Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 1 | # |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 2 | # Class for profiling python code. rev 1.0 6/2/94 |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 3 | # |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 4 | # Based on prior profile module by Sjoerd Mullender... |
| 5 | # which was hacked somewhat by: Guido van Rossum |
| 6 | # |
| 7 | # See profile.doc for more information |
| 8 | |
| 9 | |
| 10 | # Copyright 1994, by InfoSeek Corporation, all rights reserved. |
| 11 | # Written by James Roskind |
| 12 | # |
| 13 | # Permission to use, copy, modify, and distribute this Python software |
| 14 | # and its associated documentation for any purpose (subject to the |
| 15 | # restriction in the following sentence) without fee is hereby granted, |
| 16 | # provided that the above copyright notice appears in all copies, and |
| 17 | # that both that copyright notice and this permission notice appear in |
| 18 | # supporting documentation, and that the name of InfoSeek not be used in |
| 19 | # advertising or publicity pertaining to distribution of the software |
| 20 | # without specific, written prior permission. This permission is |
| 21 | # explicitly restricted to the copying and modification of the software |
| 22 | # to remain in Python, compiled Python, or other languages (such as C) |
| 23 | # wherein the modified or derived code is exclusively imported into a |
| 24 | # Python module. |
| 25 | # |
| 26 | # INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS |
| 27 | # SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND |
| 28 | # FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY |
| 29 | # SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER |
| 30 | # RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF |
| 31 | # CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 32 | # CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 33 | |
| 34 | |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 35 | |
| 36 | import sys |
Guido van Rossum | 4e16098 | 1992-09-02 20:43:20 +0000 | [diff] [blame] | 37 | import os |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 38 | import time |
Guido van Rossum | 4e16098 | 1992-09-02 20:43:20 +0000 | [diff] [blame] | 39 | import string |
Guido van Rossum | 4e16098 | 1992-09-02 20:43:20 +0000 | [diff] [blame] | 40 | import marshal |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 41 | |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 42 | |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 43 | # Global variables |
| 44 | func_norm_dict = {} |
| 45 | func_norm_counter = 0 |
| 46 | pid_string = `os.getpid()` |
Guido van Rossum | 4e16098 | 1992-09-02 20:43:20 +0000 | [diff] [blame] | 47 | |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 48 | |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 49 | # Optimized intermodule references |
| 50 | ostimes = os.times |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 51 | |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 52 | |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 53 | # Sample timer for use with |
| 54 | #i_count = 0 |
| 55 | #def integer_timer(): |
| 56 | # global i_count |
| 57 | # i_count = i_count + 1 |
| 58 | # return i_count |
| 59 | #itimes = integer_timer # replace with C coded timer returning integers |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 60 | |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 61 | #************************************************************************** |
| 62 | # The following are the static member functions for the profiler class |
| 63 | # Note that an instance of Profile() is *not* needed to call them. |
| 64 | #************************************************************************** |
