blob: 092f0388756864bf87eb65ccf8a6da7cf04b2576 [file] [log] [blame]
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001\section{\module{decimal} ---
2 Decimal floating point arithmetic}
3
4\declaremodule{standard}{decimal}
5\modulesynopsis{Implementation of the General Decimal Arithmetic
6Specification.}
7
8\moduleauthor{Eric Price}{eprice at tjhsst.edu}
9\moduleauthor{Facundo Batista}{facundo at taniquetil.com.ar}
10\moduleauthor{Raymond Hettinger}{python at rcn.com}
11\moduleauthor{Aahz}{aahz at pobox.com}
12\moduleauthor{Tim Peters}{tim.one at comcast.net}
13
14\sectionauthor{Raymond D. Hettinger}{python at rcn.com}
15
16\versionadded{2.4}
17
Raymond Hettinger97c92082004-07-09 06:13:12 +000018The \module{decimal} module provides support for decimal floating point
Raymond Hettinger8de63a22004-07-05 05:52:03 +000019arithmetic. It offers several advantages over the \class{float()} datatype:
20
21\begin{itemize}
22
23\item Decimal numbers can be represented exactly. In contrast, numbers like
Raymond Hettinger65df07b2004-07-11 12:40:19 +000024\constant{1.1} do not have an exact representation in binary floating point.
Raymond Hettingerd7c71152004-07-12 13:22:14 +000025End users typically would not expect \constant{1.1} to display as
Raymond Hettinger8de63a22004-07-05 05:52:03 +000026\constant{1.1000000000000001} as it does with binary floating point.
27
28\item The exactness carries over into arithmetic. In decimal floating point,
29\samp{0.1 + 0.1 + 0.1 - 0.3} is exactly equal to zero. In binary floating
30point, result is \constant{5.5511151231257827e-017}. While near to zero, the
31differences prevent reliable equality testing and differences can accumulate.
32For this reason, decimal would be preferred in accounting applications which
33have strict equality invariants.
34
Raymond Hettinger11666382005-09-11 18:21:52 +000035\item The decimal module incorporates a notion of significant places so that
Raymond Hettinger8de63a22004-07-05 05:52:03 +000036\samp{1.30 + 1.20} is \constant{2.50}. The trailing zero is kept to indicate
37significance. This is the customary presentation for monetary applications. For
38multiplication, the ``schoolbook'' approach uses all the figures in the
39multiplicands. For instance, \samp{1.3 * 1.2} gives \constant{1.56} while
40\samp{1.30 * 1.20} gives \constant{1.5600}.
41
42\item Unlike hardware based binary floating point, the decimal module has a user
43settable precision (defaulting to 28 places) which can be as large as needed for
44a given problem:
45
46\begin{verbatim}
47>>> getcontext().prec = 6
48>>> Decimal(1) / Decimal(7)
49Decimal("0.142857")
50>>> getcontext().prec = 28
51>>> Decimal(1) / Decimal(7)
52Decimal("0.1428571428571428571428571429")
53\end{verbatim}
54
55\item Both binary and decimal floating point are implemented in terms of published
56standards. While the built-in float type exposes only a modest portion of its
57capabilities, the decimal module exposes all required parts of the standard.
58When needed, the programmer has full control over rounding and signal handling.
59
60\end{itemize}
61
62
63The module design is centered around three concepts: the decimal number, the
64context for arithmetic, and signals.
65
66A decimal number is immutable. It has a sign, coefficient digits, and an
67exponent. To preserve significance, the coefficient digits do not truncate
68trailing zeroes. Decimals also include special values such as
Raymond Hettinger5aa478b2004-07-09 10:02:53 +000069\constant{Infinity}, \constant{-Infinity}, and \constant{NaN}. The standard
70also differentiates \constant{-0} from \constant{+0}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +000071
72The context for arithmetic is an environment specifying precision, rounding
Raymond Hettinger65df07b2004-07-11 12:40:19 +000073rules, limits on exponents, flags indicating the results of operations,
74and trap enablers which determine whether signals are treated as
Raymond Hettinger8de63a22004-07-05 05:52:03 +000075exceptions. Rounding options include \constant{ROUND_CEILING},
76\constant{ROUND_DOWN}, \constant{ROUND_FLOOR}, \constant{ROUND_HALF_DOWN},
77\constant{ROUND_HALF_EVEN}, \constant{ROUND_HALF_UP}, and \constant{ROUND_UP}.
78
Raymond Hettinger65df07b2004-07-11 12:40:19 +000079Signals are groups of exceptional conditions arising during the course of
80computation. Depending on the needs of the application, signals may be
Raymond Hettinger8de63a22004-07-05 05:52:03 +000081ignored, considered as informational, or treated as exceptions. The signals in
82the decimal module are: \constant{Clamped}, \constant{InvalidOperation},
Raymond Hettinger5aa478b2004-07-09 10:02:53 +000083\constant{DivisionByZero}, \constant{Inexact}, \constant{Rounded},
Raymond Hettinger8de63a22004-07-05 05:52:03 +000084\constant{Subnormal}, \constant{Overflow}, and \constant{Underflow}.
