blob: a3710f4aa48a682b6aadeb47d3417d25aacd9a27 [file] [log] [blame]
Raymond Hettinger40f62172002-12-29 23:03:38 +00001import unittest
R David Murraye3e1c172013-04-02 12:47:23 -04002import unittest.mock
Tim Peters46c04e12002-05-05 20:40:00 +00003import random
Antoine Pitrou346cbd32017-05-27 17:50:54 +02004import os
Raymond Hettinger40f62172002-12-29 23:03:38 +00005import time
Raymond Hettinger5f078ff2003-06-24 20:29:04 +00006import pickle
Raymond Hettinger2f726e92003-10-05 09:09:15 +00007import warnings
R David Murraye3e1c172013-04-02 12:47:23 -04008from functools import partial
Victor Stinnerbd1b49a2016-10-19 10:11:37 +02009from math import log, exp, pi, fsum, sin, factorial
Benjamin Petersonee8712c2008-05-20 21:35:26 +000010from test import support
Raymond Hettingere8f1e002016-09-06 17:15:29 -070011from fractions import Fraction
Raymond Hettinger81a5fc32020-05-08 07:53:15 -070012from collections import Counter
csabellaf111fd22017-05-11 11:19:35 -040013
Ezio Melotti3e4a98b2013-04-19 05:45:27 +030014class TestBasicOps:
Raymond Hettinger40f62172002-12-29 23:03:38 +000015 # Superclass with tests common to all generators.
16 # Subclasses must arrange for self.gen to retrieve the Random instance
17 # to be tested.
Tim Peters46c04e12002-05-05 20:40:00 +000018
Raymond Hettinger40f62172002-12-29 23:03:38 +000019 def randomlist(self, n):
20 """Helper function to make a list of random numbers"""
Guido van Rossum805365e2007-05-07 22:24:25 +000021 return [self.gen.random() for i in range(n)]
Tim Peters46c04e12002-05-05 20:40:00 +000022
Raymond Hettinger40f62172002-12-29 23:03:38 +000023 def test_autoseed(self):
24 self.gen.seed()
25 state1 = self.gen.getstate()
Raymond Hettinger3081d592003-08-09 18:30:57 +000026 time.sleep(0.1)
Mike53f7a7c2017-12-14 14:04:53 +030027 self.gen.seed() # different seeds at different times
Raymond Hettinger40f62172002-12-29 23:03:38 +000028 state2 = self.gen.getstate()
29 self.assertNotEqual(state1, state2)
Tim Peters46c04e12002-05-05 20:40:00 +000030
Raymond Hettinger40f62172002-12-29 23:03:38 +000031 def test_saverestore(self):
32 N = 1000
33 self.gen.seed()
34 state = self.gen.getstate()
35 randseq = self.randomlist(N)
36 self.gen.setstate(state) # should regenerate the same sequence
37 self.assertEqual(randseq, self.randomlist(N))
38
39 def test_seedargs(self):
Mark Dickinson95aeae02012-06-24 11:05:30 +010040 # Seed value with a negative hash.
41 class MySeed(object):
42 def __hash__(self):
43 return -1729
Xtreaka06d6832019-09-12 09:13:20 +010044 for arg in [None, 0, 1, -1, 10**20, -(10**20),
Victor Stinner00d7cd82020-03-10 15:15:14 +010045 False, True, 3.14, 'a']:
Raymond Hettinger40f62172002-12-29 23:03:38 +000046 self.gen.seed(arg)
Xtreaka06d6832019-09-12 09:13:20 +010047
48 for arg in [1+2j, tuple('abc'), MySeed()]:
49 with self.assertWarns(DeprecationWarning):
50 self.gen.seed(arg)
51
Guido van Rossum805365e2007-05-07 22:24:25 +000052 for arg in [list(range(3)), dict(one=1)]:
Xtreaka06d6832019-09-12 09:13:20 +010053 with self.assertWarns(DeprecationWarning):
54 self.assertRaises(TypeError, self.gen.seed, arg)
Raymond Hettingerf763a722010-09-07 00:38:15 +000055 self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4)
Raymond Hettinger58335872004-07-09 14:26:18 +000056 self.assertRaises(TypeError, type(self.gen), [])
Raymond Hettinger40f62172002-12-29 23:03:38 +000057
R David Murraye3e1c172013-04-02 12:47:23 -040058 @unittest.mock.patch('random._urandom') # os.urandom
59 def test_seed_when_randomness_source_not_found(self, urandom_mock):
60 # Random.seed() uses time.time() when an operating system specific
csabellaf111fd22017-05-11 11:19:35 -040061 # randomness source is not found. To test this on machines where it
R David Murraye3e1c172013-04-02 12:47:23 -040062 # exists, run the above test, test_seedargs(), again after mocking
63 # os.urandom() so that it raises the exception expected when the
64 # randomness source is not available.
65 urandom_mock.side_effect = NotImplementedError
66 self.test_seedargs()
67
Antoine Pitrou5e394332012-11-04 02:10:33 +010068 def test_shuffle(self):
69 shuffle = self.gen.shuffle
70 lst = []
71 shuffle(lst)
72 self.assertEqual(lst, [])
73 lst = [37]
74 shuffle(lst)
75 self.assertEqual(lst, [37])
76 seqs = [list(range(n)) for n in range(10)]
77 shuffled_seqs = [list(range(n)) for n in range(10)]
78 for shuffled_seq in shuffled_seqs:
79 shuffle(shuffled_seq)
80 for (seq, shuffled_seq) in zip(seqs, shuffled_seqs):
81 self.assertEqual(len(seq), len(shuffled_seq))
82 self.assertEqual(set(seq), set(shuffled_seq))
Antoine Pitrou5e394332012-11-04 02:10:33 +010083 # The above tests all would pass if the shuffle was a
84 # no-op. The following non-deterministic test covers that. It
85 # asserts that the shuffled sequence of 1000 distinct elements
86 # must be different from the original one. Although there is
87 # mathematically a non-zero probability that this could
88 # actually happen in a genuinely random shuffle, it is
89 # completely negligible, given that the number of possible
90 # permutations of 1000 objects is 1000! (factorial of 1000),
91 # which is considerably larger than the number of atoms in the
92 # universe...
93 lst = list(range(1000))
94 shuffled_lst = list(range(1000))
95 shuffle(shuffled_lst)
96 self.assertTrue(lst != shuffled_lst)
97 shuffle(lst)
98 self.assertTrue(lst != shuffled_lst)
csabellaf111fd22017-05-11 11:19:35 -040099 self.assertRaises(TypeError, shuffle, (1, 2, 3))
100
101 def test_shuffle_random_argument(self):
102 # Test random argument to shuffle.
