blob: 7f3f87595fb6834094f770e50e9e81f83343c008 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`ctypes` --- A foreign function library for Python.
3========================================================
4
5.. module:: ctypes
6 :synopsis: A foreign function library for Python.
7.. moduleauthor:: Thomas Heller <theller@python.net>
8
9
Georg Brandl116aa622007-08-15 14:28:22 +000010``ctypes`` is a foreign function library for Python. It provides C compatible
11data types, and allows calling functions in dlls/shared libraries. It can be
12used to wrap these libraries in pure Python.
13
14
15.. _ctypes-ctypes-tutorial:
16
17ctypes tutorial
18---------------
19
20Note: The code samples in this tutorial use ``doctest`` to make sure that they
21actually work. Since some code samples behave differently under Linux, Windows,
22or Mac OS X, they contain doctest directives in comments.
23
24Note: Some code sample references the ctypes :class:`c_int` type. This type is
25an alias to the :class:`c_long` type on 32-bit systems. So, you should not be
26confused if :class:`c_long` is printed if you would expect :class:`c_int` ---
27they are actually the same type.
28
29
30.. _ctypes-loading-dynamic-link-libraries:
31
32Loading dynamic link libraries
33^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
34
35``ctypes`` exports the *cdll*, and on Windows also *windll* and *oledll* objects
36to load dynamic link libraries.
37
38You load libraries by accessing them as attributes of these objects. *cdll*
39loads libraries which export functions using the standard ``cdecl`` calling
40convention, while *windll* libraries call functions using the ``stdcall``
41calling convention. *oledll* also uses the ``stdcall`` calling convention, and
42assumes the functions return a Windows :class:`HRESULT` error code. The error
43code is used to automatically raise :class:`WindowsError` Python exceptions when
44the function call fails.
45
46Here are some examples for Windows. Note that ``msvcrt`` is the MS standard C
47library containing most standard C functions, and uses the cdecl calling
48convention::
49
50 >>> from ctypes import *
Georg Brandl6911e3c2007-09-04 07:15:32 +000051 >>> print(windll.kernel32) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +000052 <WinDLL 'kernel32', handle ... at ...>
Georg Brandl6911e3c2007-09-04 07:15:32 +000053 >>> print(cdll.msvcrt) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +000054 <CDLL 'msvcrt', handle ... at ...>
55 >>> libc = cdll.msvcrt # doctest: +WINDOWS
56 >>>
57
58Windows appends the usual '.dll' file suffix automatically.
59
60On Linux, it is required to specify the filename *including* the extension to
61load a library, so attribute access does not work. Either the
62:meth:`LoadLibrary` method of the dll loaders should be used, or you should load
63the library by creating an instance of CDLL by calling the constructor::
64
65 >>> cdll.LoadLibrary("libc.so.6") # doctest: +LINUX
66 <CDLL 'libc.so.6', handle ... at ...>
67 >>> libc = CDLL("libc.so.6") # doctest: +LINUX
68 >>> libc # doctest: +LINUX
69 <CDLL 'libc.so.6', handle ... at ...>
70 >>>
71
72.. % XXX Add section for Mac OS X.
73
74
75.. _ctypes-accessing-functions-from-loaded-dlls:
76
77Accessing functions from loaded dlls
78^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
79
80Functions are accessed as attributes of dll objects::
81
82 >>> from ctypes import *
83 >>> libc.printf
84 <_FuncPtr object at 0x...>
Georg Brandl6911e3c2007-09-04 07:15:32 +000085 >>> print(windll.kernel32.GetModuleHandleA) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +000086 <_FuncPtr object at 0x...>
Georg Brandl6911e3c2007-09-04 07:15:32 +000087 >>> print(windll.kernel32.MyOwnFunction) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +000088 Traceback (most recent call last):
89 File "<stdin>", line 1, in ?
90 File "ctypes.py", line 239, in __getattr__
91 func = _StdcallFuncPtr(name, self)
92 AttributeError: function 'MyOwnFunction' not found
93 >>>
94
95Note that win32 system dlls like ``kernel32`` and ``user32`` often export ANSI
96as well as UNICODE versions of a function. The UNICODE version is exported with
97an ``W`` appended to the name, while the ANSI version is exported with an ``A``
98appended to the name. The win32 ``GetModuleHandle`` function, which returns a
99*module handle* for a given module name, has the following C prototype, and a
100macro is used to expose one of them as ``GetModuleHandle`` depending on whether
101UNICODE is defined or not::
102
103 /* ANSI version */
104 HMODULE GetModuleHandleA(LPCSTR lpModuleName);
105 /* UNICODE version */
106 HMODULE GetModuleHandleW(LPCWSTR lpModuleName);
107
108*windll* does not try to select one of them by magic, you must access the
109version you need by specifying ``GetModuleHandleA`` or ``GetModuleHandleW``
Thomas Woutersed03b412007-08-28 21:37:11 +0000110explicitly, and then call it with normal strings or unicode strings
Georg Brandl116aa622007-08-15 14:28:22 +0000111respectively.
112
113Sometimes, dlls export functions with names which aren't valid Python
114identifiers, like ``"??2@YAPAXI@Z"``. In this case you have to use ``getattr``
115to retrieve the function::
116
117 >>> getattr(cdll.msvcrt, "??2@YAPAXI@Z") # doctest: +WINDOWS
118 <_FuncPtr object at 0x...>
119 >>>
120
121On Windows, some dlls export functions not by name but by ordinal. These
122functions can be accessed by indexing the dll object with the ordinal number::
123
124 >>> cdll.kernel32[1] # doctest: +WINDOWS
125 <_FuncPtr object at 0x...>
126 >>> cdll.kernel32[0] # doctest: +WINDOWS
127 Traceback (most recent call last):
128 File "<stdin>", line 1, in ?
129 File "ctypes.py", line 310, in __getitem__
130 func = _StdcallFuncPtr(name, self)
131 AttributeError: function ordinal 0 not found
132 >>>
133
134
135.. _ctypes-calling-functions:
136
137Calling functions
138^^^^^^^^^^^^^^^^^
139
140You can call these functions like any other Python callable. This example uses
141the ``time()`` function, which returns system time in seconds since the Unix
142epoch, and the ``GetModuleHandleA()`` function, which returns a win32 module
143handle.
