000659"sinh(x)\n"
660"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000661"Return the hyperbolic sine of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000662
663
Christian Heimesa342c012008-04-20 21:01:16 +0000664static Py_complex sqrt_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000665
Tim Peters14e26402001-02-20 20:15:19 +0000666static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000667c_sqrt(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000668{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000669 /*
670 Method: use symmetries to reduce to the case when x = z.real and y
671 = z.imag are nonnegative. Then the real part of the result is
672 given by
Christian Heimes53876d92008-04-19 00:31:39 +0000673
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000674 s = sqrt((x + hypot(x, y))/2)
Christian Heimes53876d92008-04-19 00:31:39 +0000675
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000676 and the imaginary part is
Christian Heimes53876d92008-04-19 00:31:39 +0000677
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000678 d = (y/2)/s
Christian Heimes53876d92008-04-19 00:31:39 +0000679
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000680 If either x or y is very large then there's a risk of overflow in
681 computation of the expression x + hypot(x, y). We can avoid this
682 by rewriting the formula for s as:
Christian Heimes53876d92008-04-19 00:31:39 +0000683
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000684 s = 2*sqrt(x/8 + hypot(x/8, y/8))
Christian Heimes53876d92008-04-19 00:31:39 +0000685
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000686 This costs us two extra multiplications/divisions, but avoids the
687 overhead of checking for x and y large.
Christian Heimes53876d92008-04-19 00:31:39 +0000688
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000689 If both x and y are subnormal then hypot(x, y) may also be
690 subnormal, so will lack full precision. We solve this by rescaling
691 x and y by a sufficiently large power of 2 to ensure that x and y
692 are normal.
693 */
Christian Heimes53876d92008-04-19 00:31:39 +0000694
695
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000696 Py_complex r;
697 double s,d;
698 double ax, ay;
Christian Heimes53876d92008-04-19 00:31:39 +0000699
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000700 SPECIAL_VALUE(z, sqrt_special_values);
Christian Heimes53876d92008-04-19 00:31:39 +0000701
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000702 if (z.real == 0. && z.imag == 0.) {
703 r.real = 0.;
704 r.imag = z.imag;
705 return r;
706 }
Christian Heimes53876d92008-04-19 00:31:39 +0000707
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000708 ax = fabs(z.real);
709 ay = fabs(z.imag);
Christian Heimes53876d92008-04-19 00:31:39 +0000710
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000711 if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
712 /* here we catch cases where hypot(ax, ay) is subnormal */
713 ax = ldexp(ax, CM_SCALE_UP);
714 s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
715 CM_SCALE_DOWN);
716 } else {
717 ax /= 8.;
718 s = 2.*sqrt(ax + hypot(ax, ay/8.));
719 }
720 d = ay/(2.*s);
Christian Heimes53876d92008-04-19 00:31:39 +0000721
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000722 if (z.real >= 0.) {
723 r.real = s;
724 r.imag = copysign(d, z.imag);
725 } else {
726 r.real = d;
727 r.imag = copysign(s, z.imag);
728 }
729 errno = 0;
730 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000731}
732
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000733PyDoc_STRVAR(c_sqrt_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000734"sqrt(x)\n"
735"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000736"Return the square root of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000737
738
Tim Peters14e26402001-02-20 20:15:19 +0000739static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000740c_tan(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000741{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000742 /* tan(z) = -i tanh(iz) */
743 Py_complex s, r;
744 s.real = -z.imag;
745 s.imag = z.real;
746 s = c_tanh(s);
747 r.real = s.imag;
748 r.imag = -s.real;
749 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000750}
751
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000752PyDoc_STRVAR(c_tan_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000753"tan(x)\n"
754"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000755"Return the tangent of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000756
757
Christian Heimes53876d92008-04-19 00:31:39 +0000758/* tanh(infinity + i*y) needs to be dealt with specially */
Christian Heimesa342c012008-04-20 21:01:16 +0000759static Py_complex tanh_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000760
Tim Peters14e26402001-02-20 20:15:19 +0000761static Py_complex
Christian Heimes53876d92008-04-19 00:31:39 +0000762c_tanh(Py_complex z)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000763{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000764 /* Formula:
Christian Heimes53876d92008-04-19 00:31:39 +0000765
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000766 tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
767 (1+tan(y)^2 tanh(x)^2)
Christian Heimes53876d92008-04-19 00:31:39 +0000768
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000769 To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
770 as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
771 by 4 exp(-2*x) instead, to avoid possible overflow in the
772 computation of cosh(x).