85
86For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger467024c2005-02-21 15:46:52 +000087encountered, its flag is incremented from zero and, then, if the trap enabler
Raymond Hettinger97c92082004-07-09 06:13:12 +000088is set to one, an exception is raised. Flags are sticky, so the user
89needs to reset them before monitoring a calculation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +000090
91
92\begin{seealso}
93 \seetext{IBM's General Decimal Arithmetic Specification,
94 \citetitle[http://www2.hursley.ibm.com/decimal/decarith.html]
95 {The General Decimal Arithmetic Specification}.}
96
97 \seetext{IEEE standard 854-1987,
Raymond Hettinger536f76b2004-07-08 09:22:33 +000098 \citetitle[http://www.cs.berkeley.edu/\textasciitilde ejr/projects/754/private/drafts/854-1987/dir.html]
Raymond Hettinger8de63a22004-07-05 05:52:03 +000099 {Unofficial IEEE 854 Text}.}
100\end{seealso}
101
102
103
104%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
105\subsection{Quick-start Tutorial \label{decimal-tutorial}}
106
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000107The usual start to using decimals is importing the module, viewing the current
108context with \function{getcontext()} and, if necessary, setting new values
109for precision, rounding, or enabled traps:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000110
111\begin{verbatim}
112>>> from decimal import *
113>>> getcontext()
114Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000115 capitals=1, flags=[], traps=[Overflow, InvalidOperation,
116 DivisionByZero])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000117
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000118>>> getcontext().prec = 7 # Set a new precision
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000119\end{verbatim}
120
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000121
Raymond Hettinger467024c2005-02-21 15:46:52 +0000122Decimal instances can be constructed from integers, strings, or tuples. To
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000123create a Decimal from a \class{float}, first convert it to a string. This
124serves as an explicit reminder of the details of the conversion (including
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000125representation error). Decimal numbers include special values such as
126\constant{NaN} which stands for ``Not a number'', positive and negative
127\constant{Infinity}, and \constant{-0}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000128
129\begin{verbatim}
130>>> Decimal(10)
131Decimal("10")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000132>>> Decimal("3.14")
133Decimal("3.14")
134>>> Decimal((0, (3, 1, 4), -2))
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000135Decimal("3.14")
136>>> Decimal(str(2.0 ** 0.5))
137Decimal("1.41421356237")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000138>>> Decimal("NaN")
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000139Decimal("NaN")
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000140>>> Decimal("-Infinity")
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000141Decimal("-Infinity")
142\end{verbatim}
143
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000144
145The significance of a new Decimal is determined solely by the number
146of digits input. Context precision and rounding only come into play during
147arithmetic operations.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000148
149\begin{verbatim}
150>>> getcontext().prec = 6
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000151>>> Decimal('3.0')
152Decimal("3.0")
153>>> Decimal('3.1415926535')
154Decimal("3.1415926535")
155>>> Decimal('3.1415926535') + Decimal('2.7182818285')
156Decimal("5.85987")
157>>> getcontext().rounding = ROUND_UP
158>>> Decimal('3.1415926535') + Decimal('2.7182818285')
159Decimal("5.85988")
160\end{verbatim}
161
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000162
Raymond Hettinger467024c2005-02-21 15:46:52 +0000163Decimals interact well with much of the rest of Python. Here is a small
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000164decimal floating point flying circus:
165
166\begin{verbatim}
167>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
168>>> max(data)
169Decimal("9.25")
170>>> min(data)
171Decimal("0.03")
172>>> sorted(data)
173[Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal("1.87"),
174 Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]
175>>> sum(data)
176Decimal("19.29")
177>>> a,b,c = data[:3]
178>>> str(a)
179'1.34'
180>>> float(a)
1811.3400000000000001
Raymond Hettinger92960232004-07-14 21:06:55 +0000182>>> round(a, 1) # round() first converts to binary floating point
Raymond Hettinger8de63a22004-07-05 05:52:03 +00001831.3
184>>> int(a)
1851
186>>> a * 5
187Decimal("6.70")
188>>> a * b
189Decimal("2.5058")
190>>> c % a
191Decimal("0.77")
192\end{verbatim}
193
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000194The \method{quantize()} method rounds a number to a fixed exponent. This
195method is useful for monetary applications that often round results to a fixed
196number of places:
197
198\begin{verbatim}
199>>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
200Decimal("7.32")
201>>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
202Decimal("8")
203\end{verbatim}
204
205As shown above, the \function{getcontext()} function accesses the current
206context and allows the settings to be changed. This approach meets the
207needs of most applications.
208
209For more advanced work, it may be useful to create alternate contexts using
210the Context() constructor. To make an alternate active, use the
211\function{setcontext()} function.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000212
213In accordance with the standard, the \module{Decimal} module provides two
214ready to use standard contexts, \constant{BasicContext} and
215\constant{ExtendedContext}. The former is especially useful for debugging
216because many of the traps are enabled:
217
218\begin{verbatim}
219>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000220>>> setcontext(myothercontext)
221>>> Decimal(1) / Decimal(7)
222Decimal("0.142857142857142857142857142857142857142857142857142857142857")
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000223
224>>> ExtendedContext
225Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
226 capitals=1, flags=[], traps=[])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000227>>> setcontext(ExtendedContext)
228>>> Decimal(1) / Decimal(7)
229Decimal("0.142857143")
230>>> Decimal(42) / Decimal(0)
231Decimal("Infinity")
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000232
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000233>>> setcontext(BasicContext)
234>>> Decimal(42) / Decimal(0)
235Traceback (most recent call last):
236 File "<pyshell#143>", line 1, in -toplevel-
237 Decimal(42) / Decimal(0)
238DivisionByZero: x / 0
239\end{verbatim}
240
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000241
242Contexts also have signal flags for monitoring exceptional conditions
243encountered during computations. The flags remain set until explicitly
244cleared, so it is best to clear the flags before each set of monitored
245computations by using the \method{clear_flags()} method.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000246
247\begin{verbatim}
248>>> setcontext(ExtendedContext)
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000249>>> getcontext().clear_flags()
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000250>>> Decimal(355) / Decimal(113)
251Decimal("3.14159292")
252>>> getcontext()
253Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Raymond Hettingerbf440692004-07-10 14:14:37 +0000254 capitals=1, flags=[Inexact, Rounded], traps=[])
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000255\end{verbatim}
256
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000257The \var{flags} entry shows that the rational approximation to \constant{Pi}
258was rounded (digits beyond the context precision were thrown away) and that
259the result is inexact (some of the discarded digits were non-zero).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000260
Raymond Hettingerbf440692004-07-10 14:14:37 +0000261Individual traps are set using the dictionary in the \member{traps}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000262field of a context:
263
264\begin{verbatim}
265>>> Decimal(1) / Decimal(0)
266Decimal("Infinity")
Raymond Hettingerbf440692004-07-10 14:14:37 +0000267>>> getcontext().traps[DivisionByZero] = 1
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000268>>> Decimal(1) / Decimal(0)
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000269Traceback (most recent call last):
270 File "<pyshell#112>", line 1, in -toplevel-
271 Decimal(1) / Decimal(0)
272DivisionByZero: x / 0
273\end{verbatim}
274
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000275Most programs adjust the current context only once, at the beginning of the
276program. And, in many applications, data is converted to \class{Decimal} with
277a single cast inside a loop. With context set and decimals created, the bulk
278of the program manipulates the data no differently than with other Python
279numeric types.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000280
281
282
283%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
284\subsection{Decimal objects \label{decimal-decimal}}
285
286\begin{classdesc}{Decimal}{\optional{value \optional{, context}}}
287 Constructs a new \class{Decimal} object based from \var{value}.
288
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000289 \var{value} can be an integer, string, tuple, or another \class{Decimal}
290 object. If no \var{value} is given, returns \code{Decimal("0")}. If
291 \var{value} is a string, it should conform to the decimal numeric string
292 syntax:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000293
294 \begin{verbatim}
295 sign ::= '+' | '-'
296 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
297 indicator ::= 'e' | 'E'
298 digits ::= digit [digit]...
