blob: 51895c7789846b48c2661aead7a14b791a01d5f8 [file] [log] [blame]
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001/****************************************************************
2 *
3 * The author of this software is David M. Gay.
4 *
5 * Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
6 *
7 * Permission to use, copy, modify, and distribute this software for any
8 * purpose without fee is hereby granted, provided that this entire notice
9 * is included in all copies of any software which is or includes a copy
10 * or modification of this software and in all copies of the supporting
11 * documentation for such software.
12 *
13 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
14 * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
15 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
16 * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
17 *
18 ***************************************************************/
19
20/****************************************************************
21 * This is dtoa.c by David M. Gay, downloaded from
22 * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for
23 * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith.
Mark Dickinson7f0ea322009-04-17 16:06:28 +000024 *
25 * Please remember to check http://www.netlib.org/fp regularly (and especially
26 * before any Python release) for bugfixes and updates.
27 *
28 * The major modifications from Gay's original code are as follows:
Mark Dickinsonb08a53a2009-04-16 19:52:09 +000029 *
30 * 0. The original code has been specialized to Python's needs by removing
31 * many of the #ifdef'd sections. In particular, code to support VAX and
32 * IBM floating-point formats, hex NaNs, hex floats, locale-aware
33 * treatment of the decimal point, and setting of the inexact flag have
34 * been removed.
35 *
36 * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free.
37 *
38 * 2. The public functions strtod, dtoa and freedtoa all now have
39 * a _Py_dg_ prefix.
40 *
41 * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread
42 * PyMem_Malloc failures through the code. The functions
43 *
44 * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b
45 *
46 * of return type *Bigint all return NULL to indicate a malloc failure.
47 * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on
48 * failure. bigcomp now has return type int (it used to be void) and
49 * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL
50 * on failure. _Py_dg_strtod indicates failure due to malloc failure
51 * by returning -1.0, setting errno=ENOMEM and *se to s00.
52 *
53 * 4. The static variable dtoa_result has been removed. Callers of
54 * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free
55 * the memory allocated by _Py_dg_dtoa.
56 *
57 * 5. The code has been reformatted to better fit with Python's
58 * C style guide (PEP 7).
59 *
Mark Dickinson7f0ea322009-04-17 16:06:28 +000060 * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory
61 * that hasn't been MALLOC'ed, private_mem should only be used when k <=
62 * Kmax.
63 *
Mark Dickinson725bfd82009-05-03 20:33:40 +000064 * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with
65 * leading whitespace.
66 *
Mark Dickinsonb08a53a2009-04-16 19:52:09 +000067 ***************************************************************/
68
69/* Please send bug reports for the original dtoa.c code to David M. Gay (dmg
70 * at acm dot org, with " at " changed at "@" and " dot " changed to ".").
71 * Please report bugs for this modified version using the Python issue tracker
72 * (http://bugs.python.org). */
73
74/* On a machine with IEEE extended-precision registers, it is
75 * necessary to specify double-precision (53-bit) rounding precision
76 * before invoking strtod or dtoa. If the machine uses (the equivalent
77 * of) Intel 80x87 arithmetic, the call
78 * _control87(PC_53, MCW_PC);
79 * does this with many compilers. Whether this or another call is
80 * appropriate depends on the compiler; for this to work, it may be
81 * necessary to #include "float.h" or another system-dependent header
82 * file.
83 */
84
85/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
86 *
87 * This strtod returns a nearest machine number to the input decimal
88 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
89 * broken by the IEEE round-even rule. Otherwise ties are broken by
90 * biased rounding (add half and chop).
91 *
92 * Inspired loosely by William D. Clinger's paper "How to Read Floating
93 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
94 *
95 * Modifications:
96 *
97 * 1. We only require IEEE, IBM, or VAX double-precision
98 * arithmetic (not IEEE double-extended).
99 * 2. We get by with floating-point arithmetic in a case that
100 * Clinger missed -- when we're computing d * 10^n
101 * for a small integer d and the integer n is not too
102 * much larger than 22 (the maximum integer k for which
103 * we can represent 10^k exactly), we may be able to
104 * compute (d*10^k) * 10^(e-k) with just one roundoff.
105 * 3. Rather than a bit-at-a-time adjustment of the binary
106 * result in the hard case, we use floating-point
107 * arithmetic to determine the adjustment to within
108 * one bit; only in really hard cases do we need to
109 * compute a second residual.
110 * 4. Because of 3., we don't need a large table of powers of 10
111 * for ten-to-e (just some small tables, e.g. of 10^k
112 * for 0 <= k <= 22).
113 */
114
115/* Linking of Python's #defines to Gay's #defines starts here. */
116
117#include "Python.h"
118
119/* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile
120 the following code */
121#ifndef PY_NO_SHORT_FLOAT_REPR
122
123#include "float.h"
124
125#define MALLOC PyMem_Malloc
126#define FREE PyMem_Free
127
128/* This code should also work for ARM mixed-endian format on little-endian
129 machines, where doubles have byte order 45670123 (in increasing address
130 order, 0 being the least significant byte). */
131#ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754
132# define IEEE_8087
133#endif
134#if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \
135 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)
136# define IEEE_MC68k
137#endif
138#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
139#error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined."
140#endif
141
142/* The code below assumes that the endianness of integers matches the
143 endianness of the two 32-bit words of a double. Check this. */
144#if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \
145 defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754))
146#error "doubles and ints have incompatible endianness"
147#endif
148
149#if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754)
150#error "doubles and ints have incompatible endianness"
151#endif
152
153
154#if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T)
155typedef PY_UINT32_T ULong;
156typedef PY_INT32_T Long;
157#else
158#error "Failed to find an exact-width 32-bit integer type"
159#endif
160
161#if defined(HAVE_UINT64_T)
162#define ULLong PY_UINT64_T
163#else
164#undef ULLong
165#endif
166
167#undef DEBUG
168#ifdef Py_DEBUG
169#define DEBUG
170#endif
171
172/* End Python #define linking */
173
174#ifdef DEBUG
175#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
176#endif
177
178#ifndef PRIVATE_MEM
179#define PRIVATE_MEM 2304
180#endif
181#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
182static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
183
184#ifdef __cplusplus
185extern "C" {
186#endif
187
188typedef union { double d; ULong L[2]; } U;
189
190#ifdef IEEE_8087
191#define word0(x) (x)->L[1]
192#define word1(x) (x)->L[0]
193#else
194#define word0(x) (x)->L[0]
195#define word1(x) (x)->L[1]
196#endif
197#define dval(x) (x)->d
198
199#ifndef STRTOD_DIGLIM
200#define STRTOD_DIGLIM 40
201#endif
202
Mark Dickinson81612e82010-01-12 23:04:19 +0000203/* maximum permitted exponent value for strtod; exponents larger than
204 MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP
205 should fit into an int. */
206#ifndef MAX_ABS_EXP
207#define MAX_ABS_EXP 19999U
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000208#endif
209
210/* The following definition of Storeinc is appropriate for MIPS processors.
211 * An alternative that might be better on some machines is
212 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
213 */
214#if defined(IEEE_8087)
215#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
216 ((unsigned short *)a)[0] = (unsigned short)c, a++)
217#else
218#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
219 ((unsigned short *)a)[1] = (unsigned short)c, a++)
220#endif
221
222/* #define P DBL_MANT_DIG */
223/* Ten_pmax = floor(P*log(2)/log(5)) */
224/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
225/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
226/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
227
228#define Exp_shift 20
229#define Exp_shift1 20
230#define Exp_msk1 0x100000
231#define Exp_msk11 0x100000
232#define Exp_mask 0x7ff00000
233#define P 53
234#define Nbits 53
235#define Bias 1023
236#define Emax 1023
237#define Emin (-1022)
238#define Exp_1 0x3ff00000
239#define Exp_11 0x3ff00000
240#define Ebits 11
241#define Frac_mask 0xfffff
242#define Frac_mask1 0xfffff
243#define Ten_pmax 22
244#define Bletch 0x10
245#define Bndry_mask 0xfffff
246#define Bndry_mask1 0xfffff
247#define LSB 1
248#define Sign_bit 0x80000000
249#define Log2P 1
250#define Tiny0 0
251#define Tiny1 1
252#define Quick_max 14
253#define Int_max 14
254
255#ifndef Flt_Rounds
256#ifdef FLT_ROUNDS
257#define Flt_Rounds FLT_ROUNDS
258#else
259#define Flt_Rounds 1
260#endif
261#endif /*Flt_Rounds*/
262
263#define Rounding Flt_Rounds
264
265#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
266#define Big1 0xffffffff
267
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000268/* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */
269
270typedef struct BCinfo BCinfo;
271struct
272BCinfo {
Mark Dickinson853c3bb2010-01-14 15:37:49 +0000273 int dsign, e0, nd, nd0, scale;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000274};
275
276#define FFFFFFFF 0xffffffffUL
277
278#define Kmax 7
279
280/* struct Bigint is used to represent arbitrary-precision integers. These
281 integers are stored in sign-magnitude format, with the magnitude stored as
282 an array of base 2**32 digits. Bigints are always normalized: if x is a
283 Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero.
284
285 The Bigint fields are as follows:
286
287 - next is a header used by Balloc and Bfree to keep track of lists
288 of freed Bigints; it's also used for the linked list of
289 powers of 5 of the form 5**2**i used by pow5mult.
290 - k indicates which pool this Bigint was allocated from
291 - maxwds is the maximum number of words space was allocated for
292 (usually maxwds == 2**k)
293 - sign is 1 for negative Bigints, 0 for positive. The sign is unused
294 (ignored on inputs, set to 0 on outputs) in almost all operations
295 involving Bigints: a notable exception is the diff function, which
296 ignores signs on inputs but sets the sign of the output correctly.
297 - wds is the actual number of significant words
298 - x contains the vector of words (digits) for this Bigint, from least
299 significant (x[0]) to most significant (x[wds-1]).
300*/
301
302struct
303Bigint {
304 struct Bigint *next;
305 int k, maxwds, sign, wds;
306 ULong x[1];
307};
308
309typedef struct Bigint Bigint;
310
311/* Memory management: memory is allocated from, and returned to, Kmax+1 pools
312 of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds ==
313 1 << k. These pools are maintained as linked lists, with freelist[k]
314 pointing to the head of the list for pool k.
