blob: c760701ef151b8b6e75f2a1477baf1d689c2fbc8 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
7
8This module is always available. It provides access to the mathematical
9functions defined by the C standard.
10
11These functions cannot be used with complex numbers; use the functions of the
12same name from the :mod:`cmath` module if you require support for complex
13numbers. The distinction between functions which support complex numbers and
14those which don't is made since most users do not want to learn quite as much
15mathematics as required to understand complex numbers. Receiving an exception
16instead of a complex result allows earlier detection of the unexpected complex
17number used as a parameter, so that the programmer can determine how and why it
18was generated in the first place.
19
20The following functions are provided by this module. Except when explicitly
21noted otherwise, all return values are floats.
22
Georg Brandl116aa622007-08-15 14:28:22 +000023
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000024Number-theoretic and representation functions
25---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000026
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
Mark Dickinsonc7d44a42010-04-06 19:55:38 +000036 Return *x* with the sign of *y*. On a platform that supports
37 signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000038
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
Georg Brandlc28e1fa2008-06-10 19:20:26 +000044.. function:: factorial(x)
45
Benjamin Petersonfea6a942008-07-02 16:11:42 +000046 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000047 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000048
49.. function:: floor(x)
50
Georg Brandl2a033732008-04-05 17:37:09 +000051 Return the floor of *x*, the largest integer less than or equal to *x*.
52 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
53 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000054
55
56.. function:: fmod(x, y)
57
58 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
59 Python expression ``x % y`` may not return the same result. The intent of the C
60 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
61 precision) equal to ``x - n*y`` for some integer *n* such that the result has
62 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
63 returns a result with the sign of *y* instead, and may not be exactly computable
64 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
65 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
66 represented exactly as a float, and rounds to the surprising ``1e100``. For
67 this reason, function :func:`fmod` is generally preferred when working with
68 floats, while Python's ``x % y`` is preferred when working with integers.
69
70
71.. function:: frexp(x)
72
73 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
74 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
75 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
76 apart" the internal representation of a float in a portable way.
77
78
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000079.. function:: fsum(iterable)
80
81 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000082 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000083
Raymond Hettingerf3936f82009-02-19 05:48:05 +000084 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinsond1cc39d2009-06-28 21:00:42 +000085 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000086 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
87 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000088
Raymond Hettingerf3936f82009-02-19 05:48:05 +000089 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
90 typical case where the rounding mode is half-even. On some non-Windows
91 builds, the underlying C library uses extended precision addition and may
92 occasionally double-round an intermediate sum causing it to be off in its
93 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000094
Raymond Hettinger477be822009-02-19 06:44:30 +000095 For further discussion and two alternative approaches, see the `ASPN cookbook
96 recipes for accurate floating point summation
97 <http://code.activestate.com/recipes/393090/>`_\.
98
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000099
Christian Heimes072c0f12008-01-03 23:01:04 +0000100.. function:: isinf(x)
101
Mark Dickinsonc7d44a42010-04-06 19:55:38 +0000102 Check if the float *x* is positive or negative infinity.
Christian Heimes072c0f12008-01-03 23:01:04 +0000103
Christian Heimes072c0f12008-01-03 23:01:04 +0000104
105.. function:: isnan(x)
106
Mark Dickinsonc7d44a42010-04-06 19:55:38 +0000107 Check if the float *x* is a NaN (not a number). For more information
108 on NaNs, see the IEEE 754 standards.
Christian Heimes072c0f12008-01-03 23:01:04 +0000109
Christian Heimes072c0f12008-01-03 23:01:04 +0000110
Georg Brandl116aa622007-08-15 14:28:22 +0000111.. function:: ldexp(x, i)
112
113 Return ``x * (2**i)``. This is essentially the inverse of function
114 :func:`frexp`.
115
116
117.. function:: modf(x)
118
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000119 Return the fractional and integer parts of *x*. Both results carry the sign
120 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000121
Christian Heimes400adb02008-02-01 08:12:03 +0000122
123.. function:: trunc(x)
124
125 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
Mark Dickinsonbf5c6a92009-01-17 10:21:23 +0000126 an integer). Delegates to ``x.__trunc__()``.
Christian Heimes400adb02008-02-01 08:12:03 +0000127
Christian Heimes400adb02008-02-01 08:12:03 +0000128
Georg Brandl116aa622007-08-15 14:28:22 +0000129Note that :func:`frexp` and :func:`modf` have a different call/return pattern
130than their C equivalents: they take a single argument and return a pair of
131values, rather than returning their second return value through an 'output
132parameter' (there is no such thing in Python).
133
134For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
135floating-point numbers of sufficiently large magnitude are exact integers.
136Python floats typically carry no more than 53 bits of precision (the same as the
137platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
138necessarily has no fractional bits.
139
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000140
141Power and logarithmic functions
142-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000143
Georg Brandl116aa622007-08-15 14:28:22 +0000144.. function:: exp(x)
145
146 Return ``e**x``.
147
148
149.. function:: log(x[, base])
150
Georg Brandl7baf6252009-09-01 08:13:16 +0000151 With one argument, return the natural logarithm of *x* (to base *e*).