Christian Heimes53876d92008-04-19 00:31:39 +0000773
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000774 */
Christian Heimes53876d92008-04-19 00:31:39 +0000775
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000776 Py_complex r;
777 double tx, ty, cx, txty, denom;
Christian Heimes53876d92008-04-19 00:31:39 +0000778
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000779 /* special treatment for tanh(+/-inf + iy) if y is finite and
780 nonzero */
781 if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
782 if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
783 && (z.imag != 0.)) {
784 if (z.real > 0) {
785 r.real = 1.0;
786 r.imag = copysign(0.,
787 2.*sin(z.imag)*cos(z.imag));
788 }
789 else {
790 r.real = -1.0;
791 r.imag = copysign(0.,
792 2.*sin(z.imag)*cos(z.imag));
793 }
794 }
795 else {
796 r = tanh_special_values[special_type(z.real)]
797 [special_type(z.imag)];
798 }
799 /* need to set errno = EDOM if z.imag is +/-infinity and
800 z.real is finite */
801 if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
802 errno = EDOM;
803 else
804 errno = 0;
805 return r;
806 }
Christian Heimes53876d92008-04-19 00:31:39 +0000807
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000808 /* danger of overflow in 2.*z.imag !*/
809 if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
810 r.real = copysign(1., z.real);
811 r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
812 } else {
813 tx = tanh(z.real);
814 ty = tan(z.imag);
815 cx = 1./cosh(z.real);
816 txty = tx*ty;
817 denom = 1. + txty*txty;
818 r.real = tx*(1.+ty*ty)/denom;
819 r.imag = ((ty/denom)*cx)*cx;
820 }
821 errno = 0;
822 return r;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000823}
824
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000825PyDoc_STRVAR(c_tanh_doc,
Tim Peters14e26402001-02-20 20:15:19 +0000826"tanh(x)\n"
827"\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000828"Return the hyperbolic tangent of x.");
Guido van Rossumc6e22901998-12-04 19:26:43 +0000829
Christian Heimes53876d92008-04-19 00:31:39 +0000830
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000831static PyObject *
832cmath_log(PyObject *self, PyObject *args)
833{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000834 Py_complex x;
835 Py_complex y;
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000836
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000837 if (!PyArg_ParseTuple(args, "D|D", &x, &y))
838 return NULL;
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000839
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000840 errno = 0;
841 PyFPE_START_PROTECT("complex function", return 0)
842 x = c_log(x);
843 if (PyTuple_GET_SIZE(args) == 2) {
844 y = c_log(y);
845 x = c_quot(x, y);
846 }
847 PyFPE_END_PROTECT(x)
848 if (errno != 0)
849 return math_error();
850 return PyComplex_FromCComplex(x);
Raymond Hettingerb67ad7e2004-06-14 07:40:10 +0000851}
852
853PyDoc_STRVAR(cmath_log_doc,
854"log(x[, base]) -> the logarithm of x to the given base.\n\
855If the base not specified, returns the natural logarithm (base e) of x.");
856
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000857
858/* And now the glue to make them available from Python: */
859
Roger E. Masse24070ca1996-12-09 22:59:53 +0000860static PyObject *
Thomas Woutersf3f33dc2000-07-21 06:00:07 +0000861math_error(void)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000862{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000863 if (errno == EDOM)
864 PyErr_SetString(PyExc_ValueError, "math domain error");
865 else if (errno == ERANGE)
866 PyErr_SetString(PyExc_OverflowError, "math range error");