144
145This example calls both functions with a NULL pointer (``None`` should be used
146as the NULL pointer)::
147
Georg Brandl6911e3c2007-09-04 07:15:32 +0000148 >>> print(libc.time(None)) # doctest: +SKIP
Georg Brandl116aa622007-08-15 14:28:22 +0000149 1150640792
Georg Brandl6911e3c2007-09-04 07:15:32 +0000150 >>> print(hex(windll.kernel32.GetModuleHandleA(None))) # doctest: +WINDOWS
Georg Brandl116aa622007-08-15 14:28:22 +0000151 0x1d000000
152 >>>
153
154``ctypes`` tries to protect you from calling functions with the wrong number of
155arguments or the wrong calling convention. Unfortunately this only works on
156Windows. It does this by examining the stack after the function returns, so
157although an error is raised the function *has* been called::
158
159 >>> windll.kernel32.GetModuleHandleA() # doctest: +WINDOWS
160 Traceback (most recent call last):
161 File "<stdin>", line 1, in ?
162 ValueError: Procedure probably called with not enough arguments (4 bytes missing)
163 >>> windll.kernel32.GetModuleHandleA(0, 0) # doctest: +WINDOWS
164 Traceback (most recent call last):
165 File "<stdin>", line 1, in ?
166 ValueError: Procedure probably called with too many arguments (4 bytes in excess)
167 >>>
168
169The same exception is raised when you call an ``stdcall`` function with the
170``cdecl`` calling convention, or vice versa::
171
172 >>> cdll.kernel32.GetModuleHandleA(None) # doctest: +WINDOWS
173 Traceback (most recent call last):
174 File "<stdin>", line 1, in ?
175 ValueError: Procedure probably called with not enough arguments (4 bytes missing)
176 >>>
177
178 >>> windll.msvcrt.printf("spam") # doctest: +WINDOWS
179 Traceback (most recent call last):
180 File "<stdin>", line 1, in ?
181 ValueError: Procedure probably called with too many arguments (4 bytes in excess)
182 >>>
183
184To find out the correct calling convention you have to look into the C header
185file or the documentation for the function you want to call.
186
187On Windows, ``ctypes`` uses win32 structured exception handling to prevent
188crashes from general protection faults when functions are called with invalid
189argument values::
190
191 >>> windll.kernel32.GetModuleHandleA(32) # doctest: +WINDOWS
192 Traceback (most recent call last):
193 File "<stdin>", line 1, in ?
194 WindowsError: exception: access violation reading 0x00000020
195 >>>
196
197There are, however, enough ways to crash Python with ``ctypes``, so you should
198be careful anyway.
199
200``None``, integers, longs, byte strings and unicode strings are the only native
201Python objects that can directly be used as parameters in these function calls.
202``None`` is passed as a C ``NULL`` pointer, byte strings and unicode strings are
203passed as pointer to the memory block that contains their data (``char *`` or
204``wchar_t *``). Python integers and Python longs are passed as the platforms
205default C ``int`` type, their value is masked to fit into the C type.
206
207Before we move on calling functions with other parameter types, we have to learn
208more about ``ctypes`` data types.
209
210
211.. _ctypes-fundamental-data-types:
212
213Fundamental data types
214^^^^^^^^^^^^^^^^^^^^^^
215
216``ctypes`` defines a number of primitive C compatible data types :
217
218 +----------------------+--------------------------------+----------------------------+
219 | ctypes type | C type | Python type |
220 +======================+================================+============================+
221 | :class:`c_char` | ``char`` | 1-character string |
222 +----------------------+--------------------------------+----------------------------+
223 | :class:`c_wchar` | ``wchar_t`` | 1-character unicode string |
224 +----------------------+--------------------------------+----------------------------+
225 | :class:`c_byte` | ``char`` | int/long |
226 +----------------------+--------------------------------+----------------------------+
227 | :class:`c_ubyte` | ``unsigned char`` | int/long |
228 +----------------------+--------------------------------+----------------------------+
229 | :class:`c_short` | ``short`` | int/long |
230 +----------------------+--------------------------------+----------------------------+
231 | :class:`c_ushort` | ``unsigned short`` | int/long |
232 +----------------------+--------------------------------+----------------------------+
233 | :class:`c_int` | ``int`` | int/long |
234 +----------------------+--------------------------------+----------------------------+
235 | :class:`c_uint` | ``unsigned int`` | int/long |
236 +----------------------+--------------------------------+----------------------------+
237 | :class:`c_long` | ``long`` | int/long |
238 +----------------------+--------------------------------+----------------------------+
239 | :class:`c_ulong` | ``unsigned long`` | int/long |
240 +----------------------+--------------------------------+----------------------------+
241 | :class:`c_longlong` | ``__int64`` or ``long long`` | int/long |
242 +----------------------+--------------------------------+----------------------------+
243 | :class:`c_ulonglong` | ``unsigned __int64`` or | int/long |
244 | | ``unsigned long long`` | |
245 +----------------------+--------------------------------+----------------------------+
246 | :class:`c_float` | ``float`` | float |
247 +----------------------+--------------------------------+----------------------------+
248 | :class:`c_double` | ``double`` | float |
249 +----------------------+--------------------------------+----------------------------+
Thomas Wouters89d996e2007-09-08 17:39:28 +0000250 | :class:`c_longdouble`| ``long double`` | float |
251 +----------------------+--------------------------------+----------------------------+
Georg Brandl116aa622007-08-15 14:28:22 +0000252 | :class:`c_char_p` | ``char *`` (NUL terminated) | string or ``None`` |
