blob: 2c30b12f220de0f47f168ecf7b0dca67049b5ec6 [file] [log] [blame]
Guido van Rossum4b48d6b2002-08-02 20:23:56 +00001# -*- coding: Latin-1 -*-
2
Guido van Rossum0a824382002-08-02 16:44:32 +00003"""Heap queue algorithm (a.k.a. priority queue).
4
5Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
6all k, counting elements from 0. For the sake of comparison,
7non-existing elements are considered to be infinite. The interesting
8property of a heap is that a[0] is always its smallest element.
9
10Usage:
11
12heap = [] # creates an empty heap
13heappush(heap, item) # pushes a new item on the heap
14item = heappop(heap) # pops the smallest item from the heap
15item = heap[0] # smallest item on the heap without popping it
Tim Petersaa7d2432002-08-03 02:11:26 +000016heapify(x) # transforms list into a heap, in-place, in linear time
Tim Peters0cd53a62002-08-03 10:10:10 +000017item = heapreplace(heap, item) # pops and returns smallest item, and adds
18 # new item; the heap size is unchanged
Guido van Rossum0a824382002-08-02 16:44:32 +000019
20Our API differs from textbook heap algorithms as follows:
21
22- We use 0-based indexing. This makes the relationship between the
23 index for a node and the indexes for its children slightly less
24 obvious, but is more suitable since Python uses 0-based indexing.
25
26- Our heappop() method returns the smallest item, not the largest.
27
28These two make it possible to view the heap as a regular Python list
29without surprises: heap[0] is the smallest item, and heap.sort()
30maintains the heap invariant!
31"""
32
Guido van Rossumfbb29922002-08-02 22:01:37 +000033# Original code by Kevin O'Connor, augmented by Tim Peters
Guido van Rossum37c3b272002-08-02 16:50:58 +000034
Guido van Rossum0a824382002-08-02 16:44:32 +000035__about__ = """Heap queues
36
37[explanation by François Pinard]
38
39Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
40all k, counting elements from 0. For the sake of comparison,
41non-existing elements are considered to be infinite. The interesting
42property of a heap is that a[0] is always its smallest element.
43
44The strange invariant above is meant to be an efficient memory
45representation for a tournament. The numbers below are `k', not a[k]:
46
47 0
48
49 1 2
50
51 3 4 5 6
52
53 7 8 9 10 11 12 13 14
54
55 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
56
57
58In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In
59an usual binary tournament we see in sports, each cell is the winner
60over the two cells it tops, and we can trace the winner down the tree
61to see all opponents s/he had. However, in many computer applications
62of such tournaments, we do not need to trace the history of a winner.
63To be more memory efficient, when a winner is promoted, we try to
64replace it by something else at a lower level, and the rule becomes
65that a cell and the two cells it tops contain three different items,
66but the top cell "wins" over the two topped cells.
67
68If this heap invariant is protected at all time, index 0 is clearly
69the overall winner. The simplest algorithmic way to remove it and
70find the "next" winner is to move some loser (let's say cell 30 in the
71diagram above) into the 0 position, and then percolate this new 0 down
72the tree, exchanging values, until the invariant is re-established.
73This is clearly logarithmic on the total number of items in the tree.
74By iterating over all items, you get an O(n ln n) sort.
75
76A nice feature of this sort is that you can efficiently insert new
77items while the sort is going on, provided that the inserted items are
78not "better" than the last 0'th element you extracted. This is
79especially useful in simulation contexts, where the tree holds all
80incoming events, and the "win" condition means the smallest scheduled
81time. When an event schedule other events for execution, they are
82scheduled into the future, so they can easily go into the heap. So, a
83heap is a good structure for implementing schedulers (this is what I
84used for my MIDI sequencer :-).
85
86Various structures for implementing schedulers have been extensively
87studied, and heaps are good for this, as they are reasonably speedy,
88the speed is almost constant, and the worst case is not much different
89than the average case. However, there are other representations which
90are more efficient overall, yet the worst cases might be terrible.