315
316 On allocation, if there's no free slot in the appropriate pool, MALLOC is
317 called to get more memory. This memory is not returned to the system until
318 Python quits. There's also a private memory pool that's allocated from
319 in preference to using MALLOC.
320
321 For Bigints with more than (1 << Kmax) digits (which implies at least 1233
322 decimal digits), memory is directly allocated using MALLOC, and freed using
323 FREE.
324
325 XXX: it would be easy to bypass this memory-management system and
326 translate each call to Balloc into a call to PyMem_Malloc, and each
327 Bfree to PyMem_Free. Investigate whether this has any significant
328 performance on impact. */
329
330static Bigint *freelist[Kmax+1];
331
332/* Allocate space for a Bigint with up to 1<<k digits */
333
334static Bigint *
335Balloc(int k)
336{
337 int x;
338 Bigint *rv;
339 unsigned int len;
340
341 if (k <= Kmax && (rv = freelist[k]))
342 freelist[k] = rv->next;
343 else {
344 x = 1 << k;
345 len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
346 /sizeof(double);
Mark Dickinson7f0ea322009-04-17 16:06:28 +0000347 if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000348 rv = (Bigint*)pmem_next;
349 pmem_next += len;
350 }
351 else {
352 rv = (Bigint*)MALLOC(len*sizeof(double));
353 if (rv == NULL)
354 return NULL;
355 }
356 rv->k = k;
357 rv->maxwds = x;
358 }
359 rv->sign = rv->wds = 0;
360 return rv;
361}
362
363/* Free a Bigint allocated with Balloc */
364
365static void
366Bfree(Bigint *v)
367{
368 if (v) {
369 if (v->k > Kmax)
370 FREE((void*)v);
371 else {
372 v->next = freelist[v->k];
373 freelist[v->k] = v;
374 }
375 }
376}
377
378#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
379 y->wds*sizeof(Long) + 2*sizeof(int))
380
381/* Multiply a Bigint b by m and add a. Either modifies b in place and returns
382 a pointer to the modified b, or Bfrees b and returns a pointer to a copy.
383 On failure, return NULL. In this case, b will have been already freed. */
384
385static Bigint *
386multadd(Bigint *b, int m, int a) /* multiply by m and add a */
387{
388 int i, wds;
389#ifdef ULLong
390 ULong *x;
391 ULLong carry, y;
392#else
393 ULong carry, *x, y;
394 ULong xi, z;
395#endif
396 Bigint *b1;
397
398 wds = b->wds;
399 x = b->x;
400 i = 0;
401 carry = a;
402 do {
403#ifdef ULLong
404 y = *x * (ULLong)m + carry;
405 carry = y >> 32;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +0000406 *x++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000407#else
408 xi = *x;
409 y = (xi & 0xffff) * m + carry;
410 z = (xi >> 16) * m + (y >> 16);
411 carry = z >> 16;
412 *x++ = (z << 16) + (y & 0xffff);
413#endif
414 }
415 while(++i < wds);
416 if (carry) {
417 if (wds >= b->maxwds) {
418 b1 = Balloc(b->k+1);
419 if (b1 == NULL){
420 Bfree(b);
421 return NULL;
422 }
423 Bcopy(b1, b);
424 Bfree(b);
425 b = b1;
426 }
427 b->x[wds++] = (ULong)carry;
428 b->wds = wds;
429 }
430 return b;
431}
432
433/* convert a string s containing nd decimal digits (possibly containing a
434 decimal separator at position nd0, which is ignored) to a Bigint. This
435 function carries on where the parsing code in _Py_dg_strtod leaves off: on
436 entry, y9 contains the result of converting the first 9 digits. Returns
437 NULL on failure. */
438
439static Bigint *
Mark Dickinson853c3bb2010-01-14 15:37:49 +0000440s2b(const char *s, int nd0, int nd, ULong y9)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000441{
442 Bigint *b;
443 int i, k;
444 Long x, y;
445
446 x = (nd + 8) / 9;
447 for(k = 0, y = 1; x > y; y <<= 1, k++) ;
448 b = Balloc(k);
449 if (b == NULL)
450 return NULL;
451 b->x[0] = y9;
452 b->wds = 1;
453
Mark Dickinson853c3bb2010-01-14 15:37:49 +0000454 if (nd <= 9)
455 return b;
456
457 s += 9;
458 for (i = 9; i < nd0; i++) {
459 b = multadd(b, 10, *s++ - '0');
460 if (b == NULL)
461 return NULL;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000462 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +0000463 s++;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000464 for(; i < nd; i++) {
465 b = multadd(b, 10, *s++ - '0');
466 if (b == NULL)
467 return NULL;
468 }
469 return b;
470}
471
472/* count leading 0 bits in the 32-bit integer x. */
473
474static int
475hi0bits(ULong x)
476{
477 int k = 0;
478
479 if (!(x & 0xffff0000)) {
480 k = 16;
481 x <<= 16;
482 }
483 if (!(x & 0xff000000)) {
484 k += 8;
485 x <<= 8;
486 }
487 if (!(x & 0xf0000000)) {
488 k += 4;
489 x <<= 4;
490 }
491 if (!(x & 0xc0000000)) {
492 k += 2;
493 x <<= 2;
494 }
495 if (!(x & 0x80000000)) {
496 k++;
497 if (!(x & 0x40000000))
498 return 32;
499 }
500 return k;
501}
502
503/* count trailing 0 bits in the 32-bit integer y, and shift y right by that
504 number of bits. */
505
506static int
507lo0bits(ULong *y)
508{
509 int k;
510 ULong x = *y;
511
512 if (x & 7) {
513 if (x & 1)
514 return 0;
515 if (x & 2) {
516 *y = x >> 1;
517 return 1;
518 }
519 *y = x >> 2;
520 return 2;
521 }
522 k = 0;
523 if (!(x & 0xffff)) {
524 k = 16;
525 x >>= 16;
526 }
527 if (!(x & 0xff)) {
528 k += 8;
529 x >>= 8;
530 }
531 if (!(x & 0xf)) {
532 k += 4;
533 x >>= 4;
534 }
535 if (!(x & 0x3)) {
536 k += 2;
537 x >>= 2;
538 }
539 if (!(x & 1)) {
540 k++;
541 x >>= 1;
542 if (!x)
543 return 32;
544 }
545 *y = x;
546 return k;
547}
548
549/* convert a small nonnegative integer to a Bigint */
550
551static Bigint *
552i2b(int i)
553{
554 Bigint *b;
555
556 b = Balloc(1);
557 if (b == NULL)
558 return NULL;
559 b->x[0] = i;
560 b->wds = 1;
561 return b;
562}
563
564/* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores
565 the signs of a and b. */
566
567static Bigint *
568mult(Bigint *a, Bigint *b)
569{
570 Bigint *c;
571 int k, wa, wb, wc;
572 ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
573 ULong y;
574#ifdef ULLong
575 ULLong carry, z;
576#else
577 ULong carry, z;
578 ULong z2;
579#endif
580
581 if (a->wds < b->wds) {
582 c = a;
583 a = b;
584 b = c;
585 }
586 k = a->k;
587 wa = a->wds;
588 wb = b->wds;
589 wc = wa + wb;
590 if (wc > a->maxwds)
591 k++;
592 c = Balloc(k);
593 if (c == NULL)
594 return NULL;
595 for(x = c->x, xa = x + wc; x < xa; x++)
596 *x = 0;
597 xa = a->x;
598 xae = xa + wa;
599 xb = b->x;
600 xbe = xb + wb;
601 xc0 = c->x;
602#ifdef ULLong
603 for(; xb < xbe; xc0++) {
604 if ((y = *xb++)) {
605 x = xa;
606 xc = xc0;
607 carry = 0;
608 do {
609 z = *x++ * (ULLong)y + *xc + carry;
610 carry = z >> 32;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +0000611 *xc++ = (ULong)(z & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000612 }
613 while(x < xae);
614 *xc = (ULong)carry;
615 }
616 }
617#else
618 for(; xb < xbe; xb++, xc0++) {
619 if (y = *xb & 0xffff) {
620 x = xa;
621 xc = xc0;
622 carry = 0;
623 do {
624 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
625 carry = z >> 16;
626 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
627 carry = z2 >> 16;
628 Storeinc(xc, z2, z);
629 }
630 while(x < xae);
631 *xc = carry;
632 }
633 if (y = *xb >> 16) {
634 x = xa;
635 xc = xc0;
636 carry = 0;
637 z2 = *xc;
638 do {
639 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
640 carry = z >> 16;
641 Storeinc(xc, z, z2);
642 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
643 carry = z2 >> 16;
644 }
645 while(x < xae);
646 *xc = z2;
647 }
648 }
649#endif
650 for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
651 c->wds = wc;
652 return c;
653}
654
655/* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */
656
657static Bigint *p5s;
658
659/* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on
660 failure; if the returned pointer is distinct from b then the original
661 Bigint b will have been Bfree'd. Ignores the sign of b. */
662
663static Bigint *
664pow5mult(Bigint *b, int k)
665{
666 Bigint *b1, *p5, *p51;
667 int i;
668 static int p05[3] = { 5, 25, 125 };
669
670 if ((i = k & 3)) {
671 b = multadd(b, p05[i-1], 0);
672 if (b == NULL)
673 return NULL;
674 }
675
676 if (!(k >>= 2))
677 return b;
678 p5 = p5s;
679 if (!p5) {
680 /* first time */
681 p5 = i2b(625);
682 if (p5 == NULL) {
683 Bfree(b);
684 return NULL;
685 }
686 p5s = p5;
687 p5->next = 0;
688 }
689 for(;;) {
690 if (k & 1) {
691 b1 = mult(b, p5);
692 Bfree(b);
693 b = b1;
694 if (b == NULL)
695 return NULL;
696 }
697 if (!(k >>= 1))
698 break;
699 p51 = p5->next;
700 if (!p51) {
701 p51 = mult(p5,p5);
702 if (p51 == NULL) {
703 Bfree(b);
704 return NULL;
705 }
706 p51->next = 0;
707 p5->next = p51;
708 }
709 p5 = p51;
710 }
711 return b;
712}
713
714/* shift a Bigint b left by k bits. Return a pointer to the shifted result,
715 or NULL on failure. If the returned pointer is distinct from b then the
716 original b will have been Bfree'd. Ignores the sign of b. */
717
718static Bigint *
719lshift(Bigint *b, int k)
720{
721 int i, k1, n, n1;
722 Bigint *b1;
723 ULong *x, *x1, *xe, z;
724
725 n = k >> 5;
726 k1 = b->k;
727 n1 = n + b->wds + 1;
728 for(i = b->maxwds; n1 > i; i <<= 1)
729 k1++;
730 b1 = Balloc(k1);
731 if (b1 == NULL) {
732 Bfree(b);
733 return NULL;
734 }
735 x1 = b1->x;
736 for(i = 0; i < n; i++)
737 *x1++ = 0;
738 x = b->x;
739 xe = x + b->wds;
740 if (k &= 0x1f) {
741 k1 = 32 - k;
742 z = 0;
743 do {
744 *x1++ = *x << k | z;
745 z = *x++ >> k1;
746 }
747 while(x < xe);
748 if ((*x1 = z))
749 ++n1;
750 }
751 else do
752 *x1++ = *x++;
753 while(x < xe);
754 b1->wds = n1 - 1;
755 Bfree(b);
756 return b1;
757}
758
759/* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and
760 1 if a > b. Ignores signs of a and b. */
761
762static int
763cmp(Bigint *a, Bigint *b)
764{
765 ULong *xa, *xa0, *xb, *xb0;
766 int i, j;
767
768 i = a->wds;
769 j = b->wds;
770#ifdef DEBUG
771 if (i > 1 && !a->x[i-1])
772 Bug("cmp called with a->x[a->wds-1] == 0");
773 if (j > 1 && !b->x[j-1])
774 Bug("cmp called with b->x[b->wds-1] == 0");