103 shuffle = self.gen.shuffle
104 mock_random = unittest.mock.Mock(return_value=0.5)
105 seq = bytearray(b'abcdefghijk')
Raymond Hettinger190fac92020-05-02 16:45:32 -0700106 with self.assertWarns(DeprecationWarning):
107 shuffle(seq, mock_random)
csabellaf111fd22017-05-11 11:19:35 -0400108 mock_random.assert_called_with()
Antoine Pitrou5e394332012-11-04 02:10:33 +0100109
Raymond Hettingerdc4872e2010-09-07 10:06:56 +0000110 def test_choice(self):
111 choice = self.gen.choice
112 with self.assertRaises(IndexError):
113 choice([])
114 self.assertEqual(choice([50]), 50)
115 self.assertIn(choice([25, 75]), [25, 75])
116
Raymond Hettinger40f62172002-12-29 23:03:38 +0000117 def test_sample(self):
118 # For the entire allowable range of 0 <= k <= N, validate that
119 # the sample is of the correct length and contains only unique items
120 N = 100
Guido van Rossum805365e2007-05-07 22:24:25 +0000121 population = range(N)
122 for k in range(N+1):
Raymond Hettinger40f62172002-12-29 23:03:38 +0000123 s = self.gen.sample(population, k)
124 self.assertEqual(len(s), k)
Raymond Hettingera690a992003-11-16 16:17:49 +0000125 uniq = set(s)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000126 self.assertEqual(len(uniq), k)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000127 self.assertTrue(uniq <= set(population))
Raymond Hettinger8ec78812003-01-04 05:55:11 +0000128 self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
R David Murraye3e1c172013-04-02 12:47:23 -0400129 # Exception raised if size of sample exceeds that of population
130 self.assertRaises(ValueError, self.gen.sample, population, N+1)
Raymond Hettingerbf871262016-11-21 14:34:33 -0800131 self.assertRaises(ValueError, self.gen.sample, [], -1)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000132
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000133 def test_sample_distribution(self):
134 # For the entire allowable range of 0 <= k <= N, validate that
135 # sample generates all possible permutations
136 n = 5
137 pop = range(n)
138 trials = 10000 # large num prevents false negatives without slowing normal case
Guido van Rossum805365e2007-05-07 22:24:25 +0000139 for k in range(n):
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000140 expected = factorial(n) // factorial(n-k)
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000141 perms = {}
Guido van Rossum805365e2007-05-07 22:24:25 +0000142 for i in range(trials):
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000143 perms[tuple(self.gen.sample(pop, k))] = None
144 if len(perms) == expected:
145 break
146 else:
147 self.fail()
148
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000149 def test_sample_inputs(self):
150 # SF bug #801342 -- population can be any iterable defining __len__()
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000151 self.gen.sample(range(20), 2)
Guido van Rossum805365e2007-05-07 22:24:25 +0000152 self.gen.sample(range(20), 2)
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000153 self.gen.sample(str('abcdefghijklmnopqrst'), 2)
154 self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
155
Thomas Wouters49fd7fa2006-04-21 10:40:58 +0000156 def test_sample_on_dicts(self):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000157 self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
Thomas Wouters49fd7fa2006-04-21 10:40:58 +0000158
Raymond Hettinger4fe00202020-04-19 00:36:42 -0700159 def test_sample_on_sets(self):
160 with self.assertWarns(DeprecationWarning):
161 population = {10, 20, 30, 40, 50, 60, 70}
162 self.gen.sample(population, k=5)
163
Raymond Hettinger81a5fc32020-05-08 07:53:15 -0700164 def test_sample_with_counts(self):
165 sample = self.gen.sample
166
167 # General case
168 colors = ['red', 'green', 'blue', 'orange', 'black', 'brown', 'amber']
169 counts = [500, 200, 20, 10, 5, 0, 1 ]
170 k = 700
171 summary = Counter(sample(colors, counts=counts, k=k))
172 self.assertEqual(sum(summary.values()), k)
173 for color, weight in zip(colors, counts):
174 self.assertLessEqual(summary[color], weight)
175 self.assertNotIn('brown', summary)
176
177 # Case that exhausts the population
178 k = sum(counts)
179 summary = Counter(sample(colors, counts=counts, k=k))
180 self.assertEqual(sum(summary.values()), k)
181 for color, weight in zip(colors, counts):
182 self.assertLessEqual(summary[color], weight)
183 self.assertNotIn('brown', summary)
184
185 # Case with population size of 1
186 summary = Counter(sample(['x'], counts=[10], k=8))
187 self.assertEqual(summary, Counter(x=8))
188
189 # Case with all counts equal.
190 nc = len(colors)
191 summary = Counter(sample(colors, counts=[10]*nc, k=10*nc))
192 self.assertEqual(summary, Counter(10*colors))
193
194 # Test error handling
195 with self.assertRaises(TypeError):
196 sample(['red', 'green', 'blue'], counts=10, k=10) # counts not iterable
197 with self.assertRaises(ValueError):
198 sample(['red', 'green', 'blue'], counts=[-3, -7, -8], k=2) # counts are negative
199 with self.assertRaises(ValueError):
200 sample(['red', 'green', 'blue'], counts=[0, 0, 0], k=2) # counts are zero
201 with self.assertRaises(ValueError):
202 sample(['red', 'green'], counts=[10, 10], k=21) # population too small
203 with self.assertRaises(ValueError):
204 sample(['red', 'green', 'blue'], counts=[1, 2], k=2) # too few counts
205 with self.assertRaises(ValueError):
206 sample(['red', 'green', 'blue'], counts=[1, 2, 3, 4], k=2) # too many counts
207
208 def test_sample_counts_equivalence(self):
209 # Test the documented strong equivalence to a sample with repeated elements.
210 # We run this test on random.Random() which makes deterministic selections
211 # for a given seed value.
212 sample = random.sample
213 seed = random.seed
214
215 colors = ['red', 'green', 'blue', 'orange', 'black', 'amber']
216 counts = [500, 200, 20, 10, 5, 1 ]
217 k = 700
218 seed(8675309)
219 s1 = sample(colors, counts=counts, k=k)
220 seed(8675309)
221 expanded = [color for (color, count) in zip(colors, counts) for i in range(count)]
222 self.assertEqual(len(expanded), sum(counts))
223 s2 = sample(expanded, k=k)
224 self.assertEqual(s1, s2)
225
226 pop = 'abcdefghi'
227 counts = [10, 9, 8, 7, 6, 5, 4, 3, 2]
228 seed(8675309)
229 s1 = ''.join(sample(pop, counts=counts, k=30))
230 expanded = ''.join([letter for (letter, count) in zip(pop, counts) for i in range(count)])
231 seed(8675309)
232 s2 = ''.join(sample(expanded, k=30))
233 self.assertEqual(s1, s2)
234
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700235 def test_choices(self):
236 choices = self.gen.choices
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700237 data = ['red', 'green', 'blue', 'yellow']
238 str_data = 'abcd'
239 range_data = range(4)
240 set_data = set(range(4))
241
242 # basic functionality
243 for sample in [
Raymond Hettinger9016f282016-09-26 21:45:57 -0700244 choices(data, k=5),
245 choices(data, range(4), k=5),
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700246 choices(k=5, population=data, weights=range(4)),
247 choices(k=5, population=data, cum_weights=range(4)),
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700248 ]:
249 self.assertEqual(len(sample), 5)
250 self.assertEqual(type(sample), list)
251 self.assertTrue(set(sample) <= set(data))
252
253 # test argument handling
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700254 with self.assertRaises(TypeError): # missing arguments
255 choices(2)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700256
Raymond Hettinger9016f282016-09-26 21:45:57 -0700257 self.assertEqual(choices(data, k=0), []) # k == 0
258 self.assertEqual(choices(data, k=-1), []) # negative k behaves like ``[0] * -1``
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700259 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700260 choices(data, k=2.5) # k is a float
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700261
Raymond Hettinger9016f282016-09-26 21:45:57 -0700262 self.assertTrue(set(choices(str_data, k=5)) <= set(str_data)) # population is a string sequence
263 self.assertTrue(set(choices(range_data, k=5)) <= set(range_data)) # population is a range
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700264 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700265 choices(set_data, k=2) # population is not a sequence
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700266
Raymond Hettinger9016f282016-09-26 21:45:57 -0700267 self.assertTrue(set(choices(data, None, k=5)) <= set(data)) # weights is None
268 self.assertTrue(set(choices(data, weights=None, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700269 with self.assertRaises(ValueError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700270 choices(data, [1,2], k=5) # len(weights) != len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700271 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700272 choices(data, 10, k=5) # non-iterable weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700273 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700274 choices(data, [None]*4, k=5) # non-numeric weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700275 for weights in [
276 [15, 10, 25, 30], # integer weights
277 [15.1, 10.2, 25.2, 30.3], # float weights
278 [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights
279 [True, False, True, False] # booleans (include / exclude)
280 ]:
Raymond Hettinger9016f282016-09-26 21:45:57 -0700281 self.assertTrue(set(choices(data, weights, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700282
283 with self.assertRaises(ValueError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700284 choices(data, cum_weights=[1,2], k=5) # len(weights) != len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700285 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700286 choices(data, cum_weights=10, k=5) # non-iterable cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700287 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700288 choices(data, cum_weights=[None]*4, k=5) # non-numeric cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700289 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700290 choices(data, range(4), cum_weights=range(4), k=5) # both weights and cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700291 for weights in [
292 [15, 10, 25, 30], # integer cum_weights
293 [15.1, 10.2, 25.2, 30.3], # float cum_weights
294 [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights
295 ]:
Raymond Hettinger9016f282016-09-26 21:45:57 -0700296 self.assertTrue(set(choices(data, cum_weights=weights, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700297
Raymond Hettinger7b166522016-10-14 01:19:38 -0400298 # Test weight focused on a single element of the population
299 self.assertEqual(choices('abcd', [1, 0, 0, 0]), ['a'])
300 self.assertEqual(choices('abcd', [0, 1, 0, 0]), ['b'])
301 self.assertEqual(choices('abcd', [0, 0, 1, 0]), ['c'])
302 self.assertEqual(choices('abcd', [0, 0, 0, 1]), ['d'])
303
304 # Test consistency with random.choice() for empty population
305 with self.assertRaises(IndexError):
306 choices([], k=1)
307 with self.assertRaises(IndexError):
308 choices([], weights=[], k=1)
309 with self.assertRaises(IndexError):
310 choices([], cum_weights=[], k=5)
311
Raymond Hettingerddf71712018-06-27 01:08:31 -0700312 def test_choices_subnormal(self):
Min ho Kim96e12d52019-07-22 06:12:33 +1000313 # Subnormal weights would occasionally trigger an IndexError
Raymond Hettingerddf71712018-06-27 01:08:31 -0700314 # in choices() when the value returned by random() was large
315 # enough to make `random() * total` round up to the total.