253 +----------------------+--------------------------------+----------------------------+
254 | :class:`c_wchar_p` | ``wchar_t *`` (NUL terminated) | unicode or ``None`` |
255 +----------------------+--------------------------------+----------------------------+
256 | :class:`c_void_p` | ``void *`` | int/long or ``None`` |
257 +----------------------+--------------------------------+----------------------------+
258
259
260All these types can be created by calling them with an optional initializer of
261the correct type and value::
262
263 >>> c_int()
264 c_long(0)
265 >>> c_char_p("Hello, World")
266 c_char_p('Hello, World')
267 >>> c_ushort(-3)
268 c_ushort(65533)
269 >>>
270
271Since these types are mutable, their value can also be changed afterwards::
272
273 >>> i = c_int(42)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000274 >>> print(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000275 c_long(42)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000276 >>> print(i.value)
Georg Brandl116aa622007-08-15 14:28:22 +0000277 42
278 >>> i.value = -99
Georg Brandl6911e3c2007-09-04 07:15:32 +0000279 >>> print(i.value)
Georg Brandl116aa622007-08-15 14:28:22 +0000280 -99
281 >>>
282
283Assigning a new value to instances of the pointer types :class:`c_char_p`,
284:class:`c_wchar_p`, and :class:`c_void_p` changes the *memory location* they
285point to, *not the contents* of the memory block (of course not, because Python
286strings are immutable)::
287
288 >>> s = "Hello, World"
289 >>> c_s = c_char_p(s)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000290 >>> print(c_s)
Georg Brandl116aa622007-08-15 14:28:22 +0000291 c_char_p('Hello, World')
292 >>> c_s.value = "Hi, there"
Georg Brandl6911e3c2007-09-04 07:15:32 +0000293 >>> print(c_s)
Georg Brandl116aa622007-08-15 14:28:22 +0000294 c_char_p('Hi, there')
Georg Brandl6911e3c2007-09-04 07:15:32 +0000295 >>> print(s) # first string is unchanged
Georg Brandl116aa622007-08-15 14:28:22 +0000296 Hello, World
297 >>>
298
299You should be careful, however, not to pass them to functions expecting pointers
300to mutable memory. If you need mutable memory blocks, ctypes has a
301``create_string_buffer`` function which creates these in various ways. The
302current memory block contents can be accessed (or changed) with the ``raw``
303property; if you want to access it as NUL terminated string, use the ``value``
304property::
305
306 >>> from ctypes import *
307 >>> p = create_string_buffer(3) # create a 3 byte buffer, initialized to NUL bytes
Georg Brandl6911e3c2007-09-04 07:15:32 +0000308 >>> print(sizeof(p), repr(p.raw))
Georg Brandl116aa622007-08-15 14:28:22 +0000309 3 '\x00\x00\x00'
310 >>> p = create_string_buffer("Hello") # create a buffer containing a NUL terminated string
Georg Brandl6911e3c2007-09-04 07:15:32 +0000311 >>> print(sizeof(p), repr(p.raw))
Georg Brandl116aa622007-08-15 14:28:22 +0000312 6 'Hello\x00'
Georg Brandl6911e3c2007-09-04 07:15:32 +0000313 >>> print(repr(p.value))
Georg Brandl116aa622007-08-15 14:28:22 +0000314 'Hello'
315 >>> p = create_string_buffer("Hello", 10) # create a 10 byte buffer
Georg Brandl6911e3c2007-09-04 07:15:32 +0000316 >>> print(sizeof(p), repr(p.raw))
Georg Brandl116aa622007-08-15 14:28:22 +0000317 10 'Hello\x00\x00\x00\x00\x00'
318 >>> p.value = "Hi"
Georg Brandl6911e3c2007-09-04 07:15:32 +0000319 >>> print(sizeof(p), repr(p.raw))
Georg Brandl116aa622007-08-15 14:28:22 +0000320 10 'Hi\x00lo\x00\x00\x00\x00\x00'
321 >>>
322
323The ``create_string_buffer`` function replaces the ``c_buffer`` function (which
324is still available as an alias), as well as the ``c_string`` function from
325earlier ctypes releases. To create a mutable memory block containing unicode
326characters of the C type ``wchar_t`` use the ``create_unicode_buffer`` function.
327
328
329.. _ctypes-calling-functions-continued:
330
331Calling functions, continued
332^^^^^^^^^^^^^^^^^^^^^^^^^^^^
333
334Note that printf prints to the real standard output channel, *not* to
335``sys.stdout``, so these examples will only work at the console prompt, not from
336within *IDLE* or *PythonWin*::
337
338 >>> printf = libc.printf
339 >>> printf("Hello, %s\n", "World!")
340 Hello, World!
341 14
342 >>> printf("Hello, %S", u"World!")
343 Hello, World!
344 13
345 >>> printf("%d bottles of beer\n", 42)
346 42 bottles of beer
347 19
348 >>> printf("%f bottles of beer\n", 42.5)
349 Traceback (most recent call last):
350 File "<stdin>", line 1, in ?
351 ArgumentError: argument 2: exceptions.TypeError: Don't know how to convert parameter 2
352 >>>
353
354As has been mentioned before, all Python types except integers, strings, and
355unicode strings have to be wrapped in their corresponding ``ctypes`` type, so
356that they can be converted to the required C data type::
357
358 >>> printf("An int %d, a double %f\n", 1234, c_double(3.14))
359 Integer 1234, double 3.1400001049
360 31
361 >>>
362
363
364.. _ctypes-calling-functions-with-own-custom-data-types:
365
366Calling functions with your own custom data types
367^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
368
369You can also customize ``ctypes`` argument conversion to allow instances of your
370own classes be used as function arguments. ``ctypes`` looks for an
371:attr:`_as_parameter_` attribute and uses this as the function argument. Of
372course, it must be one of integer, string, or unicode::
373
374 >>> class Bottles(object):
375 ... def __init__(self, number):
376 ... self._as_parameter_ = number
377 ...
378 >>> bottles = Bottles(42)
379 >>> printf("%d bottles of beer\n", bottles)
380 42 bottles of beer
381 19
382 >>>
383
384If you don't want to store the instance's data in the :attr:`_as_parameter_`
385instance variable, you could define a ``property`` which makes the data
Thomas Woutersed03b412007-08-28 21:37:11 +0000386available.