867 else /* Unexpected math error */
868 PyErr_SetFromErrno(PyExc_ValueError);
869 return NULL;
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000870}
871
Roger E. Masse24070ca1996-12-09 22:59:53 +0000872static PyObject *
Peter Schneider-Kampf1ca8982000-07-10 09:31:34 +0000873math_1(PyObject *args, Py_complex (*func)(Py_complex))
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000874{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000875 Py_complex x,r ;
876 if (!PyArg_ParseTuple(args, "D", &x))
877 return NULL;
878 errno = 0;
879 PyFPE_START_PROTECT("complex function", return 0);
880 r = (*func)(x);
881 PyFPE_END_PROTECT(r);
882 if (errno == EDOM) {
883 PyErr_SetString(PyExc_ValueError, "math domain error");
884 return NULL;
885 }
886 else if (errno == ERANGE) {
887 PyErr_SetString(PyExc_OverflowError, "math range error");
888 return NULL;
889 }
890 else {
891 return PyComplex_FromCComplex(r);
892 }
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000893}
894
895#define FUNC1(stubname, func) \
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000896 static PyObject * stubname(PyObject *self, PyObject *args) { \
897 return math_1(args, func); \
898 }
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000899
900FUNC1(cmath_acos, c_acos)
901FUNC1(cmath_acosh, c_acosh)
902FUNC1(cmath_asin, c_asin)
903FUNC1(cmath_asinh, c_asinh)
904FUNC1(cmath_atan, c_atan)
905FUNC1(cmath_atanh, c_atanh)
906FUNC1(cmath_cos, c_cos)
907FUNC1(cmath_cosh, c_cosh)
908FUNC1(cmath_exp, c_exp)
Guido van Rossum71aa32f1996-01-12 01:34:57 +0000909FUNC1(cmath_log10, c_log10)
910FUNC1(cmath_sin, c_sin)
911FUNC1(cmath_sinh, c_sinh)
912FUNC1(cmath_sqrt, c_sqrt)
913FUNC1(cmath_tan, c_tan)
914FUNC1(cmath_tanh, c_tanh)
915
Christian Heimes53876d92008-04-19 00:31:39 +0000916static PyObject *
917cmath_phase(PyObject *self, PyObject *args)
918{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000919 Py_complex z;
920 double phi;
921 if (!PyArg_ParseTuple(args, "D:phase", &z))
922 return NULL;
923 errno = 0;
924 PyFPE_START_PROTECT("arg function", return 0)
925 phi = c_atan2(z);
926 PyFPE_END_PROTECT(phi)
927 if (errno != 0)
928 return math_error();
929 else
930 return PyFloat_FromDouble(phi);
Christian Heimes53876d92008-04-19 00:31:39 +0000931}
932
933PyDoc_STRVAR(cmath_phase_doc,
934"phase(z) -> float\n\n\
935Return argument, also known as the phase angle, of a complex.");
936
937static PyObject *
938cmath_polar(PyObject *self, PyObject *args)
939{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000940 Py_complex z;
941 double r, phi;
942 if (!PyArg_ParseTuple(args, "D:polar", &z))
943 return NULL;
944 PyFPE_START_PROTECT("polar function", return 0)
945 phi = c_atan2(z); /* should not cause any exception */
946 r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */
947 PyFPE_END_PROTECT(r)
948 if (errno != 0)
949 return math_error();
950 else
951 return Py_BuildValue("dd", r, phi);
Christian Heimes53876d92008-04-19 00:31:39 +0000952}
953
954PyDoc_STRVAR(cmath_polar_doc,
955"polar(z) -> r: float, phi: float\n\n\
956Convert a complex from rectangular coordinates to polar coordinates. r is\n\
957the distance from 0 and phi the phase angle.");
958
959/*
960 rect() isn't covered by the C99 standard, but it's not too hard to
961 figure out 'spirit of C99' rules for special value handing:
962
963 rect(x, t) should behave like exp(log(x) + it) for positive-signed x
964 rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
965 rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
966 gives nan +- i0 with the sign of the imaginary part unspecified.