775#endif
776 if (i -= j)
777 return i;
778 xa0 = a->x;
779 xa = xa0 + j;
780 xb0 = b->x;
781 xb = xb0 + j;
782 for(;;) {
783 if (*--xa != *--xb)
784 return *xa < *xb ? -1 : 1;
785 if (xa <= xa0)
786 break;
787 }
788 return 0;
789}
790
791/* Take the difference of Bigints a and b, returning a new Bigint. Returns
792 NULL on failure. The signs of a and b are ignored, but the sign of the
793 result is set appropriately. */
794
795static Bigint *
796diff(Bigint *a, Bigint *b)
797{
798 Bigint *c;
799 int i, wa, wb;
800 ULong *xa, *xae, *xb, *xbe, *xc;
801#ifdef ULLong
802 ULLong borrow, y;
803#else
804 ULong borrow, y;
805 ULong z;
806#endif
807
808 i = cmp(a,b);
809 if (!i) {
810 c = Balloc(0);
811 if (c == NULL)
812 return NULL;
813 c->wds = 1;
814 c->x[0] = 0;
815 return c;
816 }
817 if (i < 0) {
818 c = a;
819 a = b;
820 b = c;
821 i = 1;
822 }
823 else
824 i = 0;
825 c = Balloc(a->k);
826 if (c == NULL)
827 return NULL;
828 c->sign = i;
829 wa = a->wds;
830 xa = a->x;
831 xae = xa + wa;
832 wb = b->wds;
833 xb = b->x;
834 xbe = xb + wb;
835 xc = c->x;
836 borrow = 0;
837#ifdef ULLong
838 do {
839 y = (ULLong)*xa++ - *xb++ - borrow;
840 borrow = y >> 32 & (ULong)1;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +0000841 *xc++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000842 }
843 while(xb < xbe);
844 while(xa < xae) {
845 y = *xa++ - borrow;
846 borrow = y >> 32 & (ULong)1;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +0000847 *xc++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000848 }
849#else
850 do {
851 y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
852 borrow = (y & 0x10000) >> 16;
853 z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
854 borrow = (z & 0x10000) >> 16;
855 Storeinc(xc, z, y);
856 }
857 while(xb < xbe);
858 while(xa < xae) {
859 y = (*xa & 0xffff) - borrow;
860 borrow = (y & 0x10000) >> 16;
861 z = (*xa++ >> 16) - borrow;
862 borrow = (z & 0x10000) >> 16;
863 Storeinc(xc, z, y);
864 }
865#endif
866 while(!*--xc)
867 wa--;
868 c->wds = wa;
869 return c;
870}
871
872/* Given a positive normal double x, return the difference between x and the next
873 double up. Doesn't give correct results for subnormals. */
874
875static double
876ulp(U *x)
877{
878 Long L;
879 U u;
880
881 L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
882 word0(&u) = L;
883 word1(&u) = 0;
884 return dval(&u);
885}
886
887/* Convert a Bigint to a double plus an exponent */
888
889static double
890b2d(Bigint *a, int *e)
891{
892 ULong *xa, *xa0, w, y, z;
893 int k;
894 U d;
895
896 xa0 = a->x;
897 xa = xa0 + a->wds;
898 y = *--xa;
899#ifdef DEBUG
900 if (!y) Bug("zero y in b2d");
901#endif
902 k = hi0bits(y);
903 *e = 32 - k;
904 if (k < Ebits) {
905 word0(&d) = Exp_1 | y >> (Ebits - k);
906 w = xa > xa0 ? *--xa : 0;
907 word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k);
908 goto ret_d;
909 }
910 z = xa > xa0 ? *--xa : 0;
911 if (k -= Ebits) {
912 word0(&d) = Exp_1 | y << k | z >> (32 - k);
913 y = xa > xa0 ? *--xa : 0;
914 word1(&d) = z << k | y >> (32 - k);
915 }
916 else {
917 word0(&d) = Exp_1 | y;
918 word1(&d) = z;
919 }
920 ret_d:
921 return dval(&d);
922}
923
924/* Convert a double to a Bigint plus an exponent. Return NULL on failure.
925
926 Given a finite nonzero double d, return an odd Bigint b and exponent *e
927 such that fabs(d) = b * 2**e. On return, *bbits gives the number of
Mark Dickinson180e4cd2010-01-04 21:33:31 +0000928 significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits).
Mark Dickinsonb08a53a2009-04-16 19:52:09 +0000929
930 If d is zero, then b == 0, *e == -1010, *bbits = 0.
931 */
932
933
934static Bigint *
935d2b(U *d, int *e, int *bits)
936{
937 Bigint *b;
938 int de, k;
939 ULong *x, y, z;
940 int i;
941
942 b = Balloc(1);
943 if (b == NULL)
944 return NULL;
945 x = b->x;
946
947 z = word0(d) & Frac_mask;
948 word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */
949 if ((de = (int)(word0(d) >> Exp_shift)))
950 z |= Exp_msk1;
951 if ((y = word1(d))) {
952 if ((k = lo0bits(&y))) {
953 x[0] = y | z << (32 - k);
954 z >>= k;
955 }
956 else
957 x[0] = y;
958 i =
959 b->wds = (x[1] = z) ? 2 : 1;
960 }
961 else {
962 k = lo0bits(&z);
963 x[0] = z;
964 i =
965 b->wds = 1;
966 k += 32;
967 }
968 if (de) {
969 *e = de - Bias - (P-1) + k;
970 *bits = P - k;
971 }
972 else {
973 *e = de - Bias - (P-1) + 1 + k;
974 *bits = 32*i - hi0bits(x[i-1]);
975 }
976 return b;
977}
978
979/* Compute the ratio of two Bigints, as a double. The result may have an
980 error of up to 2.5 ulps. */
981
982static double
983ratio(Bigint *a, Bigint *b)
984{
985 U da, db;
986 int k, ka, kb;
987
988 dval(&da) = b2d(a, &ka);
989 dval(&db) = b2d(b, &kb);
990 k = ka - kb + 32*(a->wds - b->wds);
991 if (k > 0)
992 word0(&da) += k*Exp_msk1;
993 else {
994 k = -k;
995 word0(&db) += k*Exp_msk1;
996 }
997 return dval(&da) / dval(&db);
998}
999
1000static const double
1001tens[] = {
1002 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1003 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1004 1e20, 1e21, 1e22
1005};
1006
1007static const double
1008bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1009static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
1010 9007199254740992.*9007199254740992.e-256
1011 /* = 2^106 * 1e-256 */
1012};
1013/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
1014/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
1015#define Scale_Bit 0x10
1016#define n_bigtens 5
1017
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001018#define ULbits 32
1019#define kshift 5
1020#define kmask 31
1021
1022
1023static int
1024dshift(Bigint *b, int p2)
1025{
1026 int rv = hi0bits(b->x[b->wds-1]) - 4;
1027 if (p2 > 0)
1028 rv -= p2;
1029 return rv & kmask;
1030}
1031
1032/* special case of Bigint division. The quotient is always in the range 0 <=
1033 quotient < 10, and on entry the divisor S is normalized so that its top 4
1034 bits (28--31) are zero and bit 27 is set. */
1035
1036static int
1037quorem(Bigint *b, Bigint *S)
1038{
1039 int n;
1040 ULong *bx, *bxe, q, *sx, *sxe;
1041#ifdef ULLong
1042 ULLong borrow, carry, y, ys;
1043#else
1044 ULong borrow, carry, y, ys;
1045 ULong si, z, zs;
1046#endif
1047
1048 n = S->wds;
1049#ifdef DEBUG
1050 /*debug*/ if (b->wds > n)
1051 /*debug*/ Bug("oversize b in quorem");
1052#endif
1053 if (b->wds < n)
1054 return 0;
1055 sx = S->x;
1056 sxe = sx + --n;
1057 bx = b->x;
1058 bxe = bx + n;
1059 q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
1060#ifdef DEBUG
1061 /*debug*/ if (q > 9)
1062 /*debug*/ Bug("oversized quotient in quorem");
1063#endif
1064 if (q) {
1065 borrow = 0;
1066 carry = 0;
1067 do {
1068#ifdef ULLong
1069 ys = *sx++ * (ULLong)q + carry;
1070 carry = ys >> 32;
1071 y = *bx - (ys & FFFFFFFF) - borrow;
1072 borrow = y >> 32 & (ULong)1;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +00001073 *bx++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001074#else
1075 si = *sx++;
1076 ys = (si & 0xffff) * q + carry;
1077 zs = (si >> 16) * q + (ys >> 16);
1078 carry = zs >> 16;
1079 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1080 borrow = (y & 0x10000) >> 16;
1081 z = (*bx >> 16) - (zs & 0xffff) - borrow;
1082 borrow = (z & 0x10000) >> 16;
1083 Storeinc(bx, z, y);
1084#endif
1085 }
1086 while(sx <= sxe);
1087 if (!*bxe) {
1088 bx = b->x;
1089 while(--bxe > bx && !*bxe)
1090 --n;
1091 b->wds = n;
1092 }
1093 }
1094 if (cmp(b, S) >= 0) {
1095 q++;
1096 borrow = 0;
1097 carry = 0;
1098 bx = b->x;
1099 sx = S->x;
1100 do {
1101#ifdef ULLong
1102 ys = *sx++ + carry;
1103 carry = ys >> 32;
1104 y = *bx - (ys & FFFFFFFF) - borrow;
1105 borrow = y >> 32 & (ULong)1;
Mark Dickinsonfd2ad8b2009-04-17 19:29:46 +00001106 *bx++ = (ULong)(y & FFFFFFFF);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001107#else
1108 si = *sx++;
1109 ys = (si & 0xffff) + carry;
1110 zs = (si >> 16) + (ys >> 16);
1111 carry = zs >> 16;
1112 y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
1113 borrow = (y & 0x10000) >> 16;
1114 z = (*bx >> 16) - (zs & 0xffff) - borrow;
1115 borrow = (z & 0x10000) >> 16;
1116 Storeinc(bx, z, y);
1117#endif
1118 }
1119 while(sx <= sxe);
1120 bx = b->x;
1121 bxe = bx + n;
1122 if (!*bxe) {
1123 while(--bxe > bx && !*bxe)
1124 --n;
1125 b->wds = n;
1126 }
1127 }
1128 return q;
1129}
1130
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001131/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
Mark Dickinson81612e82010-01-12 23:04:19 +00001132
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001133 Assuming that x is finite and nonnegative (positive zero is fine
1134 here) and x / 2^bc.scale is exactly representable as a double,
1135 sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
Mark Dickinson81612e82010-01-12 23:04:19 +00001136
1137static double
1138sulp(U *x, BCinfo *bc)
1139{
1140 U u;
1141
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001142 if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
Mark Dickinson81612e82010-01-12 23:04:19 +00001143 /* rv/2^bc->scale is subnormal */
1144 word0(&u) = (P+2)*Exp_msk1;
1145 word1(&u) = 0;
1146 return u.d;
1147 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001148 else {
1149 assert(word0(x) || word1(x)); /* x != 0.0 */
Mark Dickinson81612e82010-01-12 23:04:19 +00001150 return ulp(x);
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001151 }
Mark Dickinson81612e82010-01-12 23:04:19 +00001152}
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001153
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001154/* The bigcomp function handles some hard cases for strtod, for inputs
1155 with more than STRTOD_DIGLIM digits. It's called once an initial
1156 estimate for the double corresponding to the input string has
1157 already been obtained by the code in _Py_dg_strtod.