91
92Heaps are also very useful in big disk sorts. You most probably all
93know that a big sort implies producing "runs" (which are pre-sorted
94sequences, which size is usually related to the amount of CPU memory),
95followed by a merging passes for these runs, which merging is often
96very cleverly organised[1]. It is very important that the initial
97sort produces the longest runs possible. Tournaments are a good way
98to that. If, using all the memory available to hold a tournament, you
99replace and percolate items that happen to fit the current run, you'll
100produce runs which are twice the size of the memory for random input,
101and much better for input fuzzily ordered.
102
103Moreover, if you output the 0'th item on disk and get an input which
104may not fit in the current tournament (because the value "wins" over
105the last output value), it cannot fit in the heap, so the size of the
106heap decreases. The freed memory could be cleverly reused immediately
107for progressively building a second heap, which grows at exactly the
108same rate the first heap is melting. When the first heap completely
109vanishes, you switch heaps and start a new run. Clever and quite
110effective!
111
112In a word, heaps are useful memory structures to know. I use them in
113a few applications, and I think it is good to keep a `heap' module
114around. :-)
115
116--------------------
117[1] The disk balancing algorithms which are current, nowadays, are
118more annoying than clever, and this is a consequence of the seeking
119capabilities of the disks. On devices which cannot seek, like big
120tape drives, the story was quite different, and one had to be very
121clever to ensure (far in advance) that each tape movement will be the
122most effective possible (that is, will best participate at
123"progressing" the merge). Some tapes were even able to read
124backwards, and this was also used to avoid the rewinding time.
125Believe me, real good tape sorts were quite spectacular to watch!
126From all times, sorting has always been a Great Art! :-)
127"""
128
Raymond Hettingera853cc62002-10-30 06:15:53 +0000129__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace']
130
Guido van Rossum0a824382002-08-02 16:44:32 +0000131def heappush(heap, item):
132 """Push item onto heap, maintaining the heap invariant."""
Tim Peters657fe382002-08-03 09:56:52 +0000133 heap.append(item)
134 _siftdown(heap, 0, len(heap)-1)
Tim Peters28c25522002-08-02 21:48:06 +0000135
136def heappop(heap):
137 """Pop the smallest item off the heap, maintaining the heap invariant."""
138 lastelt = heap.pop() # raises appropriate IndexError if heap is empty
139 if heap:
140 returnitem = heap[0]
141 heap[0] = lastelt
Tim Peters657fe382002-08-03 09:56:52 +0000142 _siftup(heap, 0)
Tim Peters28c25522002-08-02 21:48:06 +0000143 else:
144 returnitem = lastelt
Guido van Rossum0a824382002-08-02 16:44:32 +0000145 return returnitem
146
Tim Peters0cd53a62002-08-03 10:10:10 +0000147def heapreplace(heap, item):
148 """Pop and return the current smallest value, and add the new item.
149
150 This is more efficient than heappop() followed by heappush(), and can be
151 more appropriate when using a fixed-size heap. Note that the value
152 returned may be larger than item! That constrains reasonable uses of
153 this routine.
154 """
Guido van Rossum3c8dd0c2002-08-07 18:58:11 +0000155 returnitem = heap[0] # raises appropriate IndexError if heap is empty
156 heap[0] = item
157 _siftup(heap, 0)
158 return returnitem
Tim Peters0cd53a62002-08-03 10:10:10 +0000159
Tim Petersaa7d2432002-08-03 02:11:26 +0000160def heapify(x):
161 """Transform list into a heap, in-place, in O(len(heap)) time."""
162 n = len(x)
Tim Peters28c25522002-08-02 21:48:06 +0000163 # Transform bottom-up. The largest index there's any point to looking at
164 # is the largest with a child index in-range, so must have 2*i + 1 < n,
165 # or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
166 # j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is
167 # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
168 for i in xrange(n//2 - 1, -1, -1):
Tim Peters657fe382002-08-03 09:56:52 +0000169 _siftup(x, i)
170
171# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
172# is the index of a leaf with a possibly out-of-order value. Restore the
173# heap invariant.