316 # See https://bugs.python.org/msg275594 for more detail.
317 choices = self.gen.choices
318 choices(population=[1, 2], weights=[1e-323, 1e-323], k=5000)
319
Raymond Hettinger041d8b42019-11-23 02:22:13 -0800320 def test_choices_with_all_zero_weights(self):
321 # See issue #38881
322 with self.assertRaises(ValueError):
323 self.gen.choices('AB', [0.0, 0.0])
324
Raymond Hettinger40f62172002-12-29 23:03:38 +0000325 def test_gauss(self):
326 # Ensure that the seed() method initializes all the hidden state. In
327 # particular, through 2.2.1 it failed to reset a piece of state used
328 # by (and only by) the .gauss() method.
329
330 for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
331 self.gen.seed(seed)
332 x1 = self.gen.random()
333 y1 = self.gen.gauss(0, 1)
334
335 self.gen.seed(seed)
336 x2 = self.gen.random()
337 y2 = self.gen.gauss(0, 1)
338
339 self.assertEqual(x1, x2)
340 self.assertEqual(y1, y2)
341
Antoine Pitrou75a33782020-04-17 19:32:14 +0200342 def test_getrandbits(self):
343 # Verify ranges
344 for k in range(1, 1000):
345 self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
346 self.assertEqual(self.gen.getrandbits(0), 0)
347
348 # Verify all bits active
349 getbits = self.gen.getrandbits
350 for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
351 all_bits = 2**span-1
352 cum = 0
353 cpl_cum = 0
354 for i in range(100):
355 v = getbits(span)
356 cum |= v
357 cpl_cum |= all_bits ^ v
358 self.assertEqual(cum, all_bits)
359 self.assertEqual(cpl_cum, all_bits)
360
361 # Verify argument checking
362 self.assertRaises(TypeError, self.gen.getrandbits)
363 self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
364 self.assertRaises(ValueError, self.gen.getrandbits, -1)
365 self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
366
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000367 def test_pickling(self):
Serhiy Storchakabad12572014-12-15 14:03:42 +0200368 for proto in range(pickle.HIGHEST_PROTOCOL + 1):
369 state = pickle.dumps(self.gen, proto)
370 origseq = [self.gen.random() for i in range(10)]
371 newgen = pickle.loads(state)
372 restoredseq = [newgen.random() for i in range(10)]
373 self.assertEqual(origseq, restoredseq)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000374
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000375 def test_bug_1727780(self):
376 # verify that version-2-pickles can be loaded
377 # fine, whether they are created on 32-bit or 64-bit
378 # platforms, and that version-3-pickles load fine.
379 files = [("randv2_32.pck", 780),
380 ("randv2_64.pck", 866),
381 ("randv3.pck", 343)]
382 for file, value in files:
Serhiy Storchaka5b10b982019-03-05 10:06:26 +0200383 with open(support.findfile(file),"rb") as f:
384 r = pickle.load(f)
Raymond Hettinger05156612010-09-07 04:44:52 +0000385 self.assertEqual(int(r.random()*1000), value)
386
387 def test_bug_9025(self):
388 # Had problem with an uneven distribution in int(n*random())
389 # Verify the fix by checking that distributions fall within expectations.
390 n = 100000
391 randrange = self.gen.randrange
392 k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n))
393 self.assertTrue(0.30 < k/n < .37, (k/n))
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000394
Victor Stinner9f5fe792020-04-17 19:05:35 +0200395 def test_randbytes(self):
396 # Verify ranges
397 for n in range(1, 10):
398 data = self.gen.randbytes(n)
399 self.assertEqual(type(data), bytes)
400 self.assertEqual(len(data), n)
401
402 self.assertEqual(self.gen.randbytes(0), b'')
403
404 # Verify argument checking
405 self.assertRaises(TypeError, self.gen.randbytes)
406 self.assertRaises(TypeError, self.gen.randbytes, 1, 2)
407 self.assertRaises(ValueError, self.gen.randbytes, -1)
408 self.assertRaises(TypeError, self.gen.randbytes, 1.0)
409
410
Ezio Melotti3e4a98b2013-04-19 05:45:27 +0300411try:
412 random.SystemRandom().random()
413except NotImplementedError:
414 SystemRandom_available = False
415else:
416 SystemRandom_available = True
417
418@unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available")
419class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000420 gen = random.SystemRandom()
Raymond Hettinger356a4592004-08-30 06:14:31 +0000421
422 def test_autoseed(self):
423 # Doesn't need to do anything except not fail
424 self.gen.seed()
425
426 def test_saverestore(self):
427 self.assertRaises(NotImplementedError, self.gen.getstate)
428 self.assertRaises(NotImplementedError, self.gen.setstate, None)
429
430 def test_seedargs(self):
431 # Doesn't need to do anything except not fail
432 self.gen.seed(100)
433
Raymond Hettinger356a4592004-08-30 06:14:31 +0000434 def test_gauss(self):
435 self.gen.gauss_next = None
436 self.gen.seed(100)
437 self.assertEqual(self.gen.gauss_next, None)
438
439 def test_pickling(self):
Serhiy Storchakabad12572014-12-15 14:03:42 +0200440 for proto in range(pickle.HIGHEST_PROTOCOL + 1):
441 self.assertRaises(NotImplementedError, pickle.dumps, self.gen, proto)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000442
443 def test_53_bits_per_float(self):
444 # This should pass whenever a C double has 53 bit precision.