1158
1159 The bigcomp function is only called after _Py_dg_strtod has found a
1160 double value rv such that either rv or rv + 1ulp represents the
1161 correctly rounded value corresponding to the original string. It
1162 determines which of these two values is the correct one by
1163 computing the decimal digits of rv + 0.5ulp and comparing them with
1164 the corresponding digits of s0.
1165
1166 In the following, write dv for the absolute value of the number represented
1167 by the input string.
1168
1169 Inputs:
1170
1171 s0 points to the first significant digit of the input string.
1172
1173 rv is a (possibly scaled) estimate for the closest double value to the
1174 value represented by the original input to _Py_dg_strtod. If
1175 bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
1176 the input value.
1177
1178 bc is a struct containing information gathered during the parsing and
1179 estimation steps of _Py_dg_strtod. Description of fields follows:
1180
1181 bc->dsign is 1 if rv < decimal value, 0 if rv >= decimal value. In
1182 normal use, it should almost always be 1 when bigcomp is entered.
1183
1184 bc->e0 gives the exponent of the input value, such that dv = (integer
1185 given by the bd->nd digits of s0) * 10**e0
1186
1187 bc->nd gives the total number of significant digits of s0. It will
1188 be at least 1.
1189
1190 bc->nd0 gives the number of significant digits of s0 before the
1191 decimal separator. If there's no decimal separator, bc->nd0 ==
1192 bc->nd.
1193
1194 bc->scale is the value used to scale rv to avoid doing arithmetic with
1195 subnormal values. It's either 0 or 2*P (=106).
1196
1197 Outputs:
1198
1199 On successful exit, rv/2^(bc->scale) is the closest double to dv.
1200
1201 Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001202
1203static int
1204bigcomp(U *rv, const char *s0, BCinfo *bc)
1205{
1206 Bigint *b, *d;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001207 int b2, bbits, d2, dd, i, nd, nd0, odd, p2, p5;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001208
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001209 dd = 0; /* silence compiler warning about possibly unused variable */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001210 nd = bc->nd;
1211 nd0 = bc->nd0;
Mark Dickinson81612e82010-01-12 23:04:19 +00001212 p5 = nd + bc->e0;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001213 if (rv->d == 0.) {
1214 /* special case because d2b doesn't handle 0.0 */
1215 b = i2b(0);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001216 if (b == NULL)
1217 return -1;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001218 p2 = Emin - P + 1; /* = -1074 for IEEE 754 binary64 */
1219 bbits = 0;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001220 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001221 else {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001222 b = d2b(rv, &p2, &bbits);
1223 if (b == NULL)
1224 return -1;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001225 p2 -= bc->scale;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001226 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001227 /* now rv/2^(bc->scale) = b * 2**p2, and b has bbits significant bits */
1228
1229 /* Replace (b, p2) by (b << i, p2 - i), with i the largest integer such
1230 that b << i has at most P significant bits and p2 - i >= Emin - P +
1231 1. */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001232 i = P - bbits;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001233 if (i > p2 - (Emin - P + 1))
1234 i = p2 - (Emin - P + 1);
1235 /* increment i so that we shift b by an extra bit; then or-ing a 1 into
1236 the lsb of b gives us rv/2^(bc->scale) + 0.5ulp. */
1237 b = lshift(b, ++i);
1238 if (b == NULL)
1239 return -1;
1240 /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway
1241 case, this is used for round to even. */
1242 odd = b->x[0] & 2;
1243 b->x[0] |= 1;
1244
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001245 p2 -= p5 + i;
1246 d = i2b(1);
1247 if (d == NULL) {
1248 Bfree(b);
1249 return -1;
1250 }
1251 /* Arrange for convenient computation of quotients:
1252 * shift left if necessary so divisor has 4 leading 0 bits.
1253 */
1254 if (p5 > 0) {
1255 d = pow5mult(d, p5);
1256 if (d == NULL) {
1257 Bfree(b);
1258 return -1;
1259 }
1260 }
1261 else if (p5 < 0) {
1262 b = pow5mult(b, -p5);
1263 if (b == NULL) {
1264 Bfree(d);
1265 return -1;
1266 }
1267 }
1268 if (p2 > 0) {
1269 b2 = p2;
1270 d2 = 0;
1271 }
1272 else {
1273 b2 = 0;
1274 d2 = -p2;
1275 }
1276 i = dshift(d, d2);
1277 if ((b2 += i) > 0) {
1278 b = lshift(b, b2);
1279 if (b == NULL) {
1280 Bfree(d);
1281 return -1;
1282 }
1283 }
1284 if ((d2 += i) > 0) {
1285 d = lshift(d, d2);
1286 if (d == NULL) {
1287 Bfree(b);
1288 return -1;
1289 }
1290 }
1291
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001292 /* if b >= d, round down */
Mark Dickinson81612e82010-01-12 23:04:19 +00001293 if (cmp(b, d) >= 0) {
1294 dd = -1;
1295 goto ret;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001296 }
1297
1298 /* Compare b/d with s0 */
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001299 for(i = 0; i < nd0; i++) {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001300 b = multadd(b, 10, 0);
1301 if (b == NULL) {
1302 Bfree(d);
1303 return -1;
1304 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001305 dd = *s0++ - '0' - quorem(b, d);
1306 if (dd)
1307 goto ret;
1308 if (!b->x[0] && b->wds == 1) {
1309 if (i < nd - 1)
1310 dd = 1;
1311 goto ret;
1312 }
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001313 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001314 s0++;
1315 for(; i < nd; i++) {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001316 b = multadd(b, 10, 0);
1317 if (b == NULL) {
1318 Bfree(d);
1319 return -1;
1320 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001321 dd = *s0++ - '0' - quorem(b, d);
1322 if (dd)
1323 goto ret;
1324 if (!b->x[0] && b->wds == 1) {
1325 if (i < nd - 1)
1326 dd = 1;
1327 goto ret;
1328 }
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001329 }
1330 if (b->x[0] || b->wds > 1)
1331 dd = -1;
1332 ret:
1333 Bfree(b);
1334 Bfree(d);
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001335 if (dd > 0 || (dd == 0 && odd))
1336 dval(rv) += sulp(rv, bc);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001337 return 0;
1338}
1339
1340double
1341_Py_dg_strtod(const char *s00, char **se)
1342{
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001343 int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dp0, dp1, dplen, e, e1, error;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001344 int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1345 const char *s, *s0, *s1;
1346 double aadj, aadj1;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001347 U aadj2, adj, rv, rv0;
Mark Dickinson81612e82010-01-12 23:04:19 +00001348 ULong y, z, L;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001349 BCinfo bc;
1350 Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1351
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001352 sign = nz0 = nz = dplen = 0;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001353 dval(&rv) = 0.;
1354 for(s = s00;;s++) switch(*s) {
1355 case '-':
1356 sign = 1;
1357 /* no break */
1358 case '+':
1359 if (*++s)
1360 goto break2;
1361 /* no break */
1362 case 0:
1363 goto ret0;
Mark Dickinson725bfd82009-05-03 20:33:40 +00001364 /* modify original dtoa.c so that it doesn't accept leading whitespace
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001365 case '\t':
1366 case '\n':
1367 case '\v':
1368 case '\f':
1369 case '\r':
1370 case ' ':
1371 continue;
Mark Dickinson725bfd82009-05-03 20:33:40 +00001372 */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001373 default:
1374 goto break2;
1375 }
1376 break2:
1377 if (*s == '0') {
1378 nz0 = 1;
1379 while(*++s == '0') ;
1380 if (!*s)
1381 goto ret;
1382 }
1383 s0 = s;
1384 y = z = 0;
1385 for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1386 if (nd < 9)
1387 y = 10*y + c - '0';
1388 else if (nd < 16)
1389 z = 10*z + c - '0';
1390 nd0 = nd;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001391 dp0 = dp1 = s - s0;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001392 if (c == '.') {
1393 c = *++s;
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001394 dp1 = s - s0;
1395 dplen = 1;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001396 if (!nd) {
1397 for(; c == '0'; c = *++s)
1398 nz++;
1399 if (c > '0' && c <= '9') {
1400 s0 = s;
1401 nf += nz;
1402 nz = 0;
1403 goto have_dig;
1404 }
1405 goto dig_done;
1406 }
1407 for(; c >= '0' && c <= '9'; c = *++s) {
1408 have_dig:
1409 nz++;
1410 if (c -= '0') {
1411 nf += nz;
1412 for(i = 1; i < nz; i++)
1413 if (nd++ < 9)
1414 y *= 10;
1415 else if (nd <= DBL_DIG + 1)
1416 z *= 10;
1417 if (nd++ < 9)
1418 y = 10*y + c;
1419 else if (nd <= DBL_DIG + 1)
1420 z = 10*z + c;
1421 nz = 0;
1422 }
1423 }
1424 }
1425 dig_done:
1426 e = 0;
1427 if (c == 'e' || c == 'E') {
1428 if (!nd && !nz && !nz0) {
1429 goto ret0;
1430 }
1431 s00 = s;
1432 esign = 0;
1433 switch(c = *++s) {
1434 case '-':
1435 esign = 1;
1436 case '+':
1437 c = *++s;
1438 }
1439 if (c >= '0' && c <= '9') {
1440 while(c == '0')
1441 c = *++s;
1442 if (c > '0' && c <= '9') {
1443 L = c - '0';
1444 s1 = s;
1445 while((c = *++s) >= '0' && c <= '9')
1446 L = 10*L + c - '0';
Mark Dickinson81612e82010-01-12 23:04:19 +00001447 if (s - s1 > 8 || L > MAX_ABS_EXP)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001448 /* Avoid confusion from exponents
1449 * so large that e might overflow.