Georg Brandl116aa622007-08-15 14:28:22 +0000387
388
389.. _ctypes-specifying-required-argument-types:
390
391Specifying the required argument types (function prototypes)
392^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
393
394It is possible to specify the required argument types of functions exported from
395DLLs by setting the :attr:`argtypes` attribute.
396
397:attr:`argtypes` must be a sequence of C data types (the ``printf`` function is
398probably not a good example here, because it takes a variable number and
399different types of parameters depending on the format string, on the other hand
400this is quite handy to experiment with this feature)::
401
402 >>> printf.argtypes = [c_char_p, c_char_p, c_int, c_double]
403 >>> printf("String '%s', Int %d, Double %f\n", "Hi", 10, 2.2)
404 String 'Hi', Int 10, Double 2.200000
405 37
406 >>>
407
408Specifying a format protects against incompatible argument types (just as a
409prototype for a C function), and tries to convert the arguments to valid types::
410
411 >>> printf("%d %d %d", 1, 2, 3)
412 Traceback (most recent call last):
413 File "<stdin>", line 1, in ?
414 ArgumentError: argument 2: exceptions.TypeError: wrong type
415 >>> printf("%s %d %f", "X", 2, 3)
416 X 2 3.00000012
417 12
418 >>>
419
420If you have defined your own classes which you pass to function calls, you have
421to implement a :meth:`from_param` class method for them to be able to use them
422in the :attr:`argtypes` sequence. The :meth:`from_param` class method receives
423the Python object passed to the function call, it should do a typecheck or
424whatever is needed to make sure this object is acceptable, and then return the
425object itself, it's :attr:`_as_parameter_` attribute, or whatever you want to
426pass as the C function argument in this case. Again, the result should be an
427integer, string, unicode, a ``ctypes`` instance, or something having the
428:attr:`_as_parameter_` attribute.
429
430
431.. _ctypes-return-types:
432
433Return types
434^^^^^^^^^^^^
435
436By default functions are assumed to return the C ``int`` type. Other return
437types can be specified by setting the :attr:`restype` attribute of the function
438object.
439
440Here is a more advanced example, it uses the ``strchr`` function, which expects
441a string pointer and a char, and returns a pointer to a string::
442
443 >>> strchr = libc.strchr
444 >>> strchr("abcdef", ord("d")) # doctest: +SKIP
445 8059983
446 >>> strchr.restype = c_char_p # c_char_p is a pointer to a string
447 >>> strchr("abcdef", ord("d"))
448 'def'
Georg Brandl6911e3c2007-09-04 07:15:32 +0000449 >>> print(strchr("abcdef", ord("x")))
Georg Brandl116aa622007-08-15 14:28:22 +0000450 None
451 >>>
452
453If you want to avoid the ``ord("x")`` calls above, you can set the
454:attr:`argtypes` attribute, and the second argument will be converted from a
455single character Python string into a C char::
456
457 >>> strchr.restype = c_char_p
458 >>> strchr.argtypes = [c_char_p, c_char]
459 >>> strchr("abcdef", "d")
460 'def'
461 >>> strchr("abcdef", "def")
462 Traceback (most recent call last):
463 File "<stdin>", line 1, in ?
464 ArgumentError: argument 2: exceptions.TypeError: one character string expected
Georg Brandl6911e3c2007-09-04 07:15:32 +0000465 >>> print(strchr("abcdef", "x"))
Georg Brandl116aa622007-08-15 14:28:22 +0000466 None
467 >>> strchr("abcdef", "d")
468 'def'
469 >>>
470
471You can also use a callable Python object (a function or a class for example) as
472the :attr:`restype` attribute, if the foreign function returns an integer. The
473callable will be called with the ``integer`` the C function returns, and the
474result of this call will be used as the result of your function call. This is
475useful to check for error return values and automatically raise an exception::
476
477 >>> GetModuleHandle = windll.kernel32.GetModuleHandleA # doctest: +WINDOWS
478 >>> def ValidHandle(value):
479 ... if value == 0:
480 ... raise WinError()
481 ... return value
482 ...
483 >>>
484 >>> GetModuleHandle.restype = ValidHandle # doctest: +WINDOWS
485 >>> GetModuleHandle(None) # doctest: +WINDOWS
486 486539264
487 >>> GetModuleHandle("something silly") # doctest: +WINDOWS
488 Traceback (most recent call last):
489 File "<stdin>", line 1, in ?
490 File "<stdin>", line 3, in ValidHandle
491 WindowsError: [Errno 126] The specified module could not be found.
492 >>>
493
494``WinError`` is a function which will call Windows ``FormatMessage()`` api to
495get the string representation of an error code, and *returns* an exception.
496``WinError`` takes an optional error code parameter, if no one is used, it calls
497:func:`GetLastError` to retrieve it.
498
499Please note that a much more powerful error checking mechanism is available
500through the :attr:`errcheck` attribute; see the reference manual for details.
501
502
503.. _ctypes-passing-pointers:
504
505Passing pointers (or: passing parameters by reference)
506^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
507
508Sometimes a C api function expects a *pointer* to a data type as parameter,
509probably to write into the corresponding location, or if the data is too large
510to be passed by value. This is also known as *passing parameters by reference*.
511
512``ctypes`` exports the :func:`byref` function which is used to pass parameters
513by reference. The same effect can be achieved with the ``pointer`` function,
514although ``pointer`` does a lot more work since it constructs a real pointer
515object, so it is faster to use :func:`byref` if you don't need the pointer
516object in Python itself::
517
518 >>> i = c_int()
519 >>> f = c_float()
520 >>> s = create_string_buffer('\000' * 32)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000521 >>> print(i.value, f.value, repr(s.value))
Georg Brandl116aa622007-08-15 14:28:22 +0000522 0 0.0 ''
523 >>> libc.sscanf("1 3.14 Hello", "%d %f %s",
524 ... byref(i), byref(f), s)
525 3
Georg Brandl6911e3c2007-09-04 07:15:32 +0000526 >>> print(i.value, f.value, repr(s.value))
Georg Brandl116aa622007-08-15 14:28:22 +0000527 1 3.1400001049 'Hello'
528 >>>
529
530
531.. _ctypes-structures-unions:
532
533Structures and unions
534^^^^^^^^^^^^^^^^^^^^^
535
536Structures and unions must derive from the :class:`Structure` and :class:`Union`
537base classes which are defined in the ``ctypes`` module. Each subclass must
538define a :attr:`_fields_` attribute. :attr:`_fields_` must be a list of
539*2-tuples*, containing a *field name* and a *field type*.