Guido van Rossum | 8176258 | 1992-04-21 15:36:23 +0000 | [diff] [blame] | 65 | |
Guido van Rossum | 4e16098 | 1992-09-02 20:43:20 +0000 | [diff] [blame] | 66 | |
| 67 | # simplified user interface |
| 68 | def run(statement, *args): |
Guido van Rossum | 7bc817d | 1993-12-17 15:25:27 +0000 | [diff] [blame] | 69 | prof = Profile() |
Guido van Rossum | 4e16098 | 1992-09-02 20:43:20 +0000 | [diff] [blame] | 70 | try: |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 71 | prof = prof.run(statement) |
Guido van Rossum | 4e16098 | 1992-09-02 20:43:20 +0000 | [diff] [blame] | 72 | except SystemExit: |
| 73 | pass |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 74 | if args: |
Guido van Rossum | 4e16098 | 1992-09-02 20:43:20 +0000 | [diff] [blame] | 75 | prof.dump_stats(args[0]) |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 76 | else: |
| 77 | return prof.print_stats() |
Guido van Rossum | e61fa0a | 1993-10-22 13:56:35 +0000 | [diff] [blame] | 78 | |
| 79 | # print help |
| 80 | def help(): |
| 81 | for dirname in sys.path: |
| 82 | fullname = os.path.join(dirname, 'profile.doc') |
| 83 | if os.path.exists(fullname): |
| 84 | sts = os.system('${PAGER-more} '+fullname) |
| 85 | if sts: print '*** Pager exit status:', sts |
| 86 | break |
| 87 | else: |
| 88 | print 'Sorry, can\'t find the help file "profile.doc"', |
| 89 | print 'along the Python search path' |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 90 | |
| 91 | |
| 92 | #************************************************************************** |
| 93 | # class Profile documentation: |
| 94 | #************************************************************************** |
| 95 | # self.cur is always a tuple. Each such tuple corresponds to a stack |
| 96 | # frame that is currently active (self.cur[-2]). The following are the |
| 97 | # definitions of its members. We use this external "parallel stack" to |
| 98 | # avoid contaminating the program that we are profiling. (old profiler |
| 99 | # used to write into the frames local dictionary!!) Derived classes |
| 100 | # can change the definition of some entries, as long as they leave |
| 101 | # [-2:] intact. |
| 102 | # |
| 103 | # [ 0] = Time that needs to be charged to the parent frame's function. It is |
| 104 | # used so that a function call will not have to access the timing data |
| 105 | # for the parents frame. |
| 106 | # [ 1] = Total time spent in this frame's function, excluding time in |
| 107 | # subfunctions |
| 108 | # [ 2] = Cumulative time spent in this frame's function, including time in |
| 109 | # all subfunctions to this frame. |
| 110 | # [-3] = Name of the function that corresonds to this frame. |
| 111 | # [-2] = Actual frame that we correspond to (used to sync exception handling) |
| 112 | # [-1] = Our parent 6-tuple (corresonds to frame.f_back) |
| 113 | #************************************************************************** |
| 114 | # Timing data for each function is stored as a 5-tuple in the dictionary |
| 115 | # self.timings[]. The index is always the name stored in self.cur[4]. |
| 116 | # The following are the definitions of the members: |
| 117 | # |
| 118 | # [0] = The number of times this function was called, not counting direct |
| 119 | # or indirect recursion, |
| 120 | # [1] = Number of times this function appears on the stack, minus one |
| 121 | # [2] = Total time spent internal to this function |
| 122 | # [3] = Cumulative time that this function was present on the stack. In |
| 123 | # non-recursive functions, this is the total execution time from start |
| 124 | # to finish of each invocation of a function, including time spent in |
| 125 | # all subfunctions. |
| 126 | # [5] = A dictionary indicating for each function name, the number of times |
| 127 | # it was called by us. |
| 128 | #************************************************************************** |