445 span = 2 ** 53
446 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000447 for i in range(100):
Raymond Hettinger356a4592004-08-30 06:14:31 +0000448 cum |= int(self.gen.random() * span)
449 self.assertEqual(cum, span-1)
450
451 def test_bigrand(self):
452 # The randrange routine should build-up the required number of bits
453 # in stages so that all bit positions are active.
454 span = 2 ** 500
455 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000456 for i in range(100):
Raymond Hettinger356a4592004-08-30 06:14:31 +0000457 r = self.gen.randrange(span)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000458 self.assertTrue(0 <= r < span)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000459 cum |= r
460 self.assertEqual(cum, span-1)
461
462 def test_bigrand_ranges(self):
463 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
Zachary Warea6edea52013-11-26 14:50:10 -0600464 start = self.gen.randrange(2 ** (i-2))
465 stop = self.gen.randrange(2 ** i)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000466 if stop <= start:
Zachary Warea6edea52013-11-26 14:50:10 -0600467 continue
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000468 self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000469
470 def test_rangelimits(self):
471 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
472 self.assertEqual(set(range(start,stop)),
Guido van Rossum805365e2007-05-07 22:24:25 +0000473 set([self.gen.randrange(start,stop) for i in range(100)]))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000474
R David Murraye3e1c172013-04-02 12:47:23 -0400475 def test_randrange_nonunit_step(self):
476 rint = self.gen.randrange(0, 10, 2)
477 self.assertIn(rint, (0, 2, 4, 6, 8))
478 rint = self.gen.randrange(0, 2, 2)
479 self.assertEqual(rint, 0)
480
481 def test_randrange_errors(self):
482 raises = partial(self.assertRaises, ValueError, self.gen.randrange)
483 # Empty range
484 raises(3, 3)
485 raises(-721)
486 raises(0, 100, -12)
487 # Non-integer start/stop
488 raises(3.14159)
489 raises(0, 2.71828)
490 # Zero and non-integer step
491 raises(0, 42, 0)
492 raises(0, 42, 3.14159)
493
Raymond Hettinger356a4592004-08-30 06:14:31 +0000494 def test_randbelow_logic(self, _log=log, int=int):
495 # check bitcount transition points: 2**i and 2**(i+1)-1
496 # show that: k = int(1.001 + _log(n, 2))
497 # is equal to or one greater than the number of bits in n
Guido van Rossum805365e2007-05-07 22:24:25 +0000498 for i in range(1, 1000):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000499 n = 1 << i # check an exact power of two
Raymond Hettinger356a4592004-08-30 06:14:31 +0000500 numbits = i+1
501 k = int(1.00001 + _log(n, 2))
502 self.assertEqual(k, numbits)
Guido van Rossume61fd5b2007-07-11 12:20:59 +0000503 self.assertEqual(n, 2**(k-1))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000504
505 n += n - 1 # check 1 below the next power of two
506 k = int(1.00001 + _log(n, 2))
Benjamin Peterson577473f2010-01-19 00:09:57 +0000507 self.assertIn(k, [numbits, numbits+1])
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000508 self.assertTrue(2**k > n > 2**(k-2))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000509
510 n -= n >> 15 # check a little farther below the next power of two
511 k = int(1.00001 + _log(n, 2))
512 self.assertEqual(k, numbits) # note the stronger assertion
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000513 self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
Raymond Hettinger356a4592004-08-30 06:14:31 +0000514
515
Ezio Melotti3e4a98b2013-04-19 05:45:27 +0300516class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase):
Raymond Hettinger40f62172002-12-29 23:03:38 +0000517 gen = random.Random()
518
Raymond Hettingerf763a722010-09-07 00:38:15 +0000519 def test_guaranteed_stable(self):
520 # These sequences are guaranteed to stay the same across versions of python
521 self.gen.seed(3456147, version=1)
522 self.assertEqual([self.gen.random().hex() for i in range(4)],
523 ['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1',
524 '0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1'])
Raymond Hettingerf763a722010-09-07 00:38:15 +0000525 self.gen.seed("the quick brown fox", version=2)
526 self.assertEqual([self.gen.random().hex() for i in range(4)],
Raymond Hettinger3fcf0022010-12-08 01:13:53 +0000527 ['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4',
528 '0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1'])
Raymond Hettingerf763a722010-09-07 00:38:15 +0000529
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700530 def test_bug_27706(self):
531 # Verify that version 1 seeds are unaffected by hash randomization
532
533 self.gen.seed('nofar', version=1) # hash('nofar') == 5990528763808513177
534 self.assertEqual([self.gen.random().hex() for i in range(4)],
535 ['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5',
536 '0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6'])
537
538 self.gen.seed('rachel', version=1) # hash('rachel') == -9091735575445484789
539 self.assertEqual([self.gen.random().hex() for i in range(4)],
540 ['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3',
541 '0x1.3052b9c072678p-2', '0x1.578f332106574p-3'])
542
543 self.gen.seed('', version=1) # hash('') == 0
544 self.assertEqual([self.gen.random().hex() for i in range(4)],
545 ['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1',
546 '0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2'])
547
Oren Milmand780b2d2017-09-28 10:50:01 +0300548 def test_bug_31478(self):
549 # There shouldn't be an assertion failure in _random.Random.seed() in
550 # case the argument has a bad __abs__() method.
551 class BadInt(int):
552 def __abs__(self):
553 return None
554 try:
555 self.gen.seed(BadInt())
556 except TypeError:
557 pass
558
Raymond Hettinger132a7d72017-09-17 09:04:30 -0700559 def test_bug_31482(self):
560 # Verify that version 1 seeds are unaffected by hash randomization
561 # when the seeds are expressed as bytes rather than strings.
562 # The hash(b) values listed are the Python2.7 hash() values
563 # which were used for seeding.
564
565 self.gen.seed(b'nofar', version=1) # hash('nofar') == 5990528763808513177
566 self.assertEqual([self.gen.random().hex() for i in range(4)],
567 ['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5',
568 '0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6'])
569
570 self.gen.seed(b'rachel', version=1) # hash('rachel') == -9091735575445484789
571 self.assertEqual([self.gen.random().hex() for i in range(4)],
572 ['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3',
573 '0x1.3052b9c072678p-2', '0x1.578f332106574p-3'])
574
575 self.gen.seed(b'', version=1) # hash('') == 0
576 self.assertEqual([self.gen.random().hex() for i in range(4)],
577 ['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1',
578 '0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2'])
579
580 b = b'\x00\x20\x40\x60\x80\xA0\xC0\xE0\xF0'
581 self.gen.seed(b, version=1) # hash(b) == 5015594239749365497
582 self.assertEqual([self.gen.random().hex() for i in range(4)],
583 ['0x1.52c2fde444d23p-1', '0x1.875174f0daea4p-2',
584 '0x1.9e9b2c50e5cd2p-1', '0x1.fa57768bd321cp-2'])
585
Raymond Hettinger58335872004-07-09 14:26:18 +0000586 def test_setstate_first_arg(self):
587 self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
588
589 def test_setstate_middle_arg(self):
bladebryan9616a822017-04-21 23:10:46 -0700590 start_state = self.gen.getstate()
Raymond Hettinger58335872004-07-09 14:26:18 +0000591 # Wrong type, s/b tuple
592 self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
593 # Wrong length, s/b 625
594 self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
595 # Wrong type, s/b tuple of 625 ints
596 self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
597 # Last element s/b an int also
598 self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
Serhiy Storchaka178f0b62015-07-24 09:02:53 +0300599 # Last element s/b between 0 and 624
600 with self.assertRaises((ValueError, OverflowError)):
601 self.gen.setstate((2, (1,)*624+(625,), None))
602 with self.assertRaises((ValueError, OverflowError)):
603 self.gen.setstate((2, (1,)*624+(-1,), None))
bladebryan9616a822017-04-21 23:10:46 -0700604 # Failed calls to setstate() should not have changed the state.