967
968*/
969
Christian Heimesa342c012008-04-20 21:01:16 +0000970static Py_complex rect_special_values[7][7];
Christian Heimes53876d92008-04-19 00:31:39 +0000971
972static PyObject *
973cmath_rect(PyObject *self, PyObject *args)
974{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000975 Py_complex z;
976 double r, phi;
977 if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi))
978 return NULL;
979 errno = 0;
980 PyFPE_START_PROTECT("rect function", return 0)
Christian Heimes53876d92008-04-19 00:31:39 +0000981
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000982 /* deal with special values */
983 if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
984 /* if r is +/-infinity and phi is finite but nonzero then
985 result is (+-INF +-INF i), but we need to compute cos(phi)
986 and sin(phi) to figure out the signs. */
987 if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
988 && (phi != 0.))) {
989 if (r > 0) {
990 z.real = copysign(INF, cos(phi));
991 z.imag = copysign(INF, sin(phi));
992 }
993 else {
994 z.real = -copysign(INF, cos(phi));
995 z.imag = -copysign(INF, sin(phi));
996 }
997 }
998 else {
999 z = rect_special_values[special_type(r)]
1000 [special_type(phi)];
1001 }
1002 /* need to set errno = EDOM if r is a nonzero number and phi
1003 is infinite */
1004 if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
1005 errno = EDOM;
1006 else
1007 errno = 0;
1008 }
1009 else {
1010 z.real = r * cos(phi);
1011 z.imag = r * sin(phi);
1012 errno = 0;
1013 }
Christian Heimes53876d92008-04-19 00:31:39 +00001014
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001015 PyFPE_END_PROTECT(z)
1016 if (errno != 0)
1017 return math_error();
1018 else
1019 return PyComplex_FromCComplex(z);
Christian Heimes53876d92008-04-19 00:31:39 +00001020}
1021
1022PyDoc_STRVAR(cmath_rect_doc,
1023"rect(r, phi) -> z: complex\n\n\
1024Convert from polar coordinates to rectangular coordinates.");
1025
1026static PyObject *
Mark Dickinson8e0c9962010-07-11 17:38:24 +00001027cmath_isfinite(PyObject *self, PyObject *args)
1028{
1029 Py_complex z;
1030 if (!PyArg_ParseTuple(args, "D:isfinite", &z))
1031 return NULL;
1032 return PyBool_FromLong(Py_IS_FINITE(z.real) && Py_IS_FINITE(z.imag));
1033}
1034
1035PyDoc_STRVAR(cmath_isfinite_doc,
1036"isfinite(z) -> bool\n\
1037Return True if both the real and imaginary parts of z are finite, else False.");
1038
1039static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +00001040cmath_isnan(PyObject *self, PyObject *args)
1041{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001042 Py_complex z;
1043 if (!PyArg_ParseTuple(args, "D:isnan", &z))
1044 return NULL;
1045 return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
Christian Heimes53876d92008-04-19 00:31:39 +00001046}
1047
1048PyDoc_STRVAR(cmath_isnan_doc,
1049"isnan(z) -> bool\n\
1050Checks if the real or imaginary part of z not a number (NaN)");
1051
1052static PyObject *
1053cmath_isinf(PyObject *self, PyObject *args)
1054{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001055 Py_complex z;
1056 if (!PyArg_ParseTuple(args, "D:isnan", &z))
1057 return NULL;
1058 return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
1059 Py_IS_INFINITY(z.imag));
Christian Heimes53876d92008-04-19 00:31:39 +00001060}
1061
1062PyDoc_STRVAR(cmath_isinf_doc,
1063"isinf(z) -> bool\n\
1064Checks if the real or imaginary part of z is infinite.");
1065
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001066
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001067PyDoc_STRVAR(module_doc,
Tim Peters14e26402001-02-20 20:15:19 +00001068"This module is always available. It provides access to mathematical\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001069"functions for complex numbers.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001070
Roger E. Masse24070ca1996-12-09 22:59:53 +00001071static PyMethodDef cmath_methods[] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001072 {"acos", cmath_acos, METH_VARARGS, c_acos_doc},
1073 {"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
1074 {"asin", cmath_asin, METH_VARARGS, c_asin_doc},
1075 {"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
1076 {"atan", cmath_atan, METH_VARARGS, c_atan_doc},
1077 {"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
1078 {"cos", cmath_cos, METH_VARARGS, c_cos_doc},
1079 {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
1080 {"exp", cmath_exp, METH_VARARGS, c_exp_doc},
Mark Dickinson8e0c9962010-07-11 17:38:24 +00001081 {"isfinite", cmath_isfinite, METH_VARARGS, cmath_isfinite_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001082 {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc},
1083 {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc},
1084 {"log", cmath_log, METH_VARARGS, cmath_log_doc},
1085 {"log10", cmath_log10, METH_VARARGS, c_log10_doc},
1086 {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc},
1087 {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc},
1088 {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc},
1089 {"sin", cmath_sin, METH_VARARGS, c_sin_doc},
1090 {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
1091 {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
1092 {"tan", cmath_tan, METH_VARARGS, c_tan_doc},
1093 {"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
1094 {NULL, NULL} /* sentinel */
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001095};
1096
Martin v. Löwis1a214512008-06-11 05:26:20 +00001097
1098static struct PyModuleDef cmathmodule = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001099 PyModuleDef_HEAD_INIT,
1100 "cmath",
1101 module_doc,
1102 -1,
1103 cmath_methods,
1104 NULL,
1105 NULL,
1106 NULL,
1107 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00001108};
1109
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001110PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00001111PyInit_cmath(void)
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001112{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001113 PyObject *m;
Tim Peters14e26402001-02-20 20:15:19 +00001114
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001115 m = PyModule_Create(&cmathmodule);
1116 if (m == NULL)
1117 return NULL;
Fred Drakef4e34842002-04-01 03:45:06 +00001118
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001119 PyModule_AddObject(m, "pi",
1120 PyFloat_FromDouble(Py_MATH_PI));
1121 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Christian Heimesa342c012008-04-20 21:01:16 +00001122
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001123 /* initialize special value tables */