| 129 | # We produce function names via a repr() call on the f_code object during |
| 130 | # profiling. This save a *lot* of CPU time. This results in a string that |
| 131 | # always looks like: |
| 132 | # <code object main at 87090, file "/a/lib/python-local/myfib.py", line 76> |
| 133 | # After we "normalize it, it is a tuple of filename, line, function-name. |
| 134 | # We wait till we are done profiling to do the normalization. |
| 135 | # *IF* this repr format changes, then only the normalization routine should |
| 136 | # need to be fixed. |
| 137 | #************************************************************************** |
| 138 | class Profile: |
| 139 | |
| 140 | def __init__(self, *arg): |
| 141 | self.timings = {} |
| 142 | self.cur = None |
| 143 | self.cmd = "" |
| 144 | |
| 145 | self.dispatch = { \ |
| 146 | 'call' : self.trace_dispatch_call, \ |
| 147 | 'return' : self.trace_dispatch_return, \ |
| 148 | 'exception': self.trace_dispatch_exception, \ |
| 149 | } |
| 150 | |
| 151 | if not arg: |
| 152 | self.timer = os.times |
| 153 | self.dispatcher = self.trace_dispatch |
| 154 | else: |
| 155 | self.timer = arg[0] |
| 156 | t = self.timer() # test out timer function |
| 157 | try: |
| 158 | if len(t) == 2: |
| 159 | self.dispatcher = self.trace_dispatch |
| 160 | else: |
| 161 | self.dispatcher = self.trace_dispatch_r |
| 162 | except: |
| 163 | self.dispatcher = self.trace_dispatch_i |
| 164 | self.t = self.get_time() |
| 165 | self.simulate_call('profiler') |
| 166 | |
| 167 | |
| 168 | def get_time(self): # slow simulation of method to acquire time |
| 169 | t = self.timer() |
| 170 | if type(t) == type(()) or type(t) == type([]): |
| 171 | t = reduce(lambda x,y: x+y, t, 0) |
| 172 | return t |
| 173 | |
| 174 | |
| 175 | # Heavily optimized dispatch routine for os.times() timer |
| 176 | |
| 177 | def trace_dispatch(self, frame, event, arg): |
| 178 | t = self.timer() |
| 179 | t = t[0] + t[1] - self.t # No Calibration constant |
| 180 | # t = t[0] + t[1] - self.t - .00053 # Calibration constant |
| 181 | |
| 182 | if self.dispatch[event](frame,t): |
| 183 | t = self.timer() |
| 184 | self.t = t[0] + t[1] |
| 185 | else: |
| 186 | r = self.timer() |
| 187 | self.t = r[0] + r[1] - t # put back unrecorded delta |
| 188 | return |
| 189 | |
| 190 | |
| 191 | |
| 192 | # Dispatch routine for best timer program (return = scalar integer) |
| 193 | |
| 194 | def trace_dispatch_i(self, frame, event, arg): |
| 195 | t = self.timer() - self.t # - 1 # Integer calibration constant |
| 196 | if self.dispatch[event](frame,t): |
| 197 | self.t = self.timer() |
| 198 | else: |
| 199 | self.t = self.timer() - t # put back unrecorded delta |
| 200 | return |
| 201 | |
| 202 | |
| 203 | # SLOW generic dispatch rountine for timer returning lists of numbers |
| 204 | |
| 205 | def trace_dispatch_l(self, frame, event, arg): |
| 206 | t = self.get_time() - self.t |
| 207 | |
| 208 | if self.dispatch[event](frame,t): |
| 209 | self.t = self.get_time() |
| 210 | else: |
| 211 | self.t = self.get_time()-t # put back unrecorded delta |
| 212 | return |
| 213 | |
| 214 | |
| 215 | def trace_dispatch_exception(self, frame, t): |
| 216 | rt, rtt, rct, rfn, rframe, rcur = self.cur |
| 217 | if (not rframe is frame) and rcur: |
| 218 | return self.trace_dispatch_return(rframe, t) |
| 219 | return 0 |
| 220 | |
| 221 | |
| 222 | def trace_dispatch_call(self, frame, t): |
| 223 | fn = `frame.f_code` |
| 224 | |
| 225 | # The following should be about the best approach, but |
| 226 | # we would need a function that maps from id() back to |
| 227 | # the actual code object. |
| 228 | # fn = id(frame.f_code) |
| 229 | # Note we would really use our own function, which would |
| 230 | # return the code address, *and* bump the ref count. We |
| 231 | # would then fix up the normalize function to do the |