299 decimal-part ::= digits '.' [digits] | ['.'] digits
300 exponent-part ::= indicator [sign] digits
301 infinity ::= 'Infinity' | 'Inf'
302 nan ::= 'NaN' [digits] | 'sNaN' [digits]
303 numeric-value ::= decimal-part [exponent-part] | infinity
304 numeric-string ::= [sign] numeric-value | [sign] nan
305 \end{verbatim}
306
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000307 If \var{value} is a \class{tuple}, it should have three components,
308 a sign (\constant{0} for positive or \constant{1} for negative),
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000309 a \class{tuple} of digits, and an integer exponent. For example,
310 \samp{Decimal((0, (1, 4, 1, 4), -3))} returns \code{Decimal("1.414")}.
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000311
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000312 The \var{context} precision does not affect how many digits are stored.
313 That is determined exclusively by the number of digits in \var{value}. For
314 example, \samp{Decimal("3.00000")} records all five zeroes even if the
315 context precision is only three.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000316
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000317 The purpose of the \var{context} argument is determining what to do if
318 \var{value} is a malformed string. If the context traps
319 \constant{InvalidOperation}, an exception is raised; otherwise, the
320 constructor returns a new Decimal with the value of \constant{NaN}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000321
322 Once constructed, \class{Decimal} objects are immutable.
323\end{classdesc}
324
325Decimal floating point objects share many properties with the other builtin
326numeric types such as \class{float} and \class{int}. All of the usual
327math operations and special methods apply. Likewise, decimal objects can
328be copied, pickled, printed, used as dictionary keys, used as set elements,
329compared, sorted, and coerced to another type (such as \class{float}
330or \class{long}).
331
332In addition to the standard numeric properties, decimal floating point objects
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000333also have a number of specialized methods:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000334
335\begin{methoddesc}{adjusted}{}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000336 Return the adjusted exponent after shifting out the coefficient's rightmost
337 digits until only the lead digit remains: \code{Decimal("321e+5").adjusted()}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000338 returns seven. Used for determining the position of the most significant
339 digit with respect to the decimal point.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000340\end{methoddesc}
341
342\begin{methoddesc}{as_tuple}{}
343 Returns a tuple representation of the number:
344 \samp{(sign, digittuple, exponent)}.
345\end{methoddesc}
346
347\begin{methoddesc}{compare}{other\optional{, context}}
348 Compares like \method{__cmp__()} but returns a decimal instance:
349 \begin{verbatim}
350 a or b is a NaN ==> Decimal("NaN")
351 a < b ==> Decimal("-1")
352 a == b ==> Decimal("0")
353 a > b ==> Decimal("1")
354 \end{verbatim}
355\end{methoddesc}
356
357\begin{methoddesc}{max}{other\optional{, context}}
Facundo Batista44160942004-11-12 02:03:36 +0000358 Like \samp{max(self, other)} except that the context rounding rule
359 is applied before returning and that \constant{NaN} values are
360 either signalled or ignored (depending on the context and whether
361 they are signaling or quiet).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000362\end{methoddesc}
363
364\begin{methoddesc}{min}{other\optional{, context}}
Facundo Batista44160942004-11-12 02:03:36 +0000365 Like \samp{min(self, other)} except that the context rounding rule
366 is applied before returning and that \constant{NaN} values are
367 either signalled or ignored (depending on the context and whether
368 they are signaling or quiet).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000369\end{methoddesc}
370
371\begin{methoddesc}{normalize}{\optional{context}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000372 Normalize the number by stripping the rightmost trailing zeroes and
373 converting any result equal to \constant{Decimal("0")} to
374 \constant{Decimal("0e0")}. Used for producing canonical values for members
375 of an equivalence class. For example, \code{Decimal("32.100")} and
376 \code{Decimal("0.321000e+2")} both normalize to the equivalent value
Raymond Hettinger8df4e6b2004-08-15 23:51:38 +0000377 \code{Decimal("32.1")}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000378\end{methoddesc}
379
380\begin{methoddesc}{quantize}
Facundo Batista139af022004-11-20 00:33:51 +0000381 {exp \optional{, rounding\optional{, context\optional{, watchexp}}}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000382 Quantize makes the exponent the same as \var{exp}. Searches for a
383 rounding method in \var{rounding}, then in \var{context}, and then
384 in the current context.
385
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000386 If \var{watchexp} is set (default), then an error is returned whenever
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000387 the resulting exponent is greater than \member{Emax} or less than
388 \member{Etiny}.
389\end{methoddesc}
390
391\begin{methoddesc}{remainder_near}{other\optional{, context}}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000392 Computes the modulo as either a positive or negative value depending
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000393 on which is closest to zero. For instance,
394 \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
395 which is closer to zero than \code{Decimal("4")}.
396
397 If both are equally close, the one chosen will have the same sign
398 as \var{self}.
399\end{methoddesc}
400
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000401\begin{methoddesc}{same_quantum}{other\optional{, context}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000402 Test whether self and other have the same exponent or whether both
403 are \constant{NaN}.
404\end{methoddesc}
405
406\begin{methoddesc}{sqrt}{\optional{context}}
407 Return the square root to full precision.
408\end{methoddesc}
409
410\begin{methoddesc}{to_eng_string}{\optional{context}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000411 Convert to an engineering-type string.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000412
413 Engineering notation has an exponent which is a multiple of 3, so there
414 are up to 3 digits left of the decimal place. For example, converts
415 \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
416\end{methoddesc}
417
418\begin{methoddesc}{to_integral}{\optional{rounding\optional{, context}}}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000419 Rounds to the nearest integer without signaling \constant{Inexact}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000420 or \constant{Rounded}. If given, applies \var{rounding}; otherwise,
421 uses the rounding method in either the supplied \var{context} or the
422 current context.
423\end{methoddesc}
424
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000425
426
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000427%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
428\subsection{Context objects \label{decimal-decimal}}
429
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000430Contexts are environments for arithmetic operations. They govern precision,
431set rules for rounding, determine which signals are treated as exceptions, and
432limit the range for exponents.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000433
434Each thread has its own current context which is accessed or changed using
435the \function{getcontext()} and \function{setcontext()} functions:
436
437\begin{funcdesc}{getcontext}{}
438 Return the current context for the active thread.
439\end{funcdesc}
440
441\begin{funcdesc}{setcontext}{c}
442 Set the current context for the active thread to \var{c}.
443\end{funcdesc}
444
445New contexts can formed using the \class{Context} constructor described below.
446In addition, the module provides three pre-made contexts:
447
448
449\begin{classdesc*}{BasicContext}
450 This is a standard context defined by the General Decimal Arithmetic
451 Specification. Precision is set to nine. Rounding is set to
452 \constant{ROUND_HALF_UP}. All flags are cleared. All traps are enabled
453 (treated as exceptions) except \constant{Inexact}, \constant{Rounded}, and
454 \constant{Subnormal}.