1450 */
Mark Dickinson81612e82010-01-12 23:04:19 +00001451 e = (int)MAX_ABS_EXP; /* safe for 16 bit ints */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001452 else
1453 e = (int)L;
1454 if (esign)
1455 e = -e;
1456 }
1457 else
1458 e = 0;
1459 }
1460 else
1461 s = s00;
1462 }
1463 if (!nd) {
1464 if (!nz && !nz0) {
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001465 ret0:
1466 s = s00;
1467 sign = 0;
1468 }
1469 goto ret;
1470 }
1471 bc.e0 = e1 = e -= nf;
1472
1473 /* Now we have nd0 digits, starting at s0, followed by a
1474 * decimal point, followed by nd-nd0 digits. The number we're
1475 * after is the integer represented by those digits times
1476 * 10**e */
1477
1478 if (!nd0)
1479 nd0 = nd;
1480 k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1481 dval(&rv) = y;
1482 if (k > 9) {
1483 dval(&rv) = tens[k - 9] * dval(&rv) + z;
1484 }
1485 bd0 = 0;
1486 if (nd <= DBL_DIG
1487 && Flt_Rounds == 1
1488 ) {
1489 if (!e)
1490 goto ret;
1491 if (e > 0) {
1492 if (e <= Ten_pmax) {
1493 dval(&rv) *= tens[e];
1494 goto ret;
1495 }
1496 i = DBL_DIG - nd;
1497 if (e <= Ten_pmax + i) {
1498 /* A fancier test would sometimes let us do
1499 * this for larger i values.
1500 */
1501 e -= i;
1502 dval(&rv) *= tens[i];
1503 dval(&rv) *= tens[e];
1504 goto ret;
1505 }
1506 }
1507 else if (e >= -Ten_pmax) {
1508 dval(&rv) /= tens[-e];
1509 goto ret;
1510 }
1511 }
1512 e1 += nd - k;
1513
1514 bc.scale = 0;
1515
1516 /* Get starting approximation = rv * 10**e1 */
1517
1518 if (e1 > 0) {
1519 if ((i = e1 & 15))
1520 dval(&rv) *= tens[i];
1521 if (e1 &= ~15) {
1522 if (e1 > DBL_MAX_10_EXP) {
1523 ovfl:
1524 errno = ERANGE;
1525 /* Can't trust HUGE_VAL */
1526 word0(&rv) = Exp_mask;
1527 word1(&rv) = 0;
1528 goto ret;
1529 }
1530 e1 >>= 4;
1531 for(j = 0; e1 > 1; j++, e1 >>= 1)
1532 if (e1 & 1)
1533 dval(&rv) *= bigtens[j];
1534 /* The last multiplication could overflow. */
1535 word0(&rv) -= P*Exp_msk1;
1536 dval(&rv) *= bigtens[j];
1537 if ((z = word0(&rv) & Exp_mask)
1538 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1539 goto ovfl;
1540 if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1541 /* set to largest number */
1542 /* (Can't trust DBL_MAX) */
1543 word0(&rv) = Big0;
1544 word1(&rv) = Big1;
1545 }
1546 else
1547 word0(&rv) += P*Exp_msk1;
1548 }
1549 }
1550 else if (e1 < 0) {
1551 e1 = -e1;
1552 if ((i = e1 & 15))
1553 dval(&rv) /= tens[i];
1554 if (e1 >>= 4) {
1555 if (e1 >= 1 << n_bigtens)
1556 goto undfl;
1557 if (e1 & Scale_Bit)
1558 bc.scale = 2*P;
1559 for(j = 0; e1 > 0; j++, e1 >>= 1)
1560 if (e1 & 1)
1561 dval(&rv) *= tinytens[j];
1562 if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
1563 >> Exp_shift)) > 0) {
1564 /* scaled rv is denormal; clear j low bits */
1565 if (j >= 32) {
1566 word1(&rv) = 0;
1567 if (j >= 53)
1568 word0(&rv) = (P+2)*Exp_msk1;
1569 else
1570 word0(&rv) &= 0xffffffff << (j-32);
1571 }
1572 else
1573 word1(&rv) &= 0xffffffff << j;
1574 }
1575 if (!dval(&rv)) {
1576 undfl:
1577 dval(&rv) = 0.;
1578 errno = ERANGE;
1579 goto ret;
1580 }
1581 }
1582 }
1583
1584 /* Now the hard part -- adjusting rv to the correct value.*/
1585
1586 /* Put digits into bd: true value = bd * 10^e */
1587
1588 bc.nd = nd;
Mark Dickinson81612e82010-01-12 23:04:19 +00001589 bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001590 /* to silence an erroneous warning about bc.nd0 */
1591 /* possibly not being initialized. */
Mark Dickinson81612e82010-01-12 23:04:19 +00001592 if (nd > STRTOD_DIGLIM) {
1593 /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001594 /* minimum number of decimal digits to distinguish double values */
1595 /* in IEEE arithmetic. */
1596 i = j = 18;
1597 if (i > nd0)
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001598 j += dplen;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001599 for(;;) {
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001600 if (--j <= dp1 && j >= dp0)
1601 j = dp0 - 1;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001602 if (s0[j] != '0')
1603 break;
1604 --i;
1605 }
1606 e += nd - i;
1607 nd = i;
1608 if (nd0 > nd)
1609 nd0 = nd;
1610 if (nd < 9) { /* must recompute y */
1611 y = 0;
1612 for(i = 0; i < nd0; ++i)
1613 y = 10*y + s0[i] - '0';
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001614 for(j = dp1; i < nd; ++i)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001615 y = 10*y + s0[j++] - '0';
1616 }
1617 }
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001618 bd0 = s2b(s0, nd0, nd, y);
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001619 if (bd0 == NULL)
1620 goto failed_malloc;
1621
1622 for(;;) {
1623 bd = Balloc(bd0->k);
1624 if (bd == NULL) {
1625 Bfree(bd0);
1626 goto failed_malloc;
1627 }
1628 Bcopy(bd, bd0);
1629 bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
1630 if (bb == NULL) {
1631 Bfree(bd);
1632 Bfree(bd0);
1633 goto failed_malloc;
1634 }
1635 bs = i2b(1);
1636 if (bs == NULL) {
1637 Bfree(bb);
1638 Bfree(bd);
1639 Bfree(bd0);
1640 goto failed_malloc;
1641 }
1642
1643 if (e >= 0) {
1644 bb2 = bb5 = 0;
1645 bd2 = bd5 = e;
1646 }
1647 else {
1648 bb2 = bb5 = -e;
1649 bd2 = bd5 = 0;
1650 }
1651 if (bbe >= 0)
1652 bb2 += bbe;
1653 else
1654 bd2 -= bbe;
1655 bs2 = bb2;
1656 j = bbe - bc.scale;
1657 i = j + bbbits - 1; /* logb(rv) */
1658 if (i < Emin) /* denormal */
1659 j += P - Emin;
1660 else
1661 j = P + 1 - bbbits;
1662 bb2 += j;
1663 bd2 += j;
1664 bd2 += bc.scale;
1665 i = bb2 < bd2 ? bb2 : bd2;
1666 if (i > bs2)
1667 i = bs2;
1668 if (i > 0) {
1669 bb2 -= i;
1670 bd2 -= i;
1671 bs2 -= i;
1672 }
1673 if (bb5 > 0) {
1674 bs = pow5mult(bs, bb5);
1675 if (bs == NULL) {
1676 Bfree(bb);
1677 Bfree(bd);
1678 Bfree(bd0);
1679 goto failed_malloc;
1680 }
1681 bb1 = mult(bs, bb);
1682 Bfree(bb);
1683 bb = bb1;
1684 if (bb == NULL) {
1685 Bfree(bs);
1686 Bfree(bd);
1687 Bfree(bd0);
1688 goto failed_malloc;
1689 }
1690 }
1691 if (bb2 > 0) {
1692 bb = lshift(bb, bb2);
1693 if (bb == NULL) {
1694 Bfree(bs);
1695 Bfree(bd);
1696 Bfree(bd0);
1697 goto failed_malloc;
1698 }
1699 }
1700 if (bd5 > 0) {
1701 bd = pow5mult(bd, bd5);
1702 if (bd == NULL) {
1703 Bfree(bb);
1704 Bfree(bs);
1705 Bfree(bd0);
1706 goto failed_malloc;
1707 }
1708 }
1709 if (bd2 > 0) {
1710 bd = lshift(bd, bd2);
1711 if (bd == NULL) {
1712 Bfree(bb);
1713 Bfree(bs);
1714 Bfree(bd0);
1715 goto failed_malloc;
1716 }
1717 }
1718 if (bs2 > 0) {
1719 bs = lshift(bs, bs2);
1720 if (bs == NULL) {
1721 Bfree(bb);
1722 Bfree(bd);
1723 Bfree(bd0);
1724 goto failed_malloc;
1725 }
1726 }
1727 delta = diff(bb, bd);
1728 if (delta == NULL) {
1729 Bfree(bb);
1730 Bfree(bs);
1731 Bfree(bd);
1732 Bfree(bd0);
1733 goto failed_malloc;
1734 }
1735 bc.dsign = delta->sign;
1736 delta->sign = 0;
1737 i = cmp(delta, bs);
1738 if (bc.nd > nd && i <= 0) {
1739 if (bc.dsign)
1740 break; /* Must use bigcomp(). */
Mark Dickinson853c3bb2010-01-14 15:37:49 +00001741
1742 /* Here rv overestimates the truncated decimal value by at most
1743 0.5 ulp(rv). Hence rv either overestimates the true decimal
1744 value by <= 0.5 ulp(rv), or underestimates it by some small
1745 amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
1746 the true decimal value, so it's possible to exit.