| 232 | # actualy repr(fn) call. |
| 233 | |
| 234 | # The following is an interesting alternative |
| 235 | # It doesn't do as good a job, and it doesn't run as |
| 236 | # fast 'cause repr() is written in C, and this is Python. |
| 237 | #fcode = frame.f_code |
| 238 | #code = fcode.co_code |
| 239 | #if ord(code[0]) == 127: # == SET_LINENO |
| 240 | # # see "opcode.h" in the Python source |
| 241 | # fn = (fcode.co_filename, ord(code[1]) | \ |
| 242 | # ord(code[2]) << 8, fcode.co_name) |
| 243 | #else: |
| 244 | # fn = (fcode.co_filename, 0, fcode.co_name) |
| 245 | |
| 246 | self.cur = (t, 0, 0, fn, frame, self.cur) |
| 247 | if self.timings.has_key(fn): |
| 248 | cc, ns, tt, ct, callers = self.timings[fn] |
| 249 | self.timings[fn] = cc, ns + 1, tt, ct, callers |
| 250 | else: |
| 251 | self.timings[fn] = 0, 0, 0, 0, {} |
| 252 | return 1 |
| 253 | |
| 254 | def trace_dispatch_return(self, frame, t): |
| 255 | # if not frame is self.cur[-2]: raise "Bad return", self.cur[3] |
| 256 | |
| 257 | # Prefix "r" means part of the Returning or exiting frame |
| 258 | # Prefix "p" means part of the Previous or older frame |
| 259 | |
| 260 | rt, rtt, rct, rfn, frame, rcur = self.cur |
| 261 | rtt = rtt + t |
| 262 | sft = rtt + rct |
| 263 | |
| 264 | pt, ptt, pct, pfn, pframe, pcur = rcur |
| 265 | self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur |
| 266 | |
| 267 | cc, ns, tt, ct, callers = self.timings[rfn] |
| 268 | if not ns: |
| 269 | ct = ct + sft |
| 270 | cc = cc + 1 |
| 271 | if callers.has_key(pfn): |
| 272 | callers[pfn] = callers[pfn] + 1 # hack: gather more |
| 273 | # stats such as the amount of time added to ct courtesy |
| 274 | # of this specific call, and the contribution to cc |
| 275 | # courtesy of this call. |
| 276 | else: |
| 277 | callers[pfn] = 1 |
| 278 | self.timings[rfn] = cc, ns - 1, tt+rtt, ct, callers |
| 279 | |
| 280 | return 1 |
| 281 | |
| 282 | # The next few function play with self.cmd. By carefully preloading |
| 283 | # our paralell stack, we can force the profiled result to include |
| 284 | # an arbitrary string as the name of the calling function. |
| 285 | # We use self.cmd as that string, and the resulting stats look |
| 286 | # very nice :-). |
| 287 | |
| 288 | def set_cmd(self, cmd): |
| 289 | if self.cur[-1]: return # already set |
| 290 | self.cmd = cmd |
| 291 | self.simulate_call(cmd) |
| 292 | |
| 293 | class fake_code: |
| 294 | def __init__(self, filename, line, name): |
| 295 | self.co_filename = filename |
| 296 | self.co_line = line |
| 297 | self.co_name = name |
| 298 | self.co_code = '\0' # anything but 127 |
| 299 | |
| 300 | def __repr__(self): |
| 301 | return (self.co_filename, self.co_line, self.co_name) |
| 302 | |
| 303 | class fake_frame: |
| 304 | def __init__(self, code, prior): |
| 305 | self.f_code = code |
| 306 | self.f_back = prior |
| 307 | |
| 308 | def simulate_call(self, name): |
| 309 | code = self.fake_code('profile', 0, name) |
| 310 | if self.cur: |
| 311 | pframe = self.cur[-2] |
| 312 | else: |
| 313 | pframe = None |
| 314 | frame = self.fake_frame(code, pframe) |
| 315 | a = self.dispatch['call'](frame, 0) |
| 316 | return |
| 317 | |
| 318 | # collect stats from pending stack, including getting final |
| 319 | # timings for self.cmd frame. |
| 320 | |
| 321 | def simulate_cmd_complete(self): |
| 322 | t = self.get_time() - self.t |
| 323 | while self.cur[-1]: |
| 324 | # We *can* cause assertion errors here if |
| 325 | # dispatch_trace_return checks for a frame match! |
| 326 | a = self.dispatch['return'](self.cur[-2], t) |
| 327 | t = 0 |
| 328 | self.t = self.get_time() - t |
| 329 | |
| 330 | |
| 331 | def print_stats(self): |
| 332 | import pstats |
| 333 | pstats.Stats(self).strip_dirs().sort_stats(-1). \ |
| 334 | print_stats() |
| 335 | |
| 336 | def dump_stats(self, file): |