455
456 Because many of the traps are enabled, this context is useful for debugging.
457\end{classdesc*}
458
459\begin{classdesc*}{ExtendedContext}
460 This is a standard context defined by the General Decimal Arithmetic
461 Specification. Precision is set to nine. Rounding is set to
462 \constant{ROUND_HALF_EVEN}. All flags are cleared. No traps are enabled
463 (so that exceptions are not raised during computations).
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000464
465 Because the trapped are disabled, this context is useful for applications
466 that prefer to have result value of \constant{NaN} or \constant{Infinity}
467 instead of raising exceptions. This allows an application to complete a
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000468 run in the presence of conditions that would otherwise halt the program.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000469\end{classdesc*}
470
471\begin{classdesc*}{DefaultContext}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000472 This context is used by the \class{Context} constructor as a prototype for
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000473 new contexts. Changing a field (such a precision) has the effect of
474 changing the default for new contexts creating by the \class{Context}
475 constructor.
476
477 This context is most useful in multi-threaded environments. Changing one of
478 the fields before threads are started has the effect of setting system-wide
479 defaults. Changing the fields after threads have started is not recommended
480 as it would require thread synchronization to prevent race conditions.
481
482 In single threaded environments, it is preferable to not use this context
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000483 at all. Instead, simply create contexts explicitly as described below.
484
485 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled
486 traps for Overflow, InvalidOperation, and DivisionByZero.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000487\end{classdesc*}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000488
489
490In addition to the three supplied contexts, new contexts can be created
491with the \class{Context} constructor.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000492
Raymond Hettingerbf440692004-07-10 14:14:37 +0000493\begin{classdesc}{Context}{prec=None, rounding=None, traps=None,
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000494 flags=None, Emin=None, Emax=None, capitals=1}
495 Creates a new context. If a field is not specified or is \constant{None},
496 the default values are copied from the \constant{DefaultContext}. If the
497 \var{flags} field is not specified or is \constant{None}, all flags are
498 cleared.
499
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000500 The \var{prec} field is a positive integer that sets the precision for
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000501 arithmetic operations in the context.
502
Raymond Hettinger97c92082004-07-09 06:13:12 +0000503 The \var{rounding} option is one of:
Raymond Hettinger87de8ed2005-07-01 16:54:12 +0000504 \begin{itemize}
505 \item \constant{ROUND_CEILING} (towards \constant{Infinity}),
506 \item \constant{ROUND_DOWN} (towards zero),
507 \item \constant{ROUND_FLOOR} (towards \constant{-Infinity}),
508 \item \constant{ROUND_HALF_DOWN} (to nearest with ties going towards zero),
509 \item \constant{ROUND_HALF_EVEN} (to nearest with ties going to nearest even integer),
510 \item \constant{ROUND_HALF_UP} (to nearest with ties going away from zero), or
511 \item \constant{ROUND_UP} (away from zero).
512 \end{itemize}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000513
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000514 The \var{traps} and \var{flags} fields list any signals to be set.
515 Generally, new contexts should only set traps and leave the flags clear.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000516
517 The \var{Emin} and \var{Emax} fields are integers specifying the outer
518 limits allowable for exponents.
519
520 The \var{capitals} field is either \constant{0} or \constant{1} (the
521 default). If set to \constant{1}, exponents are printed with a capital
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000522 \constant{E}; otherwise, a lowercase \constant{e} is used:
523 \constant{Decimal('6.02e+23')}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000524\end{classdesc}
525
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000526The \class{Context} class defines several general purpose methods as well as a
527large number of methods for doing arithmetic directly in a given context.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000528
529\begin{methoddesc}{clear_flags}{}
Raymond Hettingerd391d102005-06-07 18:50:56 +0000530 Resets all of the flags to \constant{0}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000531\end{methoddesc}
532
533\begin{methoddesc}{copy}{}
Raymond Hettingerd391d102005-06-07 18:50:56 +0000534 Return a duplicate of the context.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000535\end{methoddesc}
536
537\begin{methoddesc}{create_decimal}{num}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000538 Creates a new Decimal instance from \var{num} but using \var{self} as
539 context. Unlike the \class{Decimal} constructor, the context precision,
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000540 rounding method, flags, and traps are applied to the conversion.
541
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000542 This is useful because constants are often given to a greater precision than
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000543 is needed by the application. Another benefit is that rounding immediately
544 eliminates unintended effects from digits beyond the current precision.
545 In the following example, using unrounded inputs means that adding zero
546 to a sum can change the result:
547
548 \begin{verbatim}
549 >>> getcontext().prec = 3
550 >>> Decimal("3.4445") + Decimal("1.0023")
551 Decimal("4.45")
552 >>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023")
553 Decimal("4.44")
554 \end{verbatim}
555
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000556\end{methoddesc}
557
558\begin{methoddesc}{Etiny}{}
559 Returns a value equal to \samp{Emin - prec + 1} which is the minimum
560 exponent value for subnormal results. When underflow occurs, the
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000561 exponent is set to \constant{Etiny}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000562\end{methoddesc}
563
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000564\begin{methoddesc}{Etop}{}
565 Returns a value equal to \samp{Emax - prec + 1}.
566\end{methoddesc}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000567
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000568
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000569The usual approach to working with decimals is to create \class{Decimal}
570instances and then apply arithmetic operations which take place within the
571current context for the active thread. An alternate approach is to use
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000572context methods for calculating within a specific context. The methods are
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000573similar to those for the \class{Decimal} class and are only briefly recounted
574here.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000575
576\begin{methoddesc}{abs}{x}
577 Returns the absolute value of \var{x}.
578\end{methoddesc}
579
580\begin{methoddesc}{add}{x, y}
581 Return the sum of \var{x} and \var{y}.
582\end{methoddesc}
583
584\begin{methoddesc}{compare}{x, y}
585 Compares values numerically.
586
587 Like \method{__cmp__()} but returns a decimal instance:
588 \begin{verbatim}
589 a or b is a NaN ==> Decimal("NaN")
590 a < b ==> Decimal("-1")
591 a == b ==> Decimal("0")
592 a > b ==> Decimal("1")
593 \end{verbatim}
594\end{methoddesc}
595
596\begin{methoddesc}{divide}{x, y}
597 Return \var{x} divided by \var{y}.
598\end{methoddesc}
599
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000600\begin{methoddesc}{divmod}{x, y}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000601 Divides two numbers and returns the integer part of the result.
602\end{methoddesc}
603
604\begin{methoddesc}{max}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000605 Compare two values numerically and return the maximum.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000606
607 If they are numerically equal then the left-hand operand is chosen as the
608 result.
609\end{methoddesc}
610
611\begin{methoddesc}{min}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000612 Compare two values numerically and return the minimum.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000613
614 If they are numerically equal then the left-hand operand is chosen as the
615 result.