605 bits100 = self.gen.getrandbits(100)
606 self.gen.setstate(start_state)
607 self.assertEqual(self.gen.getrandbits(100), bits100)
Raymond Hettinger58335872004-07-09 14:26:18 +0000608
R David Murraye3e1c172013-04-02 12:47:23 -0400609 # Little trick to make "tuple(x % (2**32) for x in internalstate)"
610 # raise ValueError. I cannot think of a simple way to achieve this, so
611 # I am opting for using a generator as the middle argument of setstate
612 # which attempts to cast a NaN to integer.
613 state_values = self.gen.getstate()[1]
614 state_values = list(state_values)
615 state_values[-1] = float('nan')
616 state = (int(x) for x in state_values)
617 self.assertRaises(TypeError, self.gen.setstate, (2, state, None))
618
Raymond Hettinger40f62172002-12-29 23:03:38 +0000619 def test_referenceImplementation(self):
620 # Compare the python implementation with results from the original
621 # code. Create 2000 53-bit precision random floats. Compare only
622 # the last ten entries to show that the independent implementations
623 # are tracking. Here is the main() function needed to create the
624 # list of expected random numbers:
625 # void main(void){
626 # int i;
627 # unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
628 # init_by_array(init, length);
629 # for (i=0; i<2000; i++) {
630 # printf("%.15f ", genrand_res53());
631 # if (i%5==4) printf("\n");
632 # }
633 # }
634 expected = [0.45839803073713259,
635 0.86057815201978782,
636 0.92848331726782152,
637 0.35932681119782461,
638 0.081823493762449573,
639 0.14332226470169329,
640 0.084297823823520024,
641 0.53814864671831453,
642 0.089215024911993401,
643 0.78486196105372907]
644
Guido van Rossume2a383d2007-01-15 16:59:06 +0000645 self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
Raymond Hettinger40f62172002-12-29 23:03:38 +0000646 actual = self.randomlist(2000)[-10:]
647 for a, e in zip(actual, expected):
648 self.assertAlmostEqual(a,e,places=14)
649
650 def test_strong_reference_implementation(self):
651 # Like test_referenceImplementation, but checks for exact bit-level
652 # equality. This should pass on any box where C double contains
653 # at least 53 bits of precision (the underlying algorithm suffers
654 # no rounding errors -- all results are exact).
655 from math import ldexp
656
Guido van Rossume2a383d2007-01-15 16:59:06 +0000657 expected = [0x0eab3258d2231f,
658 0x1b89db315277a5,
659 0x1db622a5518016,
660 0x0b7f9af0d575bf,
661 0x029e4c4db82240,
662 0x04961892f5d673,
663 0x02b291598e4589,
664 0x11388382c15694,
665 0x02dad977c9e1fe,
666 0x191d96d4d334c6]
667 self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
Raymond Hettinger40f62172002-12-29 23:03:38 +0000668 actual = self.randomlist(2000)[-10:]
669 for a, e in zip(actual, expected):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000670 self.assertEqual(int(ldexp(a, 53)), e)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000671
672 def test_long_seed(self):
673 # This is most interesting to run in debug mode, just to make sure
674 # nothing blows up. Under the covers, a dynamically resized array
675 # is allocated, consuming space proportional to the number of bits
676 # in the seed. Unfortunately, that's a quadratic-time algorithm,
677 # so don't make this horribly big.
Guido van Rossume2a383d2007-01-15 16:59:06 +0000678 seed = (1 << (10000 * 8)) - 1 # about 10K bytes
Raymond Hettinger40f62172002-12-29 23:03:38 +0000679 self.gen.seed(seed)
680
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000681 def test_53_bits_per_float(self):
682 # This should pass whenever a C double has 53 bit precision.
683 span = 2 ** 53
684 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000685 for i in range(100):
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000686 cum |= int(self.gen.random() * span)
687 self.assertEqual(cum, span-1)
688
689 def test_bigrand(self):
690 # The randrange routine should build-up the required number of bits
691 # in stages so that all bit positions are active.
692 span = 2 ** 500
693 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000694 for i in range(100):
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000695 r = self.gen.randrange(span)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000696 self.assertTrue(0 <= r < span)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000697 cum |= r
698 self.assertEqual(cum, span-1)
699
700 def test_bigrand_ranges(self):
701 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
Zachary Warea6edea52013-11-26 14:50:10 -0600702 start = self.gen.randrange(2 ** (i-2))
703 stop = self.gen.randrange(2 ** i)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000704 if stop <= start:
Zachary Warea6edea52013-11-26 14:50:10 -0600705 continue
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000706 self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000707
708 def test_rangelimits(self):
709 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
Raymond Hettingera690a992003-11-16 16:17:49 +0000710 self.assertEqual(set(range(start,stop)),
Guido van Rossum805365e2007-05-07 22:24:25 +0000711 set([self.gen.randrange(start,stop) for i in range(100)]))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000712
Antoine Pitrou75a33782020-04-17 19:32:14 +0200713 def test_getrandbits(self):
714 super().test_getrandbits()
715
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000716 # Verify cross-platform repeatability
717 self.gen.seed(1234567)
718 self.assertEqual(self.gen.getrandbits(100),
Guido van Rossume2a383d2007-01-15 16:59:06 +0000719 97904845777343510404718956115)
Raymond Hettinger58335872004-07-09 14:26:18 +0000720
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200721 def test_randrange_uses_getrandbits(self):
722 # Verify use of getrandbits by randrange
723 # Use same seed as in the cross-platform repeatability test
Antoine Pitrou75a33782020-04-17 19:32:14 +0200724 # in test_getrandbits above.
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200725 self.gen.seed(1234567)
726 # If randrange uses getrandbits, it should pick getrandbits(100)
727 # when called with a 100-bits stop argument.
728 self.assertEqual(self.gen.randrange(2**99),
729 97904845777343510404718956115)
730
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000731 def test_randbelow_logic(self, _log=log, int=int):
732 # check bitcount transition points: 2**i and 2**(i+1)-1
733 # show that: k = int(1.001 + _log(n, 2))
734 # is equal to or one greater than the number of bits in n
Guido van Rossum805365e2007-05-07 22:24:25 +0000735 for i in range(1, 1000):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000736 n = 1 << i # check an exact power of two
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000737 numbits = i+1
738 k = int(1.00001 + _log(n, 2))
739 self.assertEqual(k, numbits)
Guido van Rossume61fd5b2007-07-11 12:20:59 +0000740 self.assertEqual(n, 2**(k-1))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000741
742 n += n - 1 # check 1 below the next power of two
743 k = int(1.00001 + _log(n, 2))
Benjamin Peterson577473f2010-01-19 00:09:57 +0000744 self.assertIn(k, [numbits, numbits+1])
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000745 self.assertTrue(2**k > n > 2**(k-2))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000746
747 n -= n >> 15 # check a little farther below the next power of two
748 k = int(1.00001 + _log(n, 2))
749 self.assertEqual(k, numbits) # note the stronger assertion
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000750 self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000751
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200752 def test_randbelow_without_getrandbits(self):
R David Murraye3e1c172013-04-02 12:47:23 -0400753 # Random._randbelow() can only use random() when the built-in one
754 # has been overridden but no new getrandbits() method was supplied.
R David Murraye3e1c172013-04-02 12:47:23 -0400755 maxsize = 1<<random.BPF
756 with warnings.catch_warnings():
757 warnings.simplefilter("ignore", UserWarning)
758 # Population range too large (n >= maxsize)
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200759 self.gen._randbelow_without_getrandbits(
760 maxsize+1, maxsize=maxsize
761 )
762 self.gen._randbelow_without_getrandbits(5640, maxsize=maxsize)
Raymond Hettinger4168f1e2020-05-01 10:34:19 -0700763 # issue 33203: test that _randbelow returns zero on
Wolfgang Maier091e95e2018-04-05 17:19:44 +0200764 # n == 0 also in its getrandbits-independent branch.