540
541The field type must be a ``ctypes`` type like :class:`c_int`, or any other
542derived ``ctypes`` type: structure, union, array, pointer.
543
544Here is a simple example of a POINT structure, which contains two integers named
545``x`` and ``y``, and also shows how to initialize a structure in the
546constructor::
547
548 >>> from ctypes import *
549 >>> class POINT(Structure):
550 ... _fields_ = [("x", c_int),
551 ... ("y", c_int)]
552 ...
553 >>> point = POINT(10, 20)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000554 >>> print(point.x, point.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000555 10 20
556 >>> point = POINT(y=5)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000557 >>> print(point.x, point.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000558 0 5
559 >>> POINT(1, 2, 3)
560 Traceback (most recent call last):
561 File "<stdin>", line 1, in ?
562 ValueError: too many initializers
563 >>>
564
565You can, however, build much more complicated structures. Structures can itself
566contain other structures by using a structure as a field type.
567
568Here is a RECT structure which contains two POINTs named ``upperleft`` and
569``lowerright`` ::
570
571 >>> class RECT(Structure):
572 ... _fields_ = [("upperleft", POINT),
573 ... ("lowerright", POINT)]
574 ...
575 >>> rc = RECT(point)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000576 >>> print(rc.upperleft.x, rc.upperleft.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000577 0 5
Georg Brandl6911e3c2007-09-04 07:15:32 +0000578 >>> print(rc.lowerright.x, rc.lowerright.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000579 0 0
580 >>>
581
582Nested structures can also be initialized in the constructor in several ways::
583
584 >>> r = RECT(POINT(1, 2), POINT(3, 4))
585 >>> r = RECT((1, 2), (3, 4))
586
Georg Brandl9afde1c2007-11-01 20:32:30 +0000587Field :term:`descriptor`\s can be retrieved from the *class*, they are useful
588for debugging because they can provide useful information::
Georg Brandl116aa622007-08-15 14:28:22 +0000589
Georg Brandl6911e3c2007-09-04 07:15:32 +0000590 >>> print(POINT.x)
Georg Brandl116aa622007-08-15 14:28:22 +0000591 <Field type=c_long, ofs=0, size=4>
Georg Brandl6911e3c2007-09-04 07:15:32 +0000592 >>> print(POINT.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000593 <Field type=c_long, ofs=4, size=4>
594 >>>
595
596
597.. _ctypes-structureunion-alignment-byte-order:
598
599Structure/union alignment and byte order
600^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
601
602By default, Structure and Union fields are aligned in the same way the C
Thomas Woutersed03b412007-08-28 21:37:11 +0000603compiler does it. It is possible to override this behavior be specifying a
Georg Brandl116aa622007-08-15 14:28:22 +0000604:attr:`_pack_` class attribute in the subclass definition. This must be set to a
605positive integer and specifies the maximum alignment for the fields. This is
606what ``#pragma pack(n)`` also does in MSVC.
607
608``ctypes`` uses the native byte order for Structures and Unions. To build
609structures with non-native byte order, you can use one of the
610BigEndianStructure, LittleEndianStructure, BigEndianUnion, and LittleEndianUnion
611base classes. These classes cannot contain pointer fields.
612
613
614.. _ctypes-bit-fields-in-structures-unions:
615
616Bit fields in structures and unions
617^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
618
619It is possible to create structures and unions containing bit fields. Bit fields
620are only possible for integer fields, the bit width is specified as the third
621item in the :attr:`_fields_` tuples::
622
623 >>> class Int(Structure):
624 ... _fields_ = [("first_16", c_int, 16),
625 ... ("second_16", c_int, 16)]
626 ...
Georg Brandl6911e3c2007-09-04 07:15:32 +0000627 >>> print(Int.first_16)
Georg Brandl116aa622007-08-15 14:28:22 +0000628 <Field type=c_long, ofs=0:0, bits=16>
Georg Brandl6911e3c2007-09-04 07:15:32 +0000629 >>> print(Int.second_16)
Georg Brandl116aa622007-08-15 14:28:22 +0000630 <Field type=c_long, ofs=0:16, bits=16>
631 >>>
632
633
634.. _ctypes-arrays:
635
636Arrays
637^^^^^^
638
639Arrays are sequences, containing a fixed number of instances of the same type.
640
641The recommended way to create array types is by multiplying a data type with a
642positive integer::
643
644 TenPointsArrayType = POINT * 10
645
Thomas Woutersed03b412007-08-28 21:37:11 +0000646Here is an example of an somewhat artificial data type, a structure containing 4
Georg Brandl116aa622007-08-15 14:28:22 +0000647POINTs among other stuff::
648
649 >>> from ctypes import *
650 >>> class POINT(Structure):
651 ... _fields_ = ("x", c_int), ("y", c_int)
652 ...
653 >>> class MyStruct(Structure):
654 ... _fields_ = [("a", c_int),
655 ... ("b", c_float),
656 ... ("point_array", POINT * 4)]
657 >>>
Georg Brandl6911e3c2007-09-04 07:15:32 +0000658 >>> print(len(MyStruct().point_array))
Georg Brandl116aa622007-08-15 14:28:22 +0000659 4
660 >>>
661
662Instances are created in the usual way, by calling the class::
663
664 arr = TenPointsArrayType()
665 for pt in arr:
Georg Brandl6911e3c2007-09-04 07:15:32 +0000666 print(pt.x, pt.y)
Georg Brandl116aa622007-08-15 14:28:22 +0000667
668The above code print a series of ``0 0`` lines, because the array contents is
669initialized to zeros.