616\end{methoddesc}
617
618\begin{methoddesc}{minus}{x}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000619 Minus corresponds to the unary prefix minus operator in Python.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000620\end{methoddesc}
621
622\begin{methoddesc}{multiply}{x, y}
623 Return the product of \var{x} and \var{y}.
624\end{methoddesc}
625
626\begin{methoddesc}{normalize}{x}
627 Normalize reduces an operand to its simplest form.
628
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000629 Essentially a \method{plus} operation with all trailing zeros removed from
630 the result.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000631\end{methoddesc}
632
633\begin{methoddesc}{plus}{x}
Raymond Hettingerd7c71152004-07-12 13:22:14 +0000634 Plus corresponds to the unary prefix plus operator in Python. This
635 operation applies the context precision and rounding, so it is
636 \emph{not} an identity operation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000637\end{methoddesc}
638
639\begin{methoddesc}{power}{x, y\optional{, modulo}}
640 Return \samp{x ** y} to the \var{modulo} if given.
641
642 The right-hand operand must be a whole number whose integer part (after any
643 exponent has been applied) has no more than 9 digits and whose fractional
644 part (if any) is all zeros before any rounding. The operand may be positive,
645 negative, or zero; if negative, the absolute value of the power is used, and
646 the left-hand operand is inverted (divided into 1) before use.
647
648 If the increased precision needed for the intermediate calculations exceeds
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000649 the capabilities of the implementation then an \constant{InvalidOperation}
650 condition is signaled.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000651
652 If, when raising to a negative power, an underflow occurs during the
653 division into 1, the operation is not halted at that point but continues.
654\end{methoddesc}
655
656\begin{methoddesc}{quantize}{x, y}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000657 Returns a value equal to \var{x} after rounding and having the exponent of
658 \var{y}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000659
660 Unlike other operations, if the length of the coefficient after the quantize
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000661 operation would be greater than precision, then an
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000662 \constant{InvalidOperation} is signaled. This guarantees that, unless there
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000663 is an error condition, the quantized exponent is always equal to that of the
664 right-hand operand.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000665
666 Also unlike other operations, quantize never signals Underflow, even
667 if the result is subnormal and inexact.
668\end{methoddesc}
669
670\begin{methoddesc}{remainder}{x, y}
671 Returns the remainder from integer division.
672
673 The sign of the result, if non-zero, is the same as that of the original
674 dividend.
675\end{methoddesc}
676
677\begin{methoddesc}{remainder_near}{x, y}
678 Computed the modulo as either a positive or negative value depending
679 on which is closest to zero. For instance,
680 \samp{Decimal(10).remainder_near(6)} returns \code{Decimal("-2")}
681 which is closer to zero than \code{Decimal("4")}.
682
683 If both are equally close, the one chosen will have the same sign
684 as \var{self}.
685\end{methoddesc}
686
687\begin{methoddesc}{same_quantum}{x, y}
688 Test whether \var{x} and \var{y} have the same exponent or whether both are
689 \constant{NaN}.
690\end{methoddesc}
691
692\begin{methoddesc}{sqrt}{}
693 Return the square root to full precision.
694\end{methoddesc}
695
Georg Brandlf33d01d2005-08-22 19:35:18 +0000696\begin{methoddesc}{subtract}{x, y}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000697 Return the difference between \var{x} and \var{y}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000698\end{methoddesc}
699
700\begin{methoddesc}{to_eng_string}{}
701 Convert to engineering-type string.
702
703 Engineering notation has an exponent which is a multiple of 3, so there
704 are up to 3 digits left of the decimal place. For example, converts
705 \code{Decimal('123E+1')} to \code{Decimal("1.23E+3")}
706\end{methoddesc}
707
708\begin{methoddesc}{to_integral}{x}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000709 Rounds to the nearest integer without signaling \constant{Inexact}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000710 or \constant{Rounded}.
711\end{methoddesc}
712
713\begin{methoddesc}{to_sci_string}{}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000714 Converts a number to a string using scientific notation.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000715\end{methoddesc}
716
717
718
719%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
720\subsection{Signals \label{decimal-signals}}
721
722Signals represent conditions that arise during computation.
723Each corresponds to one context flag and one context trap enabler.
724
725The context flag is incremented whenever the condition is encountered.
726After the computation, flags may be checked for informational
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000727purposes (for instance, to determine whether a computation was exact).
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000728After checking the flags, be sure to clear all flags before starting
729the next computation.
730
731If the context's trap enabler is set for the signal, then the condition
732causes a Python exception to be raised. For example, if the
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000733\class{DivisionByZero} trap is set, then a \exception{DivisionByZero}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000734exception is raised upon encountering the condition.
735
736
737\begin{classdesc*}{Clamped}
738 Altered an exponent to fit representation constraints.
739
740 Typically, clamping occurs when an exponent falls outside the context's
741 \member{Emin} and \member{Emax} limits. If possible, the exponent is
742 reduced to fit by adding zeroes to the coefficient.
743\end{classdesc*}
744
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000745\begin{classdesc*}{DecimalException}
Raymond Hettinger467024c2005-02-21 15:46:52 +0000746 Base class for other signals and a subclass of
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000747 \exception{ArithmeticError}.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000748\end{classdesc*}
749
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000750\begin{classdesc*}{DivisionByZero}
751 Signals the division of a non-infinite number by zero.
752
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000753 Can occur with division, modulo division, or when raising a number to a
754 negative power. If this signal is not trapped, returns
755 \constant{Infinity} or \constant{-Infinity} with the sign determined by
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000756 the inputs to the calculation.
757\end{classdesc*}
758
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000759\begin{classdesc*}{Inexact}
760 Indicates that rounding occurred and the result is not exact.
761
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000762 Signals when non-zero digits were discarded during rounding. The rounded
763 result is returned. The signal flag or trap is used to detect when
764 results are inexact.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000765\end{classdesc*}
766
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000767\begin{classdesc*}{InvalidOperation}
768 An invalid operation was performed.
769
770 Indicates that an operation was requested that does not make sense.
771 If not trapped, returns \constant{NaN}. Possible causes include:
772
773 \begin{verbatim}
774 Infinity - Infinity
775 0 * Infinity
776 Infinity / Infinity
777 x % 0
778 Infinity % x
779 x._rescale( non-integer )
780 sqrt(-x) and x > 0
781 0 ** 0
782 x ** (non-integer)
783 x ** Infinity
784 \end{verbatim}
785\end{classdesc*}
786
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000787\begin{classdesc*}{Overflow}
788 Numerical overflow.
789
790 Indicates the exponent is larger than \member{Emax} after rounding has
791 occurred. If not trapped, the result depends on the rounding mode, either
792 pulling inward to the largest representable finite number or rounding
793 outward to \constant{Infinity}. In either case, \class{Inexact} and
794 \class{Rounded} are also signaled.