Raymond Hettinger4168f1e2020-05-01 10:34:19 -0700765 x = self.gen._randbelow_without_getrandbits(0, maxsize=maxsize)
766 self.assertEqual(x, 0)
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200767
R David Murraye3e1c172013-04-02 12:47:23 -0400768 # This might be going too far to test a single line, but because of our
769 # noble aim of achieving 100% test coverage we need to write a case in
770 # which the following line in Random._randbelow() gets executed:
771 #
772 # rem = maxsize % n
773 # limit = (maxsize - rem) / maxsize
774 # r = random()
775 # while r >= limit:
776 # r = random() # <== *This line* <==<
777 #
778 # Therefore, to guarantee that the while loop is executed at least
779 # once, we need to mock random() so that it returns a number greater
780 # than 'limit' the first time it gets called.
781
782 n = 42
783 epsilon = 0.01
784 limit = (maxsize - (maxsize % n)) / maxsize
Wolfgang Maierba3a87a2018-04-17 17:16:17 +0200785 with unittest.mock.patch.object(random.Random, 'random') as random_mock:
786 random_mock.side_effect = [limit + epsilon, limit - epsilon]
787 self.gen._randbelow_without_getrandbits(n, maxsize=maxsize)
788 self.assertEqual(random_mock.call_count, 2)
R David Murraye3e1c172013-04-02 12:47:23 -0400789
Thomas Wouters902d6eb2007-01-09 23:18:33 +0000790 def test_randrange_bug_1590891(self):
791 start = 1000000000000
792 stop = -100000000000000000000
793 step = -200
794 x = self.gen.randrange(start, stop, step)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000795 self.assertTrue(stop < x <= start)
Thomas Wouters902d6eb2007-01-09 23:18:33 +0000796 self.assertEqual((x+stop)%step, 0)
797
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700798 def test_choices_algorithms(self):
Raymond Hettinger24e42392016-11-13 00:42:56 -0500799 # The various ways of specifying weights should produce the same results
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700800 choices = self.gen.choices
Raymond Hettinger6023d332016-11-21 15:32:08 -0800801 n = 104729
Raymond Hettinger30d00e52016-10-29 16:55:36 -0700802
803 self.gen.seed(8675309)
804 a = self.gen.choices(range(n), k=10000)
805
806 self.gen.seed(8675309)
807 b = self.gen.choices(range(n), [1]*n, k=10000)
808 self.assertEqual(a, b)
809
810 self.gen.seed(8675309)
811 c = self.gen.choices(range(n), cum_weights=range(1, n+1), k=10000)
812 self.assertEqual(a, c)
813
penguindustin96466302019-05-06 14:57:17 -0400814 # American Roulette
Raymond Hettinger77d574d2016-10-29 17:42:36 -0700815 population = ['Red', 'Black', 'Green']
816 weights = [18, 18, 2]
817 cum_weights = [18, 36, 38]
818 expanded_population = ['Red'] * 18 + ['Black'] * 18 + ['Green'] * 2
819
820 self.gen.seed(9035768)
821 a = self.gen.choices(expanded_population, k=10000)
822
823 self.gen.seed(9035768)
824 b = self.gen.choices(population, weights, k=10000)
825 self.assertEqual(a, b)
826
827 self.gen.seed(9035768)
828 c = self.gen.choices(population, cum_weights=cum_weights, k=10000)
829 self.assertEqual(a, c)
830
Victor Stinner9f5fe792020-04-17 19:05:35 +0200831 def test_randbytes(self):
832 super().test_randbytes()
833
834 # Mersenne Twister randbytes() is deterministic
835 # and does not depend on the endian and bitness.
836 seed = 8675309
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300837 expected = b'3\xa8\xf9f\xf4\xa4\xd06\x19\x8f\x9f\x82\x02oe\xf0'
Victor Stinner9f5fe792020-04-17 19:05:35 +0200838
839 self.gen.seed(seed)
840 self.assertEqual(self.gen.randbytes(16), expected)
841
842 # randbytes(0) must not consume any entropy
843 self.gen.seed(seed)
844 self.assertEqual(self.gen.randbytes(0), b'')
845 self.assertEqual(self.gen.randbytes(16), expected)
846
847 # Four randbytes(4) calls give the same output than randbytes(16)
848 self.gen.seed(seed)
849 self.assertEqual(b''.join([self.gen.randbytes(4) for _ in range(4)]),
850 expected)
851
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300852 # Each randbytes(1), randbytes(2) or randbytes(3) call consumes
853 # 4 bytes of entropy
Victor Stinner9f5fe792020-04-17 19:05:35 +0200854 self.gen.seed(seed)
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300855 expected1 = expected[3::4]
856 self.assertEqual(b''.join(self.gen.randbytes(1) for _ in range(4)),
857 expected1)
858
859 self.gen.seed(seed)
860 expected2 = b''.join(expected[i + 2: i + 4]
Victor Stinner9f5fe792020-04-17 19:05:35 +0200861 for i in range(0, len(expected), 4))
862 self.assertEqual(b''.join(self.gen.randbytes(2) for _ in range(4)),
863 expected2)
864
865 self.gen.seed(seed)
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300866 expected3 = b''.join(expected[i + 1: i + 4]
Victor Stinner9f5fe792020-04-17 19:05:35 +0200867 for i in range(0, len(expected), 4))
868 self.assertEqual(b''.join(self.gen.randbytes(3) for _ in range(4)),
869 expected3)
870
Serhiy Storchaka223221b2020-04-17 23:51:28 +0300871 def test_randbytes_getrandbits(self):
872 # There is a simple relation between randbytes() and getrandbits()
873 seed = 2849427419
874 gen2 = random.Random()
875 self.gen.seed(seed)
876 gen2.seed(seed)
877 for n in range(9):
878 self.assertEqual(self.gen.randbytes(n),
879 gen2.getrandbits(n * 8).to_bytes(n, 'little'))
880
Victor Stinner9f5fe792020-04-17 19:05:35 +0200881
Raymond Hettinger2d0c2562009-02-19 09:53:18 +0000882def gamma(z, sqrt2pi=(2.0*pi)**0.5):
883 # Reflection to right half of complex plane
884 if z < 0.5:
885 return pi / sin(pi*z) / gamma(1.0-z)
886 # Lanczos approximation with g=7
887 az = z + (7.0 - 0.5)
888 return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([
889 0.9999999999995183,
890 676.5203681218835 / z,
891 -1259.139216722289 / (z+1.0),
892 771.3234287757674 / (z+2.0),
893 -176.6150291498386 / (z+3.0),
894 12.50734324009056 / (z+4.0),
895 -0.1385710331296526 / (z+5.0),
896 0.9934937113930748e-05 / (z+6.0),
897 0.1659470187408462e-06 / (z+7.0),
898 ])
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000899
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000900class TestDistributions(unittest.TestCase):
901 def test_zeroinputs(self):
902 # Verify that distributions can handle a series of zero inputs'
903 g = random.Random()
Guido van Rossum805365e2007-05-07 22:24:25 +0000904 x = [g.random() for i in range(50)] + [0.0]*5
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000905 g.random = x[:].pop; g.uniform(1,10)
906 g.random = x[:].pop; g.paretovariate(1.0)
907 g.random = x[:].pop; g.expovariate(1.0)
908 g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200909 g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000910 g.random = x[:].pop; g.normalvariate(0.0, 1.0)
911 g.random = x[:].pop; g.gauss(0.0, 1.0)
912 g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
913 g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
914 g.random = x[:].pop; g.gammavariate(0.01, 1.0)
915 g.random = x[:].pop; g.gammavariate(1.0, 1.0)
916 g.random = x[:].pop; g.gammavariate(200.0, 1.0)
917 g.random = x[:].pop; g.betavariate(3.0, 3.0)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000918 g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000919
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000920 def test_avg_std(self):
921 # Use integration to test distribution average and standard deviation.