| 337 | f = open(file, 'w') |
| 338 | self.create_stats() |
| 339 | marshal.dump(self.stats, f) |
| 340 | f.close() |
| 341 | |
| 342 | def create_stats(self): |
| 343 | self.simulate_cmd_complete() |
| 344 | self.snapshot_stats() |
| 345 | |
| 346 | def snapshot_stats(self): |
| 347 | self.stats = {} |
| 348 | for func in self.timings.keys(): |
| 349 | cc, ns, tt, ct, callers = self.timings[func] |
| 350 | nor_func = self.func_normalize(func) |
| 351 | nor_callers = {} |
| 352 | nc = 0 |
| 353 | for func_caller in callers.keys(): |
| 354 | nor_callers[self.func_normalize(func_caller)]=\ |
| 355 | callers[func_caller] |
| 356 | nc = nc + callers[func_caller] |
| 357 | self.stats[nor_func] = cc, nc, tt, ct, nor_callers |
| 358 | |
| 359 | |
| 360 | # Override the following function if you can figure out |
| 361 | # a better name for the binary f_code entries. I just normalize |
| 362 | # them sequentially in a dictionary. It would be nice if we could |
| 363 | # *really* see the name of the underlying C code :-). Sometimes |
| 364 | # you can figure out what-is-what by looking at caller and callee |
| 365 | # lists (and knowing what your python code does). |
| 366 | |
| 367 | def func_normalize(self, func_name): |
| 368 | global func_norm_dict |
| 369 | global func_norm_counter |
| 370 | global func_sequence_num |
| 371 | |
| 372 | if func_norm_dict.has_key(func_name): |
| 373 | return func_norm_dict[func_name] |
| 374 | if type(func_name) == type(""): |
| 375 | long_name = string.split(func_name) |
| 376 | file_name = long_name[6][1:-2] |
| 377 | func = long_name[2] |
| 378 | lineno = long_name[8][:-1] |
| 379 | if '?' == func: # Until I find out how to may 'em... |
| 380 | file_name = 'python' |
| 381 | func_norm_counter = func_norm_counter + 1 |
| 382 | func = pid_string + ".C." + `func_norm_counter` |
| 383 | result = file_name , string.atoi(lineno) , func |
| 384 | else: |
| 385 | result = func_name |
| 386 | func_norm_dict[func_name] = result |
| 387 | return result |
| 388 | |
| 389 | |
| 390 | # The following two methods can be called by clients to use |
| 391 | # a profiler to profile a statement, given as a string. |
| 392 | |
| 393 | def run(self, cmd): |
| 394 | import __main__ |
| 395 | dict = __main__.__dict__ |
| 396 | self.runctx(cmd, dict, dict) |
| 397 | return self |
| 398 | |
| 399 | def runctx(self, cmd, globals, locals): |
| 400 | self.set_cmd(cmd) |
| 401 | sys.setprofile(self.trace_dispatch) |
| 402 | try: |
| 403 | exec(cmd, globals, locals) |
| 404 | finally: |
| 405 | sys.setprofile(None) |
| 406 | |
| 407 | # This method is more useful to profile a single function call. |
| 408 | def runcall(self, func, *args): |
Guido van Rossum | 8afa824 | 1995-06-22 18:52:35 +0000 | [diff] [blame^] | 409 | self.set_cmd(`func`) |
Guido van Rossum | b6775db | 1994-08-01 11:34:53 +0000 | [diff] [blame] | 410 | sys.setprofile(self.trace_dispatch) |
| 411 | try: |
| 412 | apply(func, args) |
| 413 | finally: |
| 414 | sys.setprofile(None) |
| 415 | return self |
| 416 | |
| 417 | |
| 418 | #****************************************************************** |
| 419 | # The following calculates the overhead for using a profiler. The |
| 420 | # problem is that it takes a fair amount of time for the profiler |
| 421 | # to stop the stopwatch (from the time it recieves an event). |
| 422 | # Similarly, there is a delay from the time that the profiler |
| 423 | # re-starts the stopwatch before the user's code really gets to |
| 424 | # continue. The following code tries to measure the difference on |
| 425 | # a per-event basis. The result can the be placed in the |
| 426 | # Profile.dispatch_event() routine for the given platform. Note |
| 427 | # that this difference is only significant if there are a lot of |
| 428 | # events, and relatively little user code per event. For example, |