795\end{classdesc*}
796
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000797\begin{classdesc*}{Rounded}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000798 Rounding occurred though possibly no information was lost.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000799
800 Signaled whenever rounding discards digits; even if those digits are
801 zero (such as rounding \constant{5.00} to \constant{5.0}). If not
802 trapped, returns the result unchanged. This signal is used to detect
803 loss of significant digits.
804\end{classdesc*}
805
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000806\begin{classdesc*}{Subnormal}
807 Exponent was lower than \member{Emin} prior to rounding.
808
809 Occurs when an operation result is subnormal (the exponent is too small).
810 If not trapped, returns the result unchanged.
811\end{classdesc*}
812
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000813\begin{classdesc*}{Underflow}
814 Numerical underflow with result rounded to zero.
815
816 Occurs when a subnormal result is pushed to zero by rounding.
817 \class{Inexact} and \class{Subnormal} are also signaled.
818\end{classdesc*}
819
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000820The following table summarizes the hierarchy of signals:
821
822\begin{verbatim}
823 exceptions.ArithmeticError(exceptions.StandardError)
824 DecimalException
825 Clamped
826 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
827 Inexact
828 Overflow(Inexact, Rounded)
829 Underflow(Inexact, Rounded, Subnormal)
830 InvalidOperation
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000831 Rounded
832 Subnormal
833\end{verbatim}
834
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000835
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000836%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Raymond Hettinger2864b802004-08-15 23:47:48 +0000837\subsection{Floating Point Notes \label{decimal-notes}}
838
Raymond Hettinger87de8ed2005-07-01 16:54:12 +0000839\subsubsection{Mitigating round-off error with increased precision}
840
Raymond Hettinger2864b802004-08-15 23:47:48 +0000841The use of decimal floating point eliminates decimal representation error
842(making it possible to represent \constant{0.1} exactly); however, some
843operations can still incur round-off error when non-zero digits exceed the
844fixed precision.
845
846The effects of round-off error can be amplified by the addition or subtraction
847of nearly offsetting quantities resulting in loss of significance. Knuth
848provides two instructive examples where rounded floating point arithmetic with
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000849insufficient precision causes the breakdown of the associative and
Raymond Hettinger2864b802004-08-15 23:47:48 +0000850distributive properties of addition:
851
852\begin{verbatim}
853# Examples from Seminumerical Algorithms, Section 4.2.2.
Raymond Hettinger467024c2005-02-21 15:46:52 +0000854>>> from decimal import Decimal, getcontext
Raymond Hettinger2864b802004-08-15 23:47:48 +0000855>>> getcontext().prec = 8
856
857>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
858>>> (u + v) + w
859Decimal("9.5111111")
860>>> u + (v + w)
861Decimal("10")
862
863>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
864>>> (u*v) + (u*w)
865Decimal("0.01")
866>>> u * (v+w)
867Decimal("0.0060000")
868\end{verbatim}
869
870The \module{decimal} module makes it possible to restore the identities
871by expanding the precision sufficiently to avoid loss of significance:
872
873\begin{verbatim}
874>>> getcontext().prec = 20
875>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
876>>> (u + v) + w
877Decimal("9.51111111")
878>>> u + (v + w)
879Decimal("9.51111111")
880>>>
881>>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
882>>> (u*v) + (u*w)
883Decimal("0.0060000")
884>>> u * (v+w)
885Decimal("0.0060000")
886\end{verbatim}
887
Raymond Hettinger87de8ed2005-07-01 16:54:12 +0000888\subsubsection{Special values}
Raymond Hettinger2864b802004-08-15 23:47:48 +0000889
890The number system for the \module{decimal} module provides special
891values including \constant{NaN}, \constant{sNaN}, \constant{-Infinity},
892\constant{Infinity}, and two zeroes, \constant{+0} and \constant{-0}.
893
Andrew M. Kuchling7ec75842004-08-16 16:12:23 +0000894Infinities can be constructed directly with: \code{Decimal('Infinity')}. Also,
Raymond Hettinger2864b802004-08-15 23:47:48 +0000895they can arise from dividing by zero when the \exception{DivisionByZero}
896signal is not trapped. Likewise, when the \exception{Overflow} signal is not
897trapped, infinity can result from rounding beyond the limits of the largest
898representable number.
899
900The infinities are signed (affine) and can be used in arithmetic operations
901where they get treated as very large, indeterminate numbers. For instance,
902adding a constant to infinity gives another infinite result.
903
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000904Some operations are indeterminate and return \constant{NaN}, or if the
Raymond Hettinger2864b802004-08-15 23:47:48 +0000905\exception{InvalidOperation} signal is trapped, raise an exception. For
906example, \code{0/0} returns \constant{NaN} which means ``not a number''. This
907variety of \constant{NaN} is quiet and, once created, will flow through other
908computations always resulting in another \constant{NaN}. This behavior can be
909useful for a series of computations that occasionally have missing inputs ---
910it allows the calculation to proceed while flagging specific results as
911invalid.
912
913A variant is \constant{sNaN} which signals rather than remaining quiet
914after every operation. This is a useful return value when an invalid
915result needs to interrupt a calculation for special handling.
916
917The signed zeros can result from calculations that underflow.
918They keep the sign that would have resulted if the calculation had
919been carried out to greater precision. Since their magnitude is
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000920zero, both positive and negative zeros are treated as equal and their
Raymond Hettinger2864b802004-08-15 23:47:48 +0000921sign is informational.
922
Raymond Hettingerf4fd79c2004-08-26 03:11:56 +0000923In addition to the two signed zeros which are distinct yet equal,
924there are various representations of zero with differing precisions
Raymond Hettinger2864b802004-08-15 23:47:48 +0000925yet equivalent in value. This takes a bit of getting used to. For
926an eye accustomed to normalized floating point representations, it
927is not immediately obvious that the following calculation returns
928a value equal to zero:
929
930\begin{verbatim}
931>>> 1 / Decimal('Infinity')
932Decimal("0E-1000000026")
933\end{verbatim}
934
935%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000936\subsection{Working with threads \label{decimal-threads}}
937
938The \function{getcontext()} function accesses a different \class{Context}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000939object for each thread. Having separate thread contexts means that threads
940may make changes (such as \code{getcontext.prec=10}) without interfering with
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000941other threads.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000942
943Likewise, the \function{setcontext()} function automatically assigns its target
944to the current thread.
945
946If \function{setcontext()} has not been called before \function{getcontext()},
947then \function{getcontext()} will automatically create a new context for use
948in the current thread.