922 # Only works for distributions which do not consume variates in pairs
923 g = random.Random()
924 N = 5000
Guido van Rossum805365e2007-05-07 22:24:25 +0000925 x = [i/float(N) for i in range(1,N)]
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000926 for variate, args, mu, sigmasqrd in [
927 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
Christian Heimesfe337bf2008-03-23 21:54:12 +0000928 (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000929 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200930 (g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000931 (g.paretovariate, (5.0,), 5.0/(5.0-1),
932 5.0/((5.0-1)**2*(5.0-2))),
933 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
934 gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
935 g.random = x[:].pop
936 y = []
Guido van Rossum805365e2007-05-07 22:24:25 +0000937 for i in range(len(x)):
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000938 try:
939 y.append(variate(*args))
940 except IndexError:
941 pass
942 s1 = s2 = 0
943 for e in y:
944 s1 += e
945 s2 += (e - mu) ** 2
946 N = len(y)
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200947 self.assertAlmostEqual(s1/N, mu, places=2,
948 msg='%s%r' % (variate.__name__, args))
949 self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
950 msg='%s%r' % (variate.__name__, args))
951
952 def test_constant(self):
953 g = random.Random()
954 N = 100
955 for variate, args, expected in [
956 (g.uniform, (10.0, 10.0), 10.0),
957 (g.triangular, (10.0, 10.0), 10.0),
Raymond Hettinger978c6ab2014-05-25 17:25:27 -0700958 (g.triangular, (10.0, 10.0, 10.0), 10.0),
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200959 (g.expovariate, (float('inf'),), 0.0),
960 (g.vonmisesvariate, (3.0, float('inf')), 3.0),
961 (g.gauss, (10.0, 0.0), 10.0),
962 (g.lognormvariate, (0.0, 0.0), 1.0),
963 (g.lognormvariate, (-float('inf'), 0.0), 0.0),
964 (g.normalvariate, (10.0, 0.0), 10.0),
965 (g.paretovariate, (float('inf'),), 1.0),
966 (g.weibullvariate, (10.0, float('inf')), 10.0),
967 (g.weibullvariate, (0.0, 10.0), 0.0),
968 ]:
969 for i in range(N):
970 self.assertEqual(variate(*args), expected)
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000971
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000972 def test_von_mises_range(self):
973 # Issue 17149: von mises variates were not consistently in the
974 # range [0, 2*PI].
975 g = random.Random()
976 N = 100
977 for mu in 0.0, 0.1, 3.1, 6.2:
978 for kappa in 0.0, 2.3, 500.0:
979 for _ in range(N):
980 sample = g.vonmisesvariate(mu, kappa)
981 self.assertTrue(
982 0 <= sample <= random.TWOPI,
983 msg=("vonmisesvariate({}, {}) produced a result {} out"
984 " of range [0, 2*pi]").format(mu, kappa, sample))
985
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200986 def test_von_mises_large_kappa(self):
987 # Issue #17141: vonmisesvariate() was hang for large kappas
988 random.vonmisesvariate(0, 1e15)
989 random.vonmisesvariate(0, 1e100)
990
R David Murraye3e1c172013-04-02 12:47:23 -0400991 def test_gammavariate_errors(self):
992 # Both alpha and beta must be > 0.0
993 self.assertRaises(ValueError, random.gammavariate, -1, 3)
994 self.assertRaises(ValueError, random.gammavariate, 0, 2)
995 self.assertRaises(ValueError, random.gammavariate, 2, 0)
996 self.assertRaises(ValueError, random.gammavariate, 1, -3)
997
leodema63d15222018-12-24 07:54:25 +0100998 # There are three different possibilities in the current implementation
999 # of random.gammavariate(), depending on the value of 'alpha'. What we
1000 # are going to do here is to fix the values returned by random() to
1001 # generate test cases that provide 100% line coverage of the method.
R David Murraye3e1c172013-04-02 12:47:23 -04001002 @unittest.mock.patch('random.Random.random')
leodema63d15222018-12-24 07:54:25 +01001003 def test_gammavariate_alpha_greater_one(self, random_mock):
R David Murraye3e1c172013-04-02 12:47:23 -04001004
leodema63d15222018-12-24 07:54:25 +01001005 # #1: alpha > 1.0.
1006 # We want the first random number to be outside the
R David Murraye3e1c172013-04-02 12:47:23 -04001007 # [1e-7, .9999999] range, so that the continue statement executes
1008 # once. The values of u1 and u2 will be 0.5 and 0.3, respectively.
1009 random_mock.side_effect = [1e-8, 0.5, 0.3]
1010 returned_value = random.gammavariate(1.1, 2.3)
1011 self.assertAlmostEqual(returned_value, 2.53)
1012
leodema63d15222018-12-24 07:54:25 +01001013 @unittest.mock.patch('random.Random.random')
1014 def test_gammavariate_alpha_equal_one(self, random_mock):
R David Murraye3e1c172013-04-02 12:47:23 -04001015
leodema63d15222018-12-24 07:54:25 +01001016 # #2.a: alpha == 1.
1017 # The execution body of the while loop executes once.
1018 # Then random.random() returns 0.45,
1019 # which causes while to stop looping and the algorithm to terminate.
1020 random_mock.side_effect = [0.45]
1021 returned_value = random.gammavariate(1.0, 3.14)
1022 self.assertAlmostEqual(returned_value, 1.877208182372648)
1023
1024 @unittest.mock.patch('random.Random.random')
1025 def test_gammavariate_alpha_equal_one_equals_expovariate(self, random_mock):
1026
1027 # #2.b: alpha == 1.
1028 # It must be equivalent of calling expovariate(1.0 / beta).
1029 beta = 3.14
1030 random_mock.side_effect = [1e-8, 1e-8]
1031 gammavariate_returned_value = random.gammavariate(1.0, beta)
1032 expovariate_returned_value = random.expovariate(1.0 / beta)
1033 self.assertAlmostEqual(gammavariate_returned_value, expovariate_returned_value)
1034
1035 @unittest.mock.patch('random.Random.random')
1036 def test_gammavariate_alpha_between_zero_and_one(self, random_mock):
1037
1038 # #3: 0 < alpha < 1.
