| Benjamin Peterson | 90f5ba5 | 2010-03-11 22:53:45 +0000 | [diff] [blame] | 1 | #!/usr/bin/env python3 | 
| Martin v. Löwis | 97cf99f | 2008-06-10 04:44:07 +0000 | [diff] [blame] | 2 | """      turtle-example-suite: | 
 | 3 |  | 
 | 4 |         tdemo_fractalCurves.py | 
 | 5 |  | 
 | 6 | This program draws two fractal-curve-designs: | 
 | 7 | (1) A hilbert curve (in a box) | 
 | 8 | (2) A combination of Koch-curves. | 
 | 9 |  | 
 | 10 | The CurvesTurtle class and the fractal-curve- | 
 | 11 | methods are taken from the PythonCard example | 
 | 12 | scripts for turtle-graphics. | 
 | 13 | """ | 
| Martin v. Löwis | 60ebb8b | 2008-09-21 07:32:10 +0000 | [diff] [blame] | 14 | from turtle import * | 
| Martin v. Löwis | 97cf99f | 2008-06-10 04:44:07 +0000 | [diff] [blame] | 15 | from time import sleep, clock | 
 | 16 |  | 
 | 17 | class CurvesTurtle(Pen): | 
 | 18 |     # example derived from | 
 | 19 |     # Turtle Geometry: The Computer as a Medium for Exploring Mathematics | 
 | 20 |     # by Harold Abelson and Andrea diSessa | 
 | 21 |     # p. 96-98 | 
 | 22 |     def hilbert(self, size, level, parity): | 
 | 23 |         if level == 0: | 
 | 24 |             return | 
 | 25 |         # rotate and draw first subcurve with opposite parity to big curve | 
 | 26 |         self.left(parity * 90) | 
 | 27 |         self.hilbert(size, level - 1, -parity) | 
 | 28 |         # interface to and draw second subcurve with same parity as big curve | 
 | 29 |         self.forward(size) | 
 | 30 |         self.right(parity * 90) | 
 | 31 |         self.hilbert(size, level - 1, parity) | 
 | 32 |         # third subcurve | 
 | 33 |         self.forward(size) | 
 | 34 |         self.hilbert(size, level - 1, parity) | 
 | 35 |         # fourth subcurve | 
 | 36 |         self.right(parity * 90) | 
 | 37 |         self.forward(size) | 
 | 38 |         self.hilbert(size, level - 1, -parity) | 
 | 39 |         # a final turn is needed to make the turtle | 
 | 40 |         # end up facing outward from the large square | 
 | 41 |         self.left(parity * 90) | 
 | 42 |  | 
 | 43 |     # Visual Modeling with Logo: A Structural Approach to Seeing | 
 | 44 |     # by James Clayson | 
 | 45 |     # Koch curve, after Helge von Koch who introduced this geometric figure in 1904 | 
 | 46 |     # p. 146 | 
 | 47 |     def fractalgon(self, n, rad, lev, dir): | 
 | 48 |         import math | 
 | 49 |  | 
 | 50 |         # if dir = 1 turn outward | 
 | 51 |         # if dir = -1 turn inward | 
 | 52 |         edge = 2 * rad * math.sin(math.pi / n) | 
 | 53 |         self.pu() | 
 | 54 |         self.fd(rad) | 
 | 55 |         self.pd() | 
 | 56 |         self.rt(180 - (90 * (n - 2) / n)) | 
 | 57 |         for i in range(n): | 
 | 58 |             self.fractal(edge, lev, dir) | 
 | 59 |             self.rt(360 / n) | 
 | 60 |         self.lt(180 - (90 * (n - 2) / n)) | 
 | 61 |         self.pu() | 
 | 62 |         self.bk(rad) | 
 | 63 |         self.pd() | 
 | 64 |  | 
 | 65 |     # p. 146 | 
 | 66 |     def fractal(self, dist, depth, dir): | 
 | 67 |         if depth < 1: | 
 | 68 |             self.fd(dist) | 
 | 69 |             return | 
 | 70 |         self.fractal(dist / 3, depth - 1, dir) | 
 | 71 |         self.lt(60 * dir) | 
 | 72 |         self.fractal(dist / 3, depth - 1, dir) | 
 | 73 |         self.rt(120 * dir) | 
 | 74 |         self.fractal(dist / 3, depth - 1, dir) | 
 | 75 |         self.lt(60 * dir) | 
 | 76 |         self.fractal(dist / 3, depth - 1, dir) | 
 | 77 |  | 
 | 78 | def main(): | 
 | 79 |     ft = CurvesTurtle() | 
 | 80 |  | 
 | 81 |     ft.reset() | 
 | 82 |     ft.speed(0) | 
 | 83 |     ft.ht() | 
 | 84 |     ft.getscreen().tracer(1,0) | 
 | 85 |     ft.pu() | 
 | 86 |  | 
 | 87 |     size = 6 | 
 | 88 |     ft.setpos(-33*size, -32*size) | 
 | 89 |     ft.pd() | 
 | 90 |  | 
 | 91 |     ta=clock() | 
 | 92 |     ft.fillcolor("red") | 
 | 93 |     ft.begin_fill() | 
 | 94 |     ft.fd(size) | 
 | 95 |  | 
 | 96 |     ft.hilbert(size, 6, 1) | 
 | 97 |  | 
 | 98 |     # frame | 
 | 99 |     ft.fd(size) | 
 | 100 |     for i in range(3): | 
 | 101 |         ft.lt(90) | 
 | 102 |         ft.fd(size*(64+i%2)) | 
 | 103 |     ft.pu() | 
 | 104 |     for i in range(2): | 
 | 105 |         ft.fd(size) | 
 | 106 |         ft.rt(90) | 
 | 107 |     ft.pd() | 
 | 108 |     for i in range(4): | 
 | 109 |         ft.fd(size*(66+i%2)) | 
 | 110 |         ft.rt(90) | 
 | 111 |     ft.end_fill() | 
 | 112 |     tb=clock() | 
 | 113 |     res =  "Hilbert: %.2fsec. " % (tb-ta) | 
 | 114 |  | 
 | 115 |     sleep(3) | 
 | 116 |  | 
 | 117 |     ft.reset() | 
 | 118 |     ft.speed(0) | 
 | 119 |     ft.ht() | 
 | 120 |     ft.getscreen().tracer(1,0) | 
 | 121 |  | 
 | 122 |     ta=clock() | 
 | 123 |     ft.color("black", "blue") | 
 | 124 |     ft.begin_fill() | 
 | 125 |     ft.fractalgon(3, 250, 4, 1) | 
 | 126 |     ft.end_fill() | 
 | 127 |     ft.begin_fill() | 
 | 128 |     ft.color("red") | 
 | 129 |     ft.fractalgon(3, 200, 4, -1) | 
 | 130 |     ft.end_fill() | 
 | 131 |     tb=clock() | 
 | 132 |     res +=  "Koch: %.2fsec." % (tb-ta) | 
 | 133 |     return res | 
 | 134 |  | 
 | 135 | if __name__  == '__main__': | 
 | 136 |     msg = main() | 
 | 137 |     print(msg) | 
 | 138 |     mainloop() |