| 429 | # code with small functions will typically benefit from having the |
| 430 | # profiler calibrated for the current platform. This *could* be |
| 431 | # done on the fly during init() time, but it is not worth the |
| 432 | # effort. Also note that if too large a value specified, then |
| 433 | # execution time on some functions will actually appear as a |
| 434 | # negative number. It is *normal* for some functions (with very |
| 435 | # low call counts) to have such negative stats, even if the |
| 436 | # calibration figure is "correct." |
| 437 | # |
| 438 | # One alternative to profile-time calibration adjustments (i.e., |
| 439 | # adding in the magic little delta during each event) is to track |
| 440 | # more carefully the number of events (and cumulatively, the number |
| 441 | # of events during sub functions) that are seen. If this were |
| 442 | # done, then the arithmetic could be done after the fact (i.e., at |
| 443 | # display time). Currintly, we track only call/return events. |
| 444 | # These values can be deduced by examining the callees and callers |
| 445 | # vectors for each functions. Hence we *can* almost correct the |
| 446 | # internal time figure at print time (note that we currently don't |
| 447 | # track exception event processing counts). Unfortunately, there |
| 448 | # is currently no similar information for cumulative sub-function |
| 449 | # time. It would not be hard to "get all this info" at profiler |
| 450 | # time. Specifically, we would have to extend the tuples to keep |
| 451 | # counts of this in each frame, and then extend the defs of timing |
| 452 | # tuples to include the significant two figures. I'm a bit fearful |
| 453 | # that this additional feature will slow the heavily optimized |
| 454 | # event/time ratio (i.e., the profiler would run slower, fur a very |
| 455 | # low "value added" feature.) |
| 456 | # |
| 457 | # Plugging in the calibration constant doesn't slow down the |
| 458 | # profiler very much, and the accuracy goes way up. |
| 459 | #************************************************************** |
| 460 | |
| 461 | def calibrate(self, m): |
| 462 | n = m |
| 463 | s = self.timer() |
| 464 | while n: |
| 465 | self.simple() |
| 466 | n = n - 1 |
| 467 | f = self.timer() |
| 468 | my_simple = f[0]+f[1]-s[0]-s[1] |
| 469 | #print "Simple =", my_simple, |
| 470 | |
| 471 | n = m |
| 472 | s = self.timer() |
| 473 | while n: |
| 474 | self.instrumented() |
| 475 | n = n - 1 |
| 476 | f = self.timer() |
| 477 | my_inst = f[0]+f[1]-s[0]-s[1] |
| 478 | # print "Instrumented =", my_inst |
| 479 | avg_cost = (my_inst - my_simple)/m |
| 480 | #print "Delta/call =", avg_cost, "(profiler fixup constant)" |
| 481 | return avg_cost |
| 482 | |
| 483 | # simulate a program with no profiler activity |
| 484 | def simple(self): |
| 485 | a = 1 |
| 486 | pass |
| 487 | |
| 488 | # simulate a program with call/return event processing |
| 489 | def instrumented(self): |
| 490 | a = 1 |
| 491 | self.profiler_simulation(a, a, a) |
| 492 | |
| 493 | # simulate an event processing activity (from user's perspective) |
| 494 | def profiler_simulation(self, x, y, z): |
| 495 | t = self.timer() |
| 496 | t = t[0] + t[1] |
| 497 | self.ut = t |
| 498 | |
| 499 | |
| 500 | |
| 501 | #**************************************************************************** |
| 502 | # OldProfile class documentation |
| 503 | #**************************************************************************** |
| 504 | # |
| 505 | # The following derived profiler simulates the old style profile, providing |
| 506 | # errant results on recursive functions. The reason for the usefulnes of this |
| 507 | # profiler is that it runs faster (i.e., less overhead). It still creates |
| 508 | # all the caller stats, and is quite useful when there is *no* recursion |