670
671Initializers of the correct type can also be specified::
672
673 >>> from ctypes import *
674 >>> TenIntegers = c_int * 10
675 >>> ii = TenIntegers(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Georg Brandl6911e3c2007-09-04 07:15:32 +0000676 >>> print(ii)
Georg Brandl116aa622007-08-15 14:28:22 +0000677 <c_long_Array_10 object at 0x...>
Georg Brandl6911e3c2007-09-04 07:15:32 +0000678 >>> for i in ii: print(i, end=" ")
Georg Brandl116aa622007-08-15 14:28:22 +0000679 ...
680 1 2 3 4 5 6 7 8 9 10
681 >>>
682
683
684.. _ctypes-pointers:
685
686Pointers
687^^^^^^^^
688
689Pointer instances are created by calling the ``pointer`` function on a
690``ctypes`` type::
691
692 >>> from ctypes import *
693 >>> i = c_int(42)
694 >>> pi = pointer(i)
695 >>>
696
697Pointer instances have a ``contents`` attribute which returns the object to
698which the pointer points, the ``i`` object above::
699
700 >>> pi.contents
701 c_long(42)
702 >>>
703
704Note that ``ctypes`` does not have OOR (original object return), it constructs a
705new, equivalent object each time you retrieve an attribute::
706
707 >>> pi.contents is i
708 False
709 >>> pi.contents is pi.contents
710 False
711 >>>
712
713Assigning another :class:`c_int` instance to the pointer's contents attribute
714would cause the pointer to point to the memory location where this is stored::
715
716 >>> i = c_int(99)
717 >>> pi.contents = i
718 >>> pi.contents
719 c_long(99)
720 >>>
721
722Pointer instances can also be indexed with integers::
723
724 >>> pi[0]
725 99
726 >>>
727
728Assigning to an integer index changes the pointed to value::
729
Georg Brandl6911e3c2007-09-04 07:15:32 +0000730 >>> print(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000731 c_long(99)
732 >>> pi[0] = 22
Georg Brandl6911e3c2007-09-04 07:15:32 +0000733 >>> print(i)
Georg Brandl116aa622007-08-15 14:28:22 +0000734 c_long(22)
735 >>>
736
737It is also possible to use indexes different from 0, but you must know what
738you're doing, just as in C: You can access or change arbitrary memory locations.
739Generally you only use this feature if you receive a pointer from a C function,
740and you *know* that the pointer actually points to an array instead of a single
741item.
742
743Behind the scenes, the ``pointer`` function does more than simply create pointer
744instances, it has to create pointer *types* first. This is done with the
745``POINTER`` function, which accepts any ``ctypes`` type, and returns a new
746type::
747
748 >>> PI = POINTER(c_int)
749 >>> PI
750 <class 'ctypes.LP_c_long'>
751 >>> PI(42)
752 Traceback (most recent call last):
753 File "<stdin>", line 1, in ?
754 TypeError: expected c_long instead of int
755 >>> PI(c_int(42))
756 <ctypes.LP_c_long object at 0x...>
757 >>>
758
759Calling the pointer type without an argument creates a ``NULL`` pointer.
760``NULL`` pointers have a ``False`` boolean value::
761
762 >>> null_ptr = POINTER(c_int)()
Georg Brandl6911e3c2007-09-04 07:15:32 +0000763 >>> print(bool(null_ptr))
Georg Brandl116aa622007-08-15 14:28:22 +0000764 False
765 >>>
766
767``ctypes`` checks for ``NULL`` when dereferencing pointers (but dereferencing
768non-\ ``NULL`` pointers would crash Python)::
769
770 >>> null_ptr[0]
771 Traceback (most recent call last):
772 ....
773 ValueError: NULL pointer access
774 >>>
775
776 >>> null_ptr[0] = 1234
777 Traceback (most recent call last):
778 ....
779 ValueError: NULL pointer access
780 >>>
781
782
783.. _ctypes-type-conversions:
784
785Type conversions
786^^^^^^^^^^^^^^^^
787
788Usually, ctypes does strict type checking. This means, if you have
789``POINTER(c_int)`` in the :attr:`argtypes` list of a function or as the type of
790a member field in a structure definition, only instances of exactly the same
791type are accepted. There are some exceptions to this rule, where ctypes accepts
792other objects. For example, you can pass compatible array instances instead of
793pointer types. So, for ``POINTER(c_int)``, ctypes accepts an array of c_int::
794
795 >>> class Bar(Structure):
796 ... _fields_ = [("count", c_int), ("values", POINTER(c_int))]
797 ...
798 >>> bar = Bar()
799 >>> bar.values = (c_int * 3)(1, 2, 3)
800 >>> bar.count = 3
801 >>> for i in range(bar.count):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000802 ... print(bar.values[i])
Georg Brandl116aa622007-08-15 14:28:22 +0000803 ...
804 1
805 2
806 3
807 >>>
808
809To set a POINTER type field to ``NULL``, you can assign ``None``::
810
811 >>> bar.values = None
812 >>>
813
814XXX list other conversions...
815
816Sometimes you have instances of incompatible types. In ``C``, you can cast one
817type into another type. ``ctypes`` provides a ``cast`` function which can be
818used in the same way. The ``Bar`` structure defined above accepts
819``POINTER(c_int)`` pointers or :class:`c_int` arrays for its ``values`` field,
820but not instances of other types::
821
822 >>> bar.values = (c_byte * 4)()
823 Traceback (most recent call last):
824 File "<stdin>", line 1, in ?
825 TypeError: incompatible types, c_byte_Array_4 instance instead of LP_c_long instance
826 >>>
827
828For these cases, the ``cast`` function is handy.