152
153 With two arguments, return the logarithm of *x* to the given *base*,
154 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000155
Georg Brandl116aa622007-08-15 14:28:22 +0000156
Christian Heimes53876d92008-04-19 00:31:39 +0000157.. function:: log1p(x)
158
159 Return the natural logarithm of *1+x* (base *e*). The
160 result is calculated in a way which is accurate for *x* near zero.
161
Christian Heimes53876d92008-04-19 00:31:39 +0000162
Georg Brandl116aa622007-08-15 14:28:22 +0000163.. function:: log10(x)
164
Georg Brandl7baf6252009-09-01 08:13:16 +0000165 Return the base-10 logarithm of *x*. This is usually more accurate
166 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000167
168
169.. function:: pow(x, y)
170
Christian Heimesa342c012008-04-20 21:01:16 +0000171 Return ``x`` raised to the power ``y``. Exceptional cases follow
172 Annex 'F' of the C99 standard as far as possible. In particular,
173 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
174 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
175 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
176 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000177
Georg Brandl116aa622007-08-15 14:28:22 +0000178
179.. function:: sqrt(x)
180
181 Return the square root of *x*.
182
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000183Trigonometric functions
184-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000185
186
187.. function:: acos(x)
188
189 Return the arc cosine of *x*, in radians.
190
191
192.. function:: asin(x)
193
194 Return the arc sine of *x*, in radians.
195
196
197.. function:: atan(x)
198
199 Return the arc tangent of *x*, in radians.
200
201
202.. function:: atan2(y, x)
203
204 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
205 The vector in the plane from the origin to point ``(x, y)`` makes this angle
206 with the positive X axis. The point of :func:`atan2` is that the signs of both
207 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinsonc7d44a42010-04-06 19:55:38 +0000208 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000209 -1)`` is ``-3*pi/4``.
210
211
212.. function:: cos(x)
213
214 Return the cosine of *x* radians.
215
216
217.. function:: hypot(x, y)
218
219 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
220 from the origin to point ``(x, y)``.
221
222
223.. function:: sin(x)
224
225 Return the sine of *x* radians.
226
227
228.. function:: tan(x)
229
230 Return the tangent of *x* radians.
231
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000232Angular conversion
233------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000234
235
236.. function:: degrees(x)
237
238 Converts angle *x* from radians to degrees.
239
240
241.. function:: radians(x)
242
243 Converts angle *x* from degrees to radians.
244
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000245Hyperbolic functions
246--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000247
248
Christian Heimesa342c012008-04-20 21:01:16 +0000249.. function:: acosh(x)
250
251 Return the inverse hyperbolic cosine of *x*.
252
Christian Heimesa342c012008-04-20 21:01:16 +0000253
254.. function:: asinh(x)
255
256 Return the inverse hyperbolic sine of *x*.
257
Christian Heimesa342c012008-04-20 21:01:16 +0000258
259.. function:: atanh(x)
260
261 Return the inverse hyperbolic tangent of *x*.
262
Christian Heimesa342c012008-04-20 21:01:16 +0000263
Georg Brandl116aa622007-08-15 14:28:22 +0000264.. function:: cosh(x)
265
266 Return the hyperbolic cosine of *x*.
267
268
269.. function:: sinh(x)
270
271 Return the hyperbolic sine of *x*.
272
273
274.. function:: tanh(x)
275
276 Return the hyperbolic tangent of *x*.
277
Christian Heimes53876d92008-04-19 00:31:39 +0000278
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000279Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000280---------
Georg Brandl116aa622007-08-15 14:28:22 +0000281
282.. data:: pi
283
Mark Dickinsonc7d44a42010-04-06 19:55:38 +0000284 The mathematical constant π = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000285
286
287.. data:: e
288
Mark Dickinsonc7d44a42010-04-06 19:55:38 +0000289 The mathematical constant e = 2.718281..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000290
Christian Heimes53876d92008-04-19 00:31:39 +0000291
Georg Brandl628e6f92009-10-27 20:24:45 +0000292.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000293
294 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinsonc7d44a42010-04-06 19:55:38 +0000295 math library functions. Behavior in exceptional cases follows Annex F of
296 the C99 standard where appropriate. The current implementation will raise
297 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
298 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
299 and :exc:`OverflowError` for results that overflow (for example,
Mark Dickinson18628402010-04-12 18:52:08 +0000300 ``exp(1000.0)``). A NaN will not be returned from any of the functions
301 above unless one or more of the input arguments was a NaN; in that case,
302 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinsonc7d44a42010-04-06 19:55:38 +0000303 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
304 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000305
Mark Dickinsona3607c82010-04-06 22:14:23 +0000306 Note that Python makes no effort to distinguish signaling NaNs from
307 quiet NaNs, and behavior for signaling NaNs remains unspecified.
308 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000309
Georg Brandl116aa622007-08-15 14:28:22 +0000310
311.. seealso::
312
313 Module :mod:`cmath`
314 Complex number versions of many of these functions.