1747
1748 Exception: if scaled rv is a normal exact power of 2, but not
1749 DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
1750 next double, so the correctly rounded result is either rv - 0.5
1751 ulp(rv) or rv; in this case, use bigcomp to distinguish. */
1752
1753 if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
1754 /* rv can't be 0, since it's an overestimate for some
1755 nonzero value. So rv is a normal power of 2. */
1756 j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
1757 /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
1758 rv / 2^bc.scale >= 2^-1021. */
1759 if (j - bc.scale >= 2) {
1760 dval(&rv) -= 0.5 * sulp(&rv, &bc);
1761 break;
1762 }
1763 }
1764
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001765 {
1766 bc.nd = nd;
1767 i = -1; /* Discarded digits make delta smaller. */
1768 }
1769 }
1770
1771 if (i < 0) {
1772 /* Error is less than half an ulp -- check for
1773 * special case of mantissa a power of two.
1774 */
1775 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
1776 || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
1777 ) {
1778 break;
1779 }
1780 if (!delta->x[0] && delta->wds <= 1) {
1781 /* exact result */
1782 break;
1783 }
1784 delta = lshift(delta,Log2P);
1785 if (delta == NULL) {
1786 Bfree(bb);
1787 Bfree(bs);
1788 Bfree(bd);
1789 Bfree(bd0);
1790 goto failed_malloc;
1791 }
1792 if (cmp(delta, bs) > 0)
1793 goto drop_down;
1794 break;
1795 }
1796 if (i == 0) {
1797 /* exactly half-way between */
1798 if (bc.dsign) {
1799 if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
1800 && word1(&rv) == (
1801 (bc.scale &&
1802 (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ?
1803 (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
1804 0xffffffff)) {
1805 /*boundary case -- increment exponent*/
1806 word0(&rv) = (word0(&rv) & Exp_mask)
1807 + Exp_msk1
1808 ;
1809 word1(&rv) = 0;
1810 bc.dsign = 0;
1811 break;
1812 }
1813 }
1814 else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
1815 drop_down:
1816 /* boundary case -- decrement exponent */
1817 if (bc.scale) {
1818 L = word0(&rv) & Exp_mask;
1819 if (L <= (2*P+1)*Exp_msk1) {
1820 if (L > (P+2)*Exp_msk1)
1821 /* round even ==> */
1822 /* accept rv */
1823 break;
1824 /* rv = smallest denormal */
Mark Dickinson81612e82010-01-12 23:04:19 +00001825 if (bc.nd >nd)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001826 break;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001827 goto undfl;
1828 }
1829 }
1830 L = (word0(&rv) & Exp_mask) - Exp_msk1;
1831 word0(&rv) = L | Bndry_mask1;
1832 word1(&rv) = 0xffffffff;
1833 break;
1834 }
1835 if (!(word1(&rv) & LSB))
1836 break;
1837 if (bc.dsign)
1838 dval(&rv) += ulp(&rv);
1839 else {
1840 dval(&rv) -= ulp(&rv);
1841 if (!dval(&rv)) {
Mark Dickinson81612e82010-01-12 23:04:19 +00001842 if (bc.nd >nd)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001843 break;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001844 goto undfl;
1845 }
1846 }
1847 bc.dsign = 1 - bc.dsign;
1848 break;
1849 }
1850 if ((aadj = ratio(delta, bs)) <= 2.) {
1851 if (bc.dsign)
1852 aadj = aadj1 = 1.;
1853 else if (word1(&rv) || word0(&rv) & Bndry_mask) {
1854 if (word1(&rv) == Tiny1 && !word0(&rv)) {
Mark Dickinson81612e82010-01-12 23:04:19 +00001855 if (bc.nd >nd)
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001856 break;
Mark Dickinsonb08a53a2009-04-16 19:52:09 +00001857 goto undfl;
1858 }
1859 aadj = 1.;
1860 aadj1 = -1.;
1861 }
1862 else {
1863 /* special case -- power of FLT_RADIX to be */
1864 /* rounded down... */
1865
1866 if (aadj < 2./FLT_RADIX)
1867 aadj = 1./FLT_RADIX;
1868 else
1869 aadj *= 0.5;
1870 aadj1 = -aadj;
1871 }
1872 }
1873 else {
1874 aadj *= 0.5;
1875 aadj1 = bc.dsign ? aadj : -aadj;
1876 if (Flt_Rounds == 0)
1877 aadj1 += 0.5;
1878 }
1879 y = word0(&rv) & Exp_mask;
1880
1881 /* Check for overflow */
1882
1883 if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1884 dval(&rv0) = dval(&rv);
1885 word0(&rv) -= P*Exp_msk1;
1886 adj.d = aadj1 * ulp(&rv);
1887 dval(&rv) += adj.d;
1888 if ((word0(&rv) & Exp_mask) >=
1889 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1890 if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
1891 goto ovfl;
1892 word0(&rv) = Big0;
1893 word1(&rv) = Big1;
1894 goto cont;
1895 }
1896 else
1897 word0(&rv) += P*Exp_msk1;
1898 }
1899 else {
1900 if (bc.scale && y <= 2*P*Exp_msk1) {
1901 if (aadj <= 0x7fffffff) {
1902 if ((z = (ULong)aadj) <= 0)
1903 z = 1;
1904 aadj = z;
1905 aadj1 = bc.dsign ? aadj : -aadj;
1906 }
1907 dval(&aadj2) = aadj1;
1908 word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
1909 aadj1 = dval(&aadj2);
1910 }
1911 adj.d = aadj1 * ulp(&rv);
1912 dval(&rv) += adj.d;
1913 }
1914 z = word0(&rv) & Exp_mask;
1915 if (bc.nd == nd) {
1916 if (!bc.scale)
1917 if (y == z) {
1918 /* Can we stop now? */
1919 L = (Long)aadj;
1920 aadj -= L;
1921 /* The tolerances below are conservative. */
1922 if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
1923 if (aadj < .4999999 || aadj > .5000001)
1924 break;
1925 }
1926 else if (aadj < .4999999/FLT_RADIX)
1927 break;
1928 }
1929 }
1930 cont:
1931 Bfree(bb);
1932 Bfree(bd);
1933 Bfree(bs);
1934 Bfree(delta);
1935 }
1936 Bfree(bb);
1937 Bfree(bd);
1938 Bfree(bs);
1939 Bfree(bd0);
1940 Bfree(delta);
1941 if (bc.nd > nd) {
1942 error = bigcomp(&rv, s0, &bc);
1943 if (error)
1944 goto failed_malloc;
1945 }
1946
1947 if (bc.scale) {
1948 word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
1949 word1(&rv0) = 0;
1950 dval(&rv) *= dval(&rv0);
1951 /* try to avoid the bug of testing an 8087 register value */
1952 if (!(word0(&rv) & Exp_mask))
1953 errno = ERANGE;
1954 }
1955 ret:
1956 if (se)
1957 *se = (char *)s;
1958 return sign ? -dval(&rv) : dval(&rv);
1959
1960 failed_malloc:
1961 if (se)
1962 *se = (char *)s00;
1963 errno = ENOMEM;
1964 return -1.0;
1965}
1966
1967static char *
1968rv_alloc(int i)
1969{
1970 int j, k, *r;
1971
1972 j = sizeof(ULong);
1973 for(k = 0;
1974 sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i;
1975 j <<= 1)
1976 k++;
1977 r = (int*)Balloc(k);
1978 if (r == NULL)
1979 return NULL;
1980 *r = k;
1981 return (char *)(r+1);
1982}
1983
1984static char *
1985nrv_alloc(char *s, char **rve, int n)
1986{
1987 char *rv, *t;
1988
1989 rv = rv_alloc(n);
1990 if (rv == NULL)
1991 return NULL;
1992 t = rv;
1993 while((*t = *s++)) t++;
1994 if (rve)
1995 *rve = t;
1996 return rv;
1997}
1998
1999/* freedtoa(s) must be used to free values s returned by dtoa
2000 * when MULTIPLE_THREADS is #defined. It should be used in all cases,
2001 * but for consistency with earlier versions of dtoa, it is optional
2002 * when MULTIPLE_THREADS is not defined.
2003 */
2004
2005void
2006_Py_dg_freedtoa(char *s)
2007{
2008 Bigint *b = (Bigint *)((int *)s - 1);
2009 b->maxwds = 1 << (b->k = *(int*)b);
2010 Bfree(b);
2011}
2012
2013/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
2014 *
2015 * Inspired by "How to Print Floating-Point Numbers Accurately" by
2016 * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
2017 *
2018 * Modifications:
2019 * 1. Rather than iterating, we use a simple numeric overestimate
2020 * to determine k = floor(log10(d)). We scale relevant
2021 * quantities using O(log2(k)) rather than O(k) multiplications.