829
830The ``cast`` function can be used to cast a ctypes instance into a pointer to a
831different ctypes data type. ``cast`` takes two parameters, a ctypes object that
832is or can be converted to a pointer of some kind, and a ctypes pointer type. It
833returns an instance of the second argument, which references the same memory
834block as the first argument::
835
836 >>> a = (c_byte * 4)()
837 >>> cast(a, POINTER(c_int))
838 <ctypes.LP_c_long object at ...>
839 >>>
840
841So, ``cast`` can be used to assign to the ``values`` field of ``Bar`` the
842structure::
843
844 >>> bar = Bar()
845 >>> bar.values = cast((c_byte * 4)(), POINTER(c_int))
Georg Brandl6911e3c2007-09-04 07:15:32 +0000846 >>> print(bar.values[0])
Georg Brandl116aa622007-08-15 14:28:22 +0000847 0
848 >>>
849
850
851.. _ctypes-incomplete-types:
852
853Incomplete Types
854^^^^^^^^^^^^^^^^
855
856*Incomplete Types* are structures, unions or arrays whose members are not yet
857specified. In C, they are specified by forward declarations, which are defined
858later::
859
860 struct cell; /* forward declaration */
861
862 struct {
863 char *name;
864 struct cell *next;
865 } cell;
866
867The straightforward translation into ctypes code would be this, but it does not
868work::
869
870 >>> class cell(Structure):
871 ... _fields_ = [("name", c_char_p),
872 ... ("next", POINTER(cell))]
873 ...
874 Traceback (most recent call last):
875 File "<stdin>", line 1, in ?
876 File "<stdin>", line 2, in cell
877 NameError: name 'cell' is not defined
878 >>>
879
880because the new ``class cell`` is not available in the class statement itself.
881In ``ctypes``, we can define the ``cell`` class and set the :attr:`_fields_`
882attribute later, after the class statement::
883
884 >>> from ctypes import *
885 >>> class cell(Structure):
886 ... pass
887 ...
888 >>> cell._fields_ = [("name", c_char_p),
889 ... ("next", POINTER(cell))]
890 >>>
891
892Lets try it. We create two instances of ``cell``, and let them point to each
893other, and finally follow the pointer chain a few times::
894
895 >>> c1 = cell()
896 >>> c1.name = "foo"
897 >>> c2 = cell()
898 >>> c2.name = "bar"
899 >>> c1.next = pointer(c2)
900 >>> c2.next = pointer(c1)
901 >>> p = c1
902 >>> for i in range(8):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000903 ... print(p.name, end=" ")
Georg Brandl116aa622007-08-15 14:28:22 +0000904 ... p = p.next[0]
905 ...
906 foo bar foo bar foo bar foo bar
907 >>>
908
909
910.. _ctypes-callback-functions:
911
912Callback functions
913^^^^^^^^^^^^^^^^^^
914
915``ctypes`` allows to create C callable function pointers from Python callables.
916These are sometimes called *callback functions*.
917
918First, you must create a class for the callback function, the class knows the
919calling convention, the return type, and the number and types of arguments this
920function will receive.
921
922The CFUNCTYPE factory function creates types for callback functions using the
923normal cdecl calling convention, and, on Windows, the WINFUNCTYPE factory
924function creates types for callback functions using the stdcall calling
925convention.
926
927Both of these factory functions are called with the result type as first
928argument, and the callback functions expected argument types as the remaining
929arguments.
930
931I will present an example here which uses the standard C library's :func:`qsort`
932function, this is used to sort items with the help of a callback function.
933:func:`qsort` will be used to sort an array of integers::
934
935 >>> IntArray5 = c_int * 5
936 >>> ia = IntArray5(5, 1, 7, 33, 99)
937 >>> qsort = libc.qsort
938 >>> qsort.restype = None
939 >>>
940
941:func:`qsort` must be called with a pointer to the data to sort, the number of
942items in the data array, the size of one item, and a pointer to the comparison
943function, the callback. The callback will then be called with two pointers to
944items, and it must return a negative integer if the first item is smaller than
945the second, a zero if they are equal, and a positive integer else.
946
947So our callback function receives pointers to integers, and must return an
948integer. First we create the ``type`` for the callback function::
949
950 >>> CMPFUNC = CFUNCTYPE(c_int, POINTER(c_int), POINTER(c_int))
951 >>>
952
953For the first implementation of the callback function, we simply print the
954arguments we get, and return 0 (incremental development ;-)::
955
956 >>> def py_cmp_func(a, b):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000957 ... print("py_cmp_func", a, b)
Georg Brandl116aa622007-08-15 14:28:22 +0000958 ... return 0
959 ...
960 >>>
961
962Create the C callable callback::
963
964 >>> cmp_func = CMPFUNC(py_cmp_func)
965 >>>
966
967And we're ready to go::
968
969 >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
970 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
971 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
972 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
973 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
974 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
975 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
976 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
977 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
978 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
979 py_cmp_func <ctypes.LP_c_long object at 0x00...> <ctypes.LP_c_long object at 0x00...>
980 >>>
981
982We know how to access the contents of a pointer, so lets redefine our callback::
983
984 >>> def py_cmp_func(a, b):
Georg Brandl6911e3c2007-09-04 07:15:32 +0000985 ... print("py_cmp_func", a[0], b[0])
Georg Brandl116aa622007-08-15 14:28:22 +0000986 ... return 0
987 ...
988 >>> cmp_func = CMPFUNC(py_cmp_func)
989 >>>
990
991Here is what we get on Windows::
992
993 >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +WINDOWS
994 py_cmp_func 7 1
995 py_cmp_func 33 1
996 py_cmp_func 99 1
997 py_cmp_func 5 1
998 py_cmp_func 7 5
999 py_cmp_func 33 5
1000 py_cmp_func 99 5
1001 py_cmp_func 7 99
1002 py_cmp_func 33 99
1003 py_cmp_func 7 33
1004 >>>
1005
1006It is funny to see that on linux the sort function seems to work much more
1007efficient, it is doing less comparisons::
1008
1009 >>> qsort(ia, len(ia), sizeof(c_int), cmp_func) # doctest: +LINUX
1010 py_cmp_func 5 1
1011 py_cmp_func 33 99
1012 py_cmp_func 7 33
1013 py_cmp_func 5 7
1014 py_cmp_func 1 7
1015 >>>
1016
1017Ah, we're nearly done! The last step is to actually compare the two items and
1018return a useful result::
1019
1020 >>> def py_cmp_func(a, b):
Georg Brandl6911e3c2007-09-04 07:15:32 +00001021 ... print("py_cmp_func", a[0], b[0])
Georg Brandl116aa622007-08-15 14:28:22 +00001022 ... return a[0] - b[0]
1023 ...