| 509 | # in the user's code. |
| 510 | # |
| 511 | # This code also shows how easy it is to create a modified profiler. |
| 512 | #**************************************************************************** |
| 513 | class OldProfile(Profile): |
| 514 | def trace_dispatch_exception(self, frame, t): |
| 515 | rt, rtt, rct, rfn, rframe, rcur = self.cur |
| 516 | if rcur and not rframe is frame: |
| 517 | return self.trace_dispatch_return(rframe, t) |
| 518 | return 0 |
| 519 | |
| 520 | def trace_dispatch_call(self, frame, t): |
| 521 | fn = `frame.f_code` |
| 522 | |
| 523 | self.cur = (t, 0, 0, fn, frame, self.cur) |
| 524 | if self.timings.has_key(fn): |
| 525 | tt, ct, callers = self.timings[fn] |
| 526 | self.timings[fn] = tt, ct, callers |
| 527 | else: |
| 528 | self.timings[fn] = 0, 0, {} |
| 529 | return 1 |
| 530 | |
| 531 | def trace_dispatch_return(self, frame, t): |
| 532 | rt, rtt, rct, rfn, frame, rcur = self.cur |
| 533 | rtt = rtt + t |
| 534 | sft = rtt + rct |
| 535 | |
| 536 | pt, ptt, pct, pfn, pframe, pcur = rcur |
| 537 | self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur |
| 538 | |
| 539 | tt, ct, callers = self.timings[rfn] |
| 540 | if callers.has_key(pfn): |
| 541 | callers[pfn] = callers[pfn] + 1 |
| 542 | else: |
| 543 | callers[pfn] = 1 |
| 544 | self.timings[rfn] = tt+rtt, ct + sft, callers |
| 545 | |
| 546 | return 1 |
| 547 | |
| 548 | |
| 549 | def snapshot_stats(self): |
| 550 | self.stats = {} |
| 551 | for func in self.timings.keys(): |
| 552 | tt, ct, callers = self.timings[func] |
| 553 | nor_func = self.func_normalize(func) |
| 554 | nor_callers = {} |
| 555 | nc = 0 |
| 556 | for func_caller in callers.keys(): |
| 557 | nor_callers[self.func_normalize(func_caller)]=\ |
| 558 | callers[func_caller] |
| 559 | nc = nc + callers[func_caller] |
| 560 | self.stats[nor_func] = nc, nc, tt, ct, nor_callers |
| 561 | |
| 562 | |
| 563 | |
| 564 | #**************************************************************************** |
| 565 | # HotProfile class documentation |
| 566 | #**************************************************************************** |
| 567 | # |
| 568 | # This profiler is the fastest derived profile example. It does not |
| 569 | # calculate caller-callee relationships, and does not calculate cumulative |
| 570 | # time under a function. It only calculates time spent in a function, so |
| 571 | # it runs very quickly (re: very low overhead) |
| 572 | #**************************************************************************** |
| 573 | class HotProfile(Profile): |
| 574 | def trace_dispatch_exception(self, frame, t): |
| 575 | rt, rtt, rfn, rframe, rcur = self.cur |
| 576 | if rcur and not rframe is frame: |
| 577 | return self.trace_dispatch_return(rframe, t) |
| 578 | return 0 |
| 579 | |
| 580 | def trace_dispatch_call(self, frame, t): |
| 581 | self.cur = (t, 0, frame, self.cur) |
| 582 | return 1 |
| 583 | |
| 584 | def trace_dispatch_return(self, frame, t): |
| 585 | rt, rtt, frame, rcur = self.cur |
| 586 | |
| 587 | rfn = `frame.f_code` |
| 588 | |
| 589 | pt, ptt, pframe, pcur = rcur |
| 590 | self.cur = pt, ptt+rt, pframe, pcur |
| 591 | |
| 592 | if self.timings.has_key(rfn): |
| 593 | nc, tt = self.timings[rfn] |
| 594 | self.timings[rfn] = nc + 1, rt + rtt + tt |
| 595 | else: |
| 596 | self.timings[rfn] = 1, rt + rtt |
| 597 | |
| 598 | return 1 |
| 599 | |
| 600 | |
| 601 | def snapshot_stats(self): |
| 602 | self.stats = {} |
| 603 | for func in self.timings.keys(): |
| 604 | nc, tt = self.timings[func] |
| 605 | nor_func = self.func_normalize(func) |
| 606 | self.stats[nor_func] = nc, nc, tt, 0, {} |
| 607 | |
| 608 | |
| 609 | |
| 610 | #**************************************************************************** |
| 611 | def Stats(*args): |
| 612 | print 'Report generating functions are in the "pstats" module\a' |