Christian Heimesa342c012008-04-20 21:01:16 +00001124
1125#define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
1126#define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
1127
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001128 INIT_SPECIAL_VALUES(acos_special_values, {
1129 C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF)
1130 C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
1131 C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
1132 C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
1133 C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
1134 C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
1135 C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N)
1136 })
Christian Heimesa342c012008-04-20 21:01:16 +00001137
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001138 INIT_SPECIAL_VALUES(acosh_special_values, {
1139 C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
1140 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1141 C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
1142 C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
1143 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1144 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
1145 C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
1146 })
Christian Heimesa342c012008-04-20 21:01:16 +00001147
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001148 INIT_SPECIAL_VALUES(asinh_special_values, {
1149 C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
1150 C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N)
1151 C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N)
1152 C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N)
1153 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1154 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
1155 C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N)
1156 })
Christian Heimesa342c012008-04-20 21:01:16 +00001157
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001158 INIT_SPECIAL_VALUES(atanh_special_values, {
1159 C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
1160 C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N)
1161 C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N)
1162 C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N)
1163 C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N)
1164 C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N)
1165 C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N)
1166 })
Christian Heimesa342c012008-04-20 21:01:16 +00001167
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001168 INIT_SPECIAL_VALUES(cosh_special_values, {
1169 C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
1170 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1171 C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.)
1172 C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.)
1173 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1174 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1175 C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1176 })
Christian Heimesa342c012008-04-20 21:01:16 +00001177
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001178 INIT_SPECIAL_VALUES(exp_special_values, {
1179 C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
1180 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1181 C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
1182 C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
1183 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1184 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1185 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1186 })
Christian Heimesa342c012008-04-20 21:01:16 +00001187
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001188 INIT_SPECIAL_VALUES(log_special_values, {
1189 C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
1190 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1191 C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N)
1192 C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N)
1193 C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
1194 C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
1195 C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
1196 })
Christian Heimesa342c012008-04-20 21:01:16 +00001197
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001198 INIT_SPECIAL_VALUES(sinh_special_values, {
1199 C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
1200 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1201 C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N)
1202 C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N)
1203 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1204 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1205 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1206 })
Christian Heimesa342c012008-04-20 21:01:16 +00001207
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001208 INIT_SPECIAL_VALUES(sqrt_special_values, {
1209 C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
1210 C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
1211 C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
1212 C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
1213 C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
1214 C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
1215 C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N)
1216 })
Christian Heimesa342c012008-04-20 21:01:16 +00001217
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001218 INIT_SPECIAL_VALUES(tanh_special_values, {
1219 C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
1220 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1221 C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N)
1222 C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N)
1223 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1224 C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.)
1225 C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1226 })
Christian Heimesa342c012008-04-20 21:01:16 +00001227
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001228 INIT_SPECIAL_VALUES(rect_special_values, {
1229 C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
1230 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1231 C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.)
1232 C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
1233 C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
1234 C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
1235 C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
1236 })
1237 return m;
Guido van Rossum71aa32f1996-01-12 01:34:57 +00001238}