1024 >>>
1025
1026Final run on Windows::
1027
1028 >>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +WINDOWS
1029 py_cmp_func 33 7
1030 py_cmp_func 99 33
1031 py_cmp_func 5 99
1032 py_cmp_func 1 99
1033 py_cmp_func 33 7
1034 py_cmp_func 1 33
1035 py_cmp_func 5 33
1036 py_cmp_func 5 7
1037 py_cmp_func 1 7
1038 py_cmp_func 5 1
1039 >>>
1040
1041and on Linux::
1042
1043 >>> qsort(ia, len(ia), sizeof(c_int), CMPFUNC(py_cmp_func)) # doctest: +LINUX
1044 py_cmp_func 5 1
1045 py_cmp_func 33 99
1046 py_cmp_func 7 33
1047 py_cmp_func 1 7
1048 py_cmp_func 5 7
1049 >>>
1050
1051It is quite interesting to see that the Windows :func:`qsort` function needs
1052more comparisons than the linux version!
1053
1054As we can easily check, our array is sorted now::
1055
Georg Brandl6911e3c2007-09-04 07:15:32 +00001056 >>> for i in ia: print(i, end=" ")
Georg Brandl116aa622007-08-15 14:28:22 +00001057 ...
1058 1 5 7 33 99
1059 >>>
1060
1061**Important note for callback functions:**
1062
1063Make sure you keep references to CFUNCTYPE objects as long as they are used from
1064C code. ``ctypes`` doesn't, and if you don't, they may be garbage collected,
1065crashing your program when a callback is made.
1066
1067
1068.. _ctypes-accessing-values-exported-from-dlls:
1069
1070Accessing values exported from dlls
1071^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1072
1073Sometimes, a dll not only exports functions, it also exports variables. An
1074example in the Python library itself is the ``Py_OptimizeFlag``, an integer set
1075to 0, 1, or 2, depending on the :option:`-O` or :option:`-OO` flag given on
1076startup.
1077
1078``ctypes`` can access values like this with the :meth:`in_dll` class methods of
1079the type. *pythonapi* is a predefined symbol giving access to the Python C
1080api::
1081
1082 >>> opt_flag = c_int.in_dll(pythonapi, "Py_OptimizeFlag")
Georg Brandl6911e3c2007-09-04 07:15:32 +00001083 >>> print(opt_flag)
Georg Brandl116aa622007-08-15 14:28:22 +00001084 c_long(0)
1085 >>>
1086
1087If the interpreter would have been started with :option:`-O`, the sample would
1088have printed ``c_long(1)``, or ``c_long(2)`` if :option:`-OO` would have been
1089specified.
1090
1091An extended example which also demonstrates the use of pointers accesses the
1092``PyImport_FrozenModules`` pointer exported by Python.
1093
1094Quoting the Python docs: *This pointer is initialized to point to an array of
1095"struct _frozen" records, terminated by one whose members are all NULL or zero.
1096When a frozen module is imported, it is searched in this table. Third-party code
1097could play tricks with this to provide a dynamically created collection of
1098frozen modules.*
1099
1100So manipulating this pointer could even prove useful. To restrict the example
1101size, we show only how this table can be read with ``ctypes``::
1102
1103 >>> from ctypes import *
1104 >>>
1105 >>> class struct_frozen(Structure):
1106 ... _fields_ = [("name", c_char_p),
1107 ... ("code", POINTER(c_ubyte)),
1108 ... ("size", c_int)]
1109 ...
1110 >>>
1111
1112We have defined the ``struct _frozen`` data type, so we can get the pointer to
1113the table::
1114
1115 >>> FrozenTable = POINTER(struct_frozen)
1116 >>> table = FrozenTable.in_dll(pythonapi, "PyImport_FrozenModules")
1117 >>>
1118
1119Since ``table`` is a ``pointer`` to the array of ``struct_frozen`` records, we
1120can iterate over it, but we just have to make sure that our loop terminates,
1121because pointers have no size. Sooner or later it would probably crash with an
1122access violation or whatever, so it's better to break out of the loop when we
1123hit the NULL entry::
1124
1125 >>> for item in table:
Georg Brandl6911e3c2007-09-04 07:15:32 +00001126 ... print(item.name, item.size)
Georg Brandl116aa622007-08-15 14:28:22 +00001127 ... if item.name is None:
1128 ... break
1129 ...
1130 __hello__ 104
1131 __phello__ -104
1132 __phello__.spam 104
1133 None 0
1134 >>>
1135
1136The fact that standard Python has a frozen module and a frozen package
Thomas Woutersed03b412007-08-28 21:37:11 +00001137(indicated by the negative size member) is not well known, it is only used for
Georg Brandl116aa622007-08-15 14:28:22 +00001138testing. Try it out with ``import __hello__`` for example.
1139
1140
1141.. _ctypes-surprises:
1142
1143Surprises
1144^^^^^^^^^
1145
1146There are some edges in ``ctypes`` where you may be expect something else than
1147what actually happens.
1148
1149Consider the following example::
1150
1151 >>> from ctypes import *
1152 >>> class POINT(Structure):
1153 ... _fields_ = ("x", c_int), ("y", c_int)
1154 ...
1155 >>> class RECT(Structure):
1156 ... _fields_ = ("a", POINT), ("b", POINT)
1157 ...
1158 >>> p1 = POINT(1, 2)
1159 >>> p2 = POINT(3, 4)
1160 >>> rc = RECT(p1, p2)
Georg Brandl6911e3c2007-09-04 07:15:32 +00001161 >>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
Georg Brandl116aa622007-08-15 14:28:22 +00001162 1 2 3 4
1163 >>> # now swap the two points
1164 >>> rc.a, rc.b = rc.b, rc.a
Georg Brandl6911e3c2007-09-04 07:15:32 +00001165 >>> print(rc.a.x, rc.a.y, rc.b.x, rc.b.y)
Georg Brandl116aa622007-08-15 14:28:22 +00001166 3 4 3 4
1167 >>>
1168
1169Hm. We certainly expected the last statement to print ``3 4 1 2``. What
Thomas Woutersed