1039 # This is the most complex region of code to cover,
R David Murraye3e1c172013-04-02 12:47:23 -04001040 # as there are multiple if-else statements. Let's take a look at the
1041 # source code, and determine the values that we need accordingly:
1042 #
1043 # while 1:
1044 # u = random()
1045 # b = (_e + alpha)/_e
1046 # p = b*u
1047 # if p <= 1.0: # <=== (A)
1048 # x = p ** (1.0/alpha)
1049 # else: # <=== (B)
1050 # x = -_log((b-p)/alpha)
1051 # u1 = random()
1052 # if p > 1.0: # <=== (C)
1053 # if u1 <= x ** (alpha - 1.0): # <=== (D)
1054 # break
1055 # elif u1 <= _exp(-x): # <=== (E)
1056 # break
1057 # return x * beta
1058 #
1059 # First, we want (A) to be True. For that we need that:
1060 # b*random() <= 1.0
1061 # r1 = random() <= 1.0 / b
1062 #
1063 # We now get to the second if-else branch, and here, since p <= 1.0,
1064 # (C) is False and we take the elif branch, (E). For it to be True,
1065 # so that the break is executed, we need that:
1066 # r2 = random() <= _exp(-x)
1067 # r2 <= _exp(-(p ** (1.0/alpha)))
1068 # r2 <= _exp(-((b*r1) ** (1.0/alpha)))
1069
1070 _e = random._e
1071 _exp = random._exp
1072 _log = random._log
1073 alpha = 0.35
1074 beta = 1.45
1075 b = (_e + alpha)/_e
1076 epsilon = 0.01
1077
1078 r1 = 0.8859296441566 # 1.0 / b
1079 r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha)))
1080
1081 # These four "random" values result in the following trace:
1082 # (A) True, (E) False --> [next iteration of while]
1083 # (A) True, (E) True --> [while loop breaks]
1084 random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
1085 returned_value = random.gammavariate(alpha, beta)
1086 self.assertAlmostEqual(returned_value, 1.4499999999997544)
1087
1088 # Let's now make (A) be False. If this is the case, when we get to the
1089 # second if-else 'p' is greater than 1, so (C) evaluates to True. We
1090 # now encounter a second if statement, (D), which in order to execute
1091 # must satisfy the following condition:
1092 # r2 <= x ** (alpha - 1.0)
1093 # r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0)
1094 # r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0)
1095 r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False
1096 r2 = 0.9445400408898141
1097
1098 # And these four values result in the following trace:
1099 # (B) and (C) True, (D) False --> [next iteration of while]
1100 # (B) and (C) True, (D) True [while loop breaks]
1101 random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
1102 returned_value = random.gammavariate(alpha, beta)
1103 self.assertAlmostEqual(returned_value, 1.5830349561760781)
1104
1105 @unittest.mock.patch('random.Random.gammavariate')
1106 def test_betavariate_return_zero(self, gammavariate_mock):
1107 # betavariate() returns zero when the Gamma distribution
1108 # that it uses internally returns this same value.
1109 gammavariate_mock.return_value = 0.0
1110 self.assertEqual(0.0, random.betavariate(2.71828, 3.14159))
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +02001111
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001112
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001113class TestRandomSubclassing(unittest.TestCase):
1114 def test_random_subclass_with_kwargs(self):
1115 # SF bug #1486663 -- this used to erroneously raise a TypeError
1116 class Subclass(random.Random):
1117 def __init__(self, newarg=None):
1118 random.Random.__init__(self)
1119 Subclass(newarg=1)
1120
1121 def test_subclasses_overriding_methods(self):
1122 # Subclasses with an overridden random, but only the original
1123 # getrandbits method should not rely on getrandbits in for randrange,
1124 # but should use a getrandbits-independent implementation instead.
1125
1126 # subclass providing its own random **and** getrandbits methods
1127 # like random.SystemRandom does => keep relying on getrandbits for
1128 # randrange
1129 class SubClass1(random.Random):
1130 def random(self):
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001131 called.add('SubClass1.random')
1132 return random.Random.random(self)
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001133
1134 def getrandbits(self, n):
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001135 called.add('SubClass1.getrandbits')
1136 return random.Random.getrandbits(self, n)
1137 called = set()
1138 SubClass1().randrange(42)
1139 self.assertEqual(called, {'SubClass1.getrandbits'})
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001140
1141 # subclass providing only random => can only use random for randrange
1142 class SubClass2(random.Random):
1143 def random(self):
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001144 called.add('SubClass2.random')
1145 return random.Random.random(self)
1146 called = set()
1147 SubClass2().randrange(42)
1148 self.assertEqual(called, {'SubClass2.random'})
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001149
1150 # subclass defining getrandbits to complement its inherited random
1151 # => can now rely on getrandbits for randrange again
1152 class SubClass3(SubClass2):
1153 def getrandbits(self, n):
Serhiy Storchakaec1622d2018-05-08 15:45:15 +03001154 called.add('SubClass3.getrandbits')
1155 return random.Random.getrandbits(self, n)
1156 called = set()
1157 SubClass3().randrange(42)
1158 self.assertEqual(called, {'SubClass3.getrandbits'})
1159
1160 # subclass providing only random and inherited getrandbits
1161 # => random takes precedence
1162 class SubClass4(SubClass3):
1163 def random(self):
1164 called.add('SubClass4.random')
1165 return random.Random.random(self)
1166 called = set()
1167 SubClass4().randrange(42)
1168 self.assertEqual(called, {'SubClass4.random'})
1169
1170 # Following subclasses don't define random or getrandbits directly,
1171 # but inherit them from classes which are not subclasses of Random
1172 class Mixin1:
1173 def random(self):
1174 called.add('Mixin1.random')
1175 return random.Random.random(self)
1176 class Mixin2:
1177 def getrandbits(self, n):
1178 called.add('Mixin2.getrandbits')
1179 return random.Random.getrandbits(self, n)
1180
1181 class SubClass5(Mixin1, random.Random):
1182 pass
1183 called = set()
1184 SubClass5().randrange(42)
1185 self.assertEqual(called, {'Mixin1.random'})
1186
1187 class SubClass6(Mixin2, random.Random):
1188 pass
1189 called = set()
1190 SubClass6().randrange(42)
1191 self.assertEqual(called, {'Mixin2.getrandbits'})
1192
1193 class SubClass7(Mixin1, Mixin2, random.Random):
1194 pass
1195 called = set()
1196 SubClass7().randrange(42)
1197 self.assertEqual(called, {'Mixin1.random'})
1198
1199 class SubClass8(Mixin2, Mixin1, random.Random):
1200 pass
1201 called = set()
1202 SubClass8().randrange(42)
1203 self.assertEqual(called, {'Mixin2.getrandbits'})
1204
Wolfgang Maierba3a87a2018-04-17 17:16:17 +02001205
Raymond Hettinger40f62172002-12-29 23:03:38 +00001206class TestModule(unittest.TestCase):
1207 def testMagicConstants(self):
1208 self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
1209 self.assertAlmostEqual(random.TWOPI, 6.28318530718)
1210 self.assertAlmostEqual(random.LOG4, 1.38629436111989)
1211 self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
1212
1213 def test__all__(self):
1214 # tests validity but not completeness of the __all__ list
Benjamin Petersonc9c0f202009-06-30 23:06:06 +00001215 self.assertTrue(set(random.__all__) <= set(dir(random)))
Raymond Hettinger40f62172002-12-29 23:03:38 +00001216
Antoine Pitrou346cbd32017-05-27 17:50:54 +02001217 @unittest.skipUnless(hasattr(os, "fork"), "fork() required")
1218 def test_after_fork(self):
1219 # Test the global Random instance gets reseeded in child
1220 r, w = os.pipe()
Victor Stinnerda5e9302017-08-09 17:59:05 +02001221 pid = os.fork()
1222 if pid == 0:
1223 # child process
Antoine Pitrou346cbd32017-05-27 17:50:54 +02001224 try:
1225 val = random.getrandbits(128)
1226 with open(w, "w") as f:
1227 f.write(str(val))
1228 finally:
1229 os._exit(0)
1230 else:
Victor Stinnerda5e9302017-08-09 17:59:05 +02001231 # parent process
Antoine Pitrou346cbd32017-05-27 17:50:54 +02001232 os.close(w)
1233 val = random.getrandbits(128)
1234 with open(r, "r") as f:
1235 child_val = eval(f.read())
1236 self.assertNotEqual(val, child_val)
1237
Victor Stinner278c1e12020-03-31 20:08:12 +02001238 support.wait_process(pid, exitcode=0)
Victor Stinnerda5e9302017-08-09 17:59:05 +02001239
Thomas Woutersb2137042007-02-01 18:02:27 +00001240
Raymond Hettinger40f62172002-12-29 23:03:38 +00001241if __name__ == "__main__":
Ezio Melotti3e4a98b2013-04-19 05:45:27 +03001242 unittest.main()