949
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000950The new context is copied from a prototype context called
951\var{DefaultContext}. To control the defaults so that each thread will use the
952same values throughout the application, directly modify the
953\var{DefaultContext} object. This should be done \emph{before} any threads are
954started so that there won't be a race condition between threads calling
955\function{getcontext()}. For example:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000956
957\begin{verbatim}
Raymond Hettinger536f76b2004-07-08 09:22:33 +0000958# Set applicationwide defaults for all threads about to be launched
Raymond Hettinger92960232004-07-14 21:06:55 +0000959DefaultContext.prec = 12
960DefaultContext.rounding = ROUND_DOWN
961DefaultContext.traps = ExtendedContext.traps.copy()
962DefaultContext.traps[InvalidOperation] = 1
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000963setcontext(DefaultContext)
964
Raymond Hettinger92960232004-07-14 21:06:55 +0000965# Afterwards, the threads can be started
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000966t1.start()
967t2.start()
968t3.start()
969 . . .
970\end{verbatim}
Raymond Hettinger2864b802004-08-15 23:47:48 +0000971
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000972
973
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000974%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
975\subsection{Recipes \label{decimal-recipes}}
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000976
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000977Here are a few recipes that serve as utility functions and that demonstrate
978ways to work with the \class{Decimal} class:
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000979
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000980\begin{verbatim}
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000981def moneyfmt(value, places=2, curr='', sep=',', dp='.',
982 pos='', neg='-', trailneg=''):
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000983 """Convert Decimal to a money formatted string.
Raymond Hettinger8de63a22004-07-05 05:52:03 +0000984
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000985 places: required number of places after the decimal point
986 curr: optional currency symbol before the sign (may be blank)
Raymond Hettinger3de9aa42004-11-25 04:47:09 +0000987 sep: optional grouping separator (comma, period, space, or blank)
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000988 dp: decimal point indicator (comma or period)
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000989 only specify as blank when places is zero
Raymond Hettinger3de9aa42004-11-25 04:47:09 +0000990 pos: optional sign for positive numbers: '+', space or blank
991 neg: optional sign for negative numbers: '-', '(', space or blank
992 trailneg:optional trailing minus indicator: '-', ')', space or blank
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000993
994 >>> d = Decimal('-1234567.8901')
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000995 >>> moneyfmt(d, curr='$')
Raymond Hettingerd84efb32004-07-05 18:41:42 +0000996 '-$1,234,567.89'
Raymond Hettinger65df07b2004-07-11 12:40:19 +0000997 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
998 '1.234.568-'
999 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001000 '($1,234,567.89)'
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001001 >>> moneyfmt(Decimal(123456789), sep=' ')
1002 '123 456 789.00'
1003 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
1004 '<.02>'
1005
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001006 """
1007 q = Decimal((0, (1,), -places)) # 2 places --> '0.01'
1008 sign, digits, exp = value.quantize(q).as_tuple()
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001009 assert exp == -places
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001010 result = []
1011 digits = map(str, digits)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001012 build, next = result.append, digits.pop
1013 if sign:
1014 build(trailneg)
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001015 for i in range(places):
Raymond Hettinger3de9aa42004-11-25 04:47:09 +00001016 if digits:
1017 build(next())
1018 else:
1019 build('0')
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001020 build(dp)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001021 i = 0
1022 while digits:
1023 build(next())
1024 i += 1
Raymond Hettinger8f2c4ee2004-11-24 05:53:26 +00001025 if i == 3 and digits:
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001026 i = 0
1027 build(sep)
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001028 build(curr)
1029 if sign:
1030 build(neg)
1031 else:
1032 build(pos)
1033 result.reverse()
1034 return ''.join(result)
1035
1036def pi():
Raymond Hettingerc4f93d442004-07-05 20:17:13 +00001037 """Compute Pi to the current precision.
1038
1039 >>> print pi()
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001040 3.141592653589793238462643383
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001041
Raymond Hettingerc4f93d442004-07-05 20:17:13 +00001042 """
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001043 getcontext().prec += 2 # extra digits for intermediate steps
Raymond Hettinger10959b12004-07-05 21:13:28 +00001044 three = Decimal(3) # substitute "three=3.0" for regular floats
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001045 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1046 while s != lasts:
1047 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001048 n, na = n+na, na+8
1049 d, da = d+da, da+32
1050 t = (t * n) / d
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001051 s += t
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001052 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001053 return +s # unary plus applies the new precision
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001054
1055def exp(x):
Raymond Hettinger10959b12004-07-05 21:13:28 +00001056 """Return e raised to the power of x. Result type matches input type.
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001057
1058 >>> print exp(Decimal(1))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001059 2.718281828459045235360287471
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001060 >>> print exp(Decimal(2))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001061 7.389056098930650227230427461
Raymond Hettinger10959b12004-07-05 21:13:28 +00001062 >>> print exp(2.0)
1063 7.38905609893
1064 >>> print exp(2+0j)
1065 (7.38905609893+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001066
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001067 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001068 getcontext().prec += 2
1069 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1070 while s != lasts:
1071 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001072 i += 1
1073 fact *= i
1074 num *= x
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001075 s += num / fact
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001076 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001077 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001078
1079def cos(x):
1080 """Return the cosine of x as measured in radians.
1081
1082 >>> print cos(Decimal('0.5'))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001083 0.8775825618903727161162815826
Raymond Hettinger10959b12004-07-05 21:13:28 +00001084 >>> print cos(0.5)
1085 0.87758256189
1086 >>> print cos(0.5+0j)
1087 (0.87758256189+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001088
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001089 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001090 getcontext().prec += 2
1091 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1092 while s != lasts:
1093 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001094 i += 2
1095 fact *= i * (i-1)
1096 num *= x * x
1097 sign *= -1
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001098 s += num / fact * sign
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001099 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001100 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001101
1102def sin(x):
Raymond Hettinger4fd38b32004-11-25 05:35:32 +00001103 """Return the sine of x as measured in radians.
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001104
1105 >>> print sin(Decimal('0.5'))
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001106 0.4794255386042030002732879352
Raymond Hettinger10959b12004-07-05 21:13:28 +00001107 >>> print sin(0.5)
1108 0.479425538604
1109 >>> print sin(0.5+0j)
1110 (0.479425538604+0j)
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001111
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001112 """
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001113 getcontext().prec += 2
1114 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1115 while s != lasts:
1116 lasts = s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001117 i += 2
1118 fact *= i * (i-1)
1119 num *= x * x
1120 sign *= -1
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001121 s += num / fact * sign
Raymond Hettinger2f55eb42004-07-06 01:55:14 +00001122 getcontext().prec -= 2
Raymond Hettinger65df07b2004-07-11 12:40:19 +00001123 return +s
Raymond Hettingerd84efb32004-07-05 18:41:42 +00001124
1125\end{verbatim}
Raymond Hettingerd391d102005-06-07 18:50:56 +00001126
1127
1128
Raymond Hettingered65c3a2005-06-15 16:53:31 +00001129%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Raymond Hettingerd391d102005-06-07 18:50:56 +00001130\subsection{Decimal FAQ \label{decimal-faq}}
1131
Raymond Hettingerd391d102005-06-07 18:50:56 +00001132Q. It is cumbersome to type \code{decimal.Decimal('1234.5')}. Is there a way
1133to minimize typing when using the interactive interpreter?