174def _siftdown(heap, startpos, pos):
175 newitem = heap[pos]
176 # Follow the path to the root, moving parents down until finding a place
177 # newitem fits.
178 while pos > startpos:
179 parentpos = (pos - 1) >> 1
180 parent = heap[parentpos]
181 if parent <= newitem:
182 break
183 heap[pos] = parent
184 pos = parentpos
185 heap[pos] = newitem
186
187# The child indices of heap index pos are already heaps, and we want to make
188# a heap at index pos too. We do this by bubbling the smaller child of
189# pos up (and so on with that child's children, etc) until hitting a leaf,
190# then using _siftdown to move the oddball originally at index pos into place.
191#
192# We *could* break out of the loop as soon as we find a pos where newitem <=
193# both its children, but turns out that's not a good idea, and despite that
194# many books write the algorithm that way. During a heap pop, the last array
195# element is sifted in, and that tends to be large, so that comparing it
196# against values starting from the root usually doesn't pay (= usually doesn't
197# get us out of the loop early). See Knuth, Volume 3, where this is
198# explained and quantified in an exercise.
199#
200# Cutting the # of comparisons is important, since these routines have no
201# way to extract "the priority" from an array element, so that intelligence
202# is likely to be hiding in custom __cmp__ methods, or in array elements
203# storing (priority, record) tuples. Comparisons are thus potentially
204# expensive.
205#
206# On random arrays of length 1000, making this change cut the number of
207# comparisons made by heapify() a little, and those made by exhaustive
208# heappop() a lot, in accord with theory. Here are typical results from 3
209# runs (3 just to demonstrate how small the variance is):
210#
Fred Drakef2928eb2002-11-13 14:38:17 +0000211# Compares needed by heapify Compares needed by 1000 heappops
212# -------------------------- --------------------------------
Tim Peters657fe382002-08-03 09:56:52 +0000213# 1837 cut to 1663 14996 cut to 8680
214# 1855 cut to 1659 14966 cut to 8678
215# 1847 cut to 1660 15024 cut to 8703
216#
217# Building the heap by using heappush() 1000 times instead required
218# 2198, 2148, and 2219 compares: heapify() is more efficient, when
219# you can use it.
220#
221# The total compares needed by list.sort() on the same lists were 8627,
222# 8627, and 8632 (this should be compared to the sum of heapify() and
Tim Peters5f7617b2002-08-11 18:28:09 +0000223# heappop() compares): list.sort() is (unsurprisingly!) more efficient
Tim Peters657fe382002-08-03 09:56:52 +0000224# for sorting.
225
226def _siftup(heap, pos):
227 endpos = len(heap)
228 startpos = pos
229 newitem = heap[pos]
230 # Bubble up the smaller child until hitting a leaf.
231 childpos = 2*pos + 1 # leftmost child position
232 while childpos < endpos:
233 # Set childpos to index of smaller child.
234 rightpos = childpos + 1
Tim Peters6681de22002-08-03 19:20:16 +0000235 if rightpos < endpos and heap[rightpos] <= heap[childpos]:
Tim Peters469cdad2002-08-08 20:19:19 +0000236 childpos = rightpos
Tim Peters657fe382002-08-03 09:56:52 +0000237 # Move the smaller child up.
238 heap[pos] = heap[childpos]
239 pos = childpos
240 childpos = 2*pos + 1
Walter Dörwaldf0dfc7a2003-10-20 14:01:56 +0000241 # The leaf at pos is empty now. Put newitem there, and bubble it up
Tim Peters657fe382002-08-03 09:56:52 +0000242 # to its final resting place (by sifting its parents down).
243 heap[pos] = newitem
244 _siftdown(heap, startpos, pos)
Tim Peters28c25522002-08-02 21:48:06 +0000245
Guido van Rossum0a824382002-08-02 16:44:32 +0000246if __name__ == "__main__":
247 # Simple sanity test
248 heap = []
249 data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
250 for item in data:
251 heappush(heap, item)
252 sort = []
253 while heap:
254 sort.append(heappop(heap))
255 print sort