2022 * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
2023 * try to generate digits strictly left to right. Instead, we
2024 * compute with fewer bits and propagate the carry if necessary
2025 * when rounding the final digit up. This is often faster.
2026 * 3. Under the assumption that input will be rounded nearest,
2027 * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
2028 * That is, we allow equality in stopping tests when the
2029 * round-nearest rule will give the same floating-point value
2030 * as would satisfaction of the stopping test with strict
2031 * inequality.
2032 * 4. We remove common factors of powers of 2 from relevant
2033 * quantities.
2034 * 5. When converting floating-point integers less than 1e16,
2035 * we use floating-point arithmetic rather than resorting
2036 * to multiple-precision integers.
2037 * 6. When asked to produce fewer than 15 digits, we first try
2038 * to get by with floating-point arithmetic; we resort to
2039 * multiple-precision integer arithmetic only if we cannot
2040 * guarantee that the floating-point calculation has given
2041 * the correctly rounded result. For k requested digits and
2042 * "uniformly" distributed input, the probability is
2043 * something like 10^(k-15) that we must resort to the Long
2044 * calculation.
2045 */
2046
2047/* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory
2048 leakage, a successful call to _Py_dg_dtoa should always be matched by a
2049 call to _Py_dg_freedtoa. */
2050
2051char *
2052_Py_dg_dtoa(double dd, int mode, int ndigits,
2053 int *decpt, int *sign, char **rve)
2054{
2055 /* Arguments ndigits, decpt, sign are similar to those
2056 of ecvt and fcvt; trailing zeros are suppressed from
2057 the returned string. If not null, *rve is set to point
2058 to the end of the return value. If d is +-Infinity or NaN,
2059 then *decpt is set to 9999.
2060
2061 mode:
2062 0 ==> shortest string that yields d when read in
2063 and rounded to nearest.
2064 1 ==> like 0, but with Steele & White stopping rule;
2065 e.g. with IEEE P754 arithmetic , mode 0 gives
2066 1e23 whereas mode 1 gives 9.999999999999999e22.
2067 2 ==> max(1,ndigits) significant digits. This gives a
2068 return value similar to that of ecvt, except
2069 that trailing zeros are suppressed.
2070 3 ==> through ndigits past the decimal point. This
2071 gives a return value similar to that from fcvt,
2072 except that trailing zeros are suppressed, and
2073 ndigits can be negative.
2074 4,5 ==> similar to 2 and 3, respectively, but (in
2075 round-nearest mode) with the tests of mode 0 to
2076 possibly return a shorter string that rounds to d.
2077 With IEEE arithmetic and compilation with
2078 -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
2079 as modes 2 and 3 when FLT_ROUNDS != 1.
2080 6-9 ==> Debugging modes similar to mode - 4: don't try
2081 fast floating-point estimate (if applicable).
2082
2083 Values of mode other than 0-9 are treated as mode 0.
2084
2085 Sufficient space is allocated to the return value
2086 to hold the suppressed trailing zeros.
2087 */
2088
2089 int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
2090 j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
2091 spec_case, try_quick;
2092 Long L;
2093 int denorm;
2094 ULong x;
2095 Bigint *b, *b1, *delta, *mlo, *mhi, *S;
2096 U d2, eps, u;
2097 double ds;
2098 char *s, *s0;
2099
2100 /* set pointers to NULL, to silence gcc compiler warnings and make
2101 cleanup easier on error */
2102 mlo = mhi = b = S = 0;
2103 s0 = 0;
2104
2105 u.d = dd;
2106 if (word0(&u) & Sign_bit) {
2107 /* set sign for everything, including 0's and NaNs */
2108 *sign = 1;
2109 word0(&u) &= ~Sign_bit; /* clear sign bit */
2110 }
2111 else
2112 *sign = 0;
2113
2114 /* quick return for Infinities, NaNs and zeros */
2115 if ((word0(&u) & Exp_mask) == Exp_mask)
2116 {
2117 /* Infinity or NaN */
2118 *decpt = 9999;
2119 if (!word1(&u) && !(word0(&u) & 0xfffff))
2120 return nrv_alloc("Infinity", rve, 8);
2121 return nrv_alloc("NaN", rve, 3);
2122 }
2123 if (!dval(&u)) {
2124 *decpt = 1;
2125 return nrv_alloc("0", rve, 1);
2126 }
2127
2128 /* compute k = floor(log10(d)). The computation may leave k
2129 one too large, but should never leave k too small. */
2130 b = d2b(&u, &be, &bbits);
2131 if (b == NULL)
2132 goto failed_malloc;
2133 if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
2134 dval(&d2) = dval(&u);
2135 word0(&d2) &= Frac_mask1;
2136 word0(&d2) |= Exp_11;
2137
2138 /* log(x) ~=~ log(1.5) + (x-1.5)/1.5
2139 * log10(x) = log(x) / log(10)
2140 * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
2141 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
2142 *
2143 * This suggests computing an approximation k to log10(d) by
2144 *
2145 * k = (i - Bias)*0.301029995663981
2146 * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
2147 *
2148 * We want k to be too large rather than too small.
2149 * The error in the first-order Taylor series approximation
2150 * is in our favor, so we just round up the constant enough
2151 * to compensate for any error in the multiplication of
2152 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
2153 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
2154 * adding 1e-13 to the constant term more than suffices.
2155 * Hence we adjust the constant term to 0.1760912590558.
2156 * (We could get a more accurate k by invoking log10,
2157 * but this is probably not worthwhile.)
2158 */
2159
2160 i -= Bias;
2161 denorm = 0;
2162 }
2163 else {
2164 /* d is denormalized */
2165
2166 i = bbits + be + (Bias + (P-1) - 1);
2167 x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
2168 : word1(&u) << (32 - i);
2169 dval(&d2) = x;
2170 word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
2171 i -= (Bias + (P-1) - 1) + 1;
2172 denorm = 1;
2173 }
2174 ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 +
2175 i*0.301029995663981;
2176 k = (int)ds;
2177 if (ds < 0. && ds != k)
2178 k--; /* want k = floor(ds) */
2179 k_check = 1;
2180 if (k >= 0 && k <= Ten_pmax) {
2181 if (dval(&u) < tens[k])
2182 k--;
2183 k_check = 0;
2184 }
2185 j = bbits - i - 1;
2186 if (j >= 0) {
2187 b2 = 0;
2188 s2 = j;
2189 }
2190 else {
2191 b2 = -j;
2192 s2 = 0;
2193 }
2194 if (k >= 0) {
2195 b5 = 0;
2196 s5 = k;
2197 s2 += k;
2198 }
2199 else {
2200 b2 -= k;
2201 b5 = -k;
2202 s5 = 0;
2203 }
2204 if (mode < 0 || mode > 9)
2205 mode = 0;
2206
2207 try_quick = 1;
2208
2209 if (mode > 5) {
2210 mode -= 4;
2211 try_quick = 0;
2212 }
2213 leftright = 1;
2214 ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
2215 /* silence erroneous "gcc -Wall" warning. */
2216 switch(mode) {
2217 case 0:
2218 case 1:
2219 i = 18;
2220 ndigits = 0;
2221 break;
2222 case 2:
2223 leftright = 0;
2224 /* no break */
2225 case 4:
2226 if (ndigits <= 0)
2227 ndigits = 1;
2228 ilim = ilim1 = i = ndigits;
2229 break;
2230 case 3:
2231 leftright = 0;
2232 /* no break */
2233 case 5:
2234 i = ndigits + k + 1;
2235 ilim = i;
2236 ilim1 = i - 1;
2237 if (i <= 0)
2238 i = 1;
2239 }
2240 s0 = rv_alloc(i);
2241 if (s0 == NULL)
2242 goto failed_malloc;
2243 s = s0;
2244
2245
2246 if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2247
2248 /* Try to get by with floating-point arithmetic. */
2249
2250 i = 0;
2251 dval(&d2) = dval(&u);
2252 k0 = k;
2253 ilim0 = ilim;
2254 ieps = 2; /* conservative */
2255 if (k > 0) {
2256 ds = tens[k&0xf];
2257 j = k >> 4;
2258 if (j & Bletch) {
2259 /* prevent overflows */
2260 j &= Bletch - 1;
2261 dval(&u) /= bigtens[n_bigtens-1];
2262 ieps++;
2263 }
2264 for(; j; j >>= 1, i++)
2265 if (j & 1) {
2266 ieps++;
2267 ds *= bigtens[i];
2268 }
2269 dval(&u) /= ds;
2270 }
2271 else if ((j1 = -k)) {
2272 dval(&u) *= tens[j1 & 0xf];
2273 for(j = j1 >> 4; j; j >>= 1, i++)
2274 if (j & 1) {
2275 ieps++;
2276 dval(&u) *= bigtens[i];
2277 }
2278 }
2279 if (k_check && dval(&u) < 1. && ilim > 0) {
2280 if (ilim1 <= 0)
2281 goto fast_failed;
2282 ilim = ilim1;
2283 k--;
2284 dval(&u) *= 10.;
2285 ieps++;
2286 }
2287 dval(&eps) = ieps*dval(&u) + 7.;
2288 word0(&eps) -= (P-1)*Exp_msk1;
2289 if (ilim == 0) {
2290 S = mhi = 0;
2291 dval(&u) -= 5.;
2292 if (dval(&u) > dval(&eps))
2293 goto one_digit;
2294 if (dval(&u) < -dval(&eps))
2295 goto no_digits;
2296 goto fast_failed;
2297 }
2298 if (leftright) {
2299 /* Use Steele & White method of only
2300 * generating digits needed.
2301 */
2302 dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
2303 for(i = 0;;) {
2304 L = (Long)dval(&u);
2305 dval(&u) -= L;
2306 *s++ = '0' + (int)L;
2307 if (dval(&u) < dval(&eps))
2308 goto ret1;
2309 if (1. - dval(&u) < dval(&eps))
2310 goto bump_up;
2311 if (++i >= ilim)
2312 break;
2313 dval(&eps) *= 10.;
2314 dval(&u) *= 10.;
2315 }
2316 }
2317 else {
2318 /* Generate ilim digits, then fix them up. */
2319 dval(&eps) *= tens[ilim-1];
2320 for(i = 1;; i++, dval(&u) *= 10.) {
2321 L = (Long)(dval(&u));
2322 if (!(dval(&u) -= L))
2323 ilim = i;
2324 *s++ = '0' + (int)L;
2325 if (i == ilim) {
2326 if (dval(&u) > 0.5 + dval(&eps))
2327 goto bump_up;
2328 else if (dval(&u) < 0.5 - dval(&eps)) {
2329 while(*--s == '0');
2330 s++;
2331 goto ret1;
2332 }
2333 break;
2334 }
2335 }
2336 }
2337 fast_failed:
2338 s = s0;
2339 dval(&u) = dval(&d2);
2340 k = k0;
2341 ilim = ilim0;
2342 }
2343
2344 /* Do we have a "small" integer? */
2345
2346 if (be >= 0 && k <= Int_max) {
2347 /* Yes. */
2348 ds = tens[k];
2349 if (ndigits < 0 && ilim <= 0) {
2350 S = mhi = 0;
2351 if (ilim < 0 || dval(&u) <= 5*ds)
2352 goto no_digits;
2353 goto one_digit;
2354 }
2355 for(i = 1;; i++, dval(&u) *= 10.) {
2356 L = (Long)(dval(&u) / ds);
2357 dval(&u) -= L*ds;
2358 *s++ = '0' + (int)L;
2359 if (!dval(&u)) {
2360 break;
2361 }
2362 if (i == ilim) {
2363 dval(&u) += dval(&u);
2364 if (dval(&u) > ds || (dval(&u) == ds && L & 1)) {
2365 bump_up:
2366 while(*--s == '9')
2367 if (s == s0) {
2368 k++;
2369 *s = '0';
2370 break;
2371 }
2372 ++*s++;
2373 }
2374 break;
2375 }
2376 }
2377 goto ret1;
2378 }
2379
2380 m2 = b2;
2381 m5 = b5;
2382 if (leftright) {
2383 i =
2384 denorm ? be + (Bias + (P-1) - 1 + 1) :
2385 1 + P - bbits;
2386 b2 += i;
2387 s2 += i;
2388 mhi = i2b(1);
2389 if (mhi == NULL)
2390 goto failed_malloc;
2391 }
2392 if (m2 > 0 && s2 > 0) {
2393 i = m2 < s2 ? m2 : s2;
2394 b2 -= i;
2395 m2 -= i;
2396 s2 -= i;
2397 }
2398 if (b5 > 0) {
2399 if (leftright) {
2400 if (m5 > 0) {
2401 mhi = pow5mult(mhi, m5);
2402 if (mhi == NULL)
2403 goto failed_malloc;
2404 b1 = mult(mhi, b);
2405 Bfree(b);
2406 b = b1;
2407 if (b == NULL)
2408 goto failed_malloc;
2409 }
2410 if ((j = b5 - m5)) {
2411 b = pow5mult(b, j);
2412 if (b == NULL)
2413 goto failed_malloc;
2414 }
2415 }
2416 else {
2417 b = pow5mult(b, b5);
2418 if (b == NULL)
2419 goto failed_malloc;
2420 }
2421 }
2422 S = i2b(1);
2423 if (S == NULL)
2424 goto failed_malloc;
2425 if (s5 > 0) {
2426 S = pow5mult(S, s5);
2427 if (S == NULL)
2428 goto failed_malloc;
2429 }
2430
2431 /* Check for special case that d is a normalized power of 2. */
2432
2433 spec_case = 0;
2434 if ((mode < 2 || leftright)
2435 ) {
2436 if (!word1(&u) && !(word0(&u) & Bndry_mask)
2437 && word0(&u) & (Exp_mask & ~Exp_msk1)
2438 ) {
2439 /* The special case */
2440 b2 += Log2P;
2441 s2 += Log2P;
2442 spec_case = 1;
2443 }
2444 }
2445
2446 /* Arrange for convenient computation of quotients:
2447 * shift left if necessary so divisor has 4 leading 0 bits.
2448 *
2449 * Perhaps we should just compute leading 28 bits of S once
2450 * and for all and pass them and a shift to quorem, so it
2451 * can do shifts and ors to compute the numerator for q.
2452 */
2453 if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f))
2454 i = 32 - i;
2455#define iInc 28
2456 i = dshift(S, s2);
2457 b2 += i;
2458 m2 += i;
2459 s2 += i;
2460 if (b2 > 0) {
2461 b = lshift(b, b2);
2462 if (b == NULL)
2463 goto failed_malloc;
2464 }
2465 if (s2 > 0) {
2466 S = lshift(S, s2);
2467 if (S == NULL)
2468 goto failed_malloc;
2469 }
2470 if (k_check) {
2471 if (cmp(b,S) < 0) {
2472 k--;
2473 b = multadd(b, 10, 0); /* we botched the k estimate */
2474 if (b == NULL)
2475 goto failed_malloc;
2476 if (leftright) {
2477 mhi = multadd(mhi, 10, 0);
2478 if (mhi == NULL)
2479 goto failed_malloc;
2480 }
2481 ilim = ilim1;
2482 }
2483 }
2484 if (ilim <= 0 && (mode == 3 || mode == 5)) {
2485 if (ilim < 0) {
2486 /* no digits, fcvt style */
2487 no_digits:
2488 k = -1 - ndigits;
2489 goto ret;
2490 }
2491 else {
2492 S = multadd(S, 5, 0);
2493 if (S == NULL)
2494 goto failed_malloc;
2495 if (cmp(b, S) <= 0)
2496 goto no_digits;
2497 }
2498 one_digit:
2499 *s++ = '1';
2500 k++;
2501 goto ret;
2502 }
2503 if (leftright) {
2504 if (m2 > 0) {
2505 mhi = lshift(mhi, m2);
2506 if (mhi == NULL)
2507 goto failed_malloc;
2508 }
2509
2510 /* Compute mlo -- check for special case
2511 * that d is a normalized power of 2.
2512 */
2513
2514 mlo = mhi;
2515 if (spec_case) {
2516 mhi = Balloc(mhi->k);
2517 if (mhi == NULL)
2518 goto failed_malloc;
2519 Bcopy(mhi, mlo);
2520 mhi = lshift(mhi, Log2P);
2521 if (mhi == NULL)
2522 goto failed_malloc;
2523 }
2524
2525 for(i = 1;;i++) {
2526 dig = quorem(b,S) + '0';
2527 /* Do we yet have the shortest decimal string
2528 * that will round to d?
2529 */
2530 j = cmp(b, mlo);
2531 delta = diff(S, mhi);
2532 if (delta == NULL)
2533 goto failed_malloc;
2534 j1 = delta->sign ? 1 : cmp(b, delta);
2535 Bfree(delta);
2536 if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
2537 ) {
2538 if (dig == '9')
2539 goto round_9_up;
2540 if (j > 0)
2541 dig++;
2542 *s++ = dig;
2543 goto ret;
2544 }
2545 if (j < 0 || (j == 0 && mode != 1
2546 && !(word1(&u) & 1)
2547 )) {
2548 if (!b->x[0] && b->wds <= 1) {
2549 goto accept_dig;
2550 }
2551 if (j1 > 0) {
2552 b = lshift(b, 1);
2553 if (b == NULL)
2554 goto failed_malloc;
2555 j1 = cmp(b, S);
2556 if ((j1 > 0 || (j1 == 0 && dig & 1))
2557 && dig++ == '9')
2558 goto round_9_up;
2559 }
2560 accept_dig:
2561 *s++ = dig;
2562 goto ret;
2563 }
2564 if (j1 > 0) {
2565 if (dig == '9') { /* possible if i == 1 */
2566 round_9_up:
2567 *s++ = '9';
2568 goto roundoff;
2569 }
2570 *s++ = dig + 1;
2571 goto ret;
2572 }
2573 *s++ = dig;
2574 if (i == ilim)
2575 break;
2576 b = multadd(b, 10, 0);
2577 if (b == NULL)
2578 goto failed_malloc;
2579 if (mlo == mhi) {
2580 mlo = mhi = multadd(mhi, 10, 0);
2581 if (mlo == NULL)
2582 goto failed_malloc;
2583 }
2584 else {
2585 mlo = multadd(mlo, 10, 0);
2586 if (mlo == NULL)
2587 goto failed_malloc;
2588 mhi = multadd(mhi, 10, 0);
2589 if (mhi == NULL)
2590 goto failed_malloc;
2591 }
2592 }
2593 }
2594 else
2595 for(i = 1;; i++) {
2596 *s++ = dig = quorem(b,S) + '0';
2597 if (!b->x[0] && b->wds <= 1) {
2598 goto ret;
2599 }
2600 if (i >= ilim)
2601 break;
2602 b = multadd(b, 10, 0);
2603 if (b == NULL)
2604 goto failed_malloc;
2605 }
2606
2607 /* Round off last digit */
2608
2609 b = lshift(b, 1);
2610 if (b == NULL)
2611 goto failed_malloc;
2612 j = cmp(b, S);
2613 if (j > 0 || (j == 0 && dig & 1)) {
2614 roundoff:
2615 while(*--s == '9')
2616 if (s == s0) {
2617 k++;
2618 *s++ = '1';
2619 goto ret;
2620 }
2621 ++*s++;
2622 }
2623 else {
2624 while(*--s == '0');
2625 s++;
2626 }
2627 ret:
2628 Bfree(S);
2629 if (mhi) {
2630 if (mlo && mlo != mhi)
2631 Bfree(mlo);
2632 Bfree(mhi);
2633 }
2634 ret1:
2635 Bfree(b);
2636 *s = 0;
2637 *decpt = k + 1;
2638 if (rve)
2639 *rve = s;
2640 return s0;
2641 failed_malloc:
2642 if (S)
2643 Bfree(S);
2644 if (mlo && mlo != mhi)
2645 Bfree(mlo);
2646 if (mhi)
2647 Bfree(mhi);
2648 if (b)
2649 Bfree(b);
2650 if (s0)
2651 _Py_dg_freedtoa(s0);
2652 return NULL;
2653}
2654#ifdef __cplusplus
2655}
2656#endif
2657
2658#endif /* PY_NO_SHORT_FLOAT_REPR */