1134
1135A. Some users abbreviate the constructor to just a single letter:
1136
1137\begin{verbatim}
1138>>> D = decimal.Decimal
1139>>> D('1.23') + D('3.45')
1140Decimal("4.68")
1141\end{verbatim}
1142
1143
Raymond Hettinger11666382005-09-11 18:21:52 +00001144Q. In a fixed-point application with two decimal places, some inputs
Raymond Hettingerd391d102005-06-07 18:50:56 +00001145have many places and need to be rounded. Others are not supposed to have
1146excess digits and need to be validated. What methods should be used?
1147
1148A. The \method{quantize()} method rounds to a fixed number of decimal places.
1149If the \constant{Inexact} trap is set, it is also useful for validation:
1150
1151\begin{verbatim}
1152>>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1153
1154>>> # Round to two places
1155>>> Decimal("3.214").quantize(TWOPLACES)
1156Decimal("3.21")
1157
1158>>> # Validate that a number does not exceed two places
1159>>> Decimal("3.21").quantize(TWOPLACES, context=Context(traps=[Inexact]))
1160Decimal("3.21")
1161
1162>>> Decimal("3.214").quantize(TWOPLACES, context=Context(traps=[Inexact]))
1163Traceback (most recent call last):
1164 ...
1165Inexact: Changed in rounding
1166\end{verbatim}
1167
1168
1169Q. Once I have valid two place inputs, how do I maintain that invariant
1170throughout an application?
1171
1172A. Some operations like addition and subtraction automatically preserve fixed
1173point. Others, like multiplication and division, change the number of decimal
1174places and need to be followed-up with a \method{quantize()} step.
1175
1176
Raymond Hettingered65c3a2005-06-15 16:53:31 +00001177Q. There are many ways to express the same value. The numbers
Raymond Hettingerd391d102005-06-07 18:50:56 +00001178\constant{200}, \constant{200.000}, \constant{2E2}, and \constant{.02E+4} all
1179have the same value at various precisions. Is there a way to transform them to
1180a single recognizable canonical value?
1181
1182A. The \method{normalize()} method maps all equivalent values to a single
Georg Brandlcaa94bd2006-01-23 22:00:17 +00001183representative:
Raymond Hettingerd391d102005-06-07 18:50:56 +00001184
1185\begin{verbatim}
1186>>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1187>>> [v.normalize() for v in values]
1188[Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2")]
1189\end{verbatim}
1190
1191
Raymond Hettinger11666382005-09-11 18:21:52 +00001192Q. Some decimal values always print with exponential notation. Is there
1193a way to get a non-exponential representation?
1194
1195A. For some values, exponential notation is the only way to express
1196the number of significant places in the coefficient. For example,
1197expressing \constant{5.0E+3} as \constant{5000} keeps the value
1198constant but cannot show the original's two-place significance.
1199
1200
Raymond Hettingerd391d102005-06-07 18:50:56 +00001201Q. Is there a way to convert a regular float to a \class{Decimal}?
1202
1203A. Yes, all binary floating point numbers can be exactly expressed as a
1204Decimal. An exact conversion may take more precision than intuition would
1205suggest, so trapping \constant{Inexact} will signal a need for more precision:
1206
1207\begin{verbatim}
1208def floatToDecimal(f):
1209 "Convert a floating point number to a Decimal with no loss of information"
1210 # Transform (exactly) a float to a mantissa (0.5 <= abs(m) < 1.0) and an
1211 # exponent. Double the mantissa until it is an integer. Use the integer
1212 # mantissa and exponent to compute an equivalent Decimal. If this cannot
1213 # be done exactly, then retry with more precision.
1214
1215 mantissa, exponent = math.frexp(f)
1216 while mantissa != int(mantissa):
1217 mantissa *= 2.0
1218 exponent -= 1
1219 mantissa = int(mantissa)
Raymond Hettingered65c3a2005-06-15 16:53:31 +00001220
Raymond Hettingerd391d102005-06-07 18:50:56 +00001221 oldcontext = getcontext()
1222 setcontext(Context(traps=[Inexact]))
1223 try:
1224 while True:
1225 try:
1226 return mantissa * Decimal(2) ** exponent
1227 except Inexact:
1228 getcontext().prec += 1
1229 finally:
1230 setcontext(oldcontext)
1231\end{verbatim}
1232
1233
1234Q. Why isn't the \function{floatToDecimal()} routine included in the module?
1235
1236A. There is some question about whether it is advisable to mix binary and
1237decimal floating point. Also, its use requires some care to avoid the
1238representation issues associated with binary floating point:
1239
1240\begin{verbatim}
1241>>> floatToDecimal(1.1)
1242Decimal("1.100000000000000088817841970012523233890533447265625")
1243\end{verbatim}
1244
1245
1246Q. Within a complex calculation, how can I make sure that I haven't gotten a
1247spurious result because of insufficient precision or rounding anomalies.
1248
1249A. The decimal module makes it easy to test results. A best practice is to
1250re-run calculations using greater precision and with various rounding modes.
1251Widely differing results indicate insufficient precision, rounding mode
1252issues, ill-conditioned inputs, or a numerically unstable algorithm.
1253
1254
1255Q. I noticed that context precision is applied to the results of operations
1256but not to the inputs. Is there anything to watch out for when mixing
1257values of different precisions?
1258
1259A. Yes. The principle is that all values are considered to be exact and so
1260is the arithmetic on those values. Only the results are rounded. The
1261advantage for inputs is that ``what you type is what you get''. A
1262disadvantage is that the results can look odd if you forget that the inputs
1263haven't been rounded:
1264
1265\begin{verbatim}
1266>>> getcontext().prec = 3
1267>>> Decimal('3.104') + D('2.104')
1268Decimal("5.21")
1269>>> Decimal('3.104') + D('0.000') + D('2.104')
1270Decimal("5.20")
1271\end{verbatim}
1272
1273The solution is either to increase precision or to force rounding of inputs
1274using the unary plus operation:
1275
1276\begin{verbatim}
1277>>> getcontext().prec = 3
1278>>> +Decimal('1.23456789') # unary plus triggers rounding
1279Decimal("1.23")
1280\end{verbatim}
1281
1282Alternatively, inputs can be rounded upon creation using the
1283\method{Context.create_decimal()} method:
1284
1285\begin{verbatim}
1286>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
1287Decimal("1.2345")
1288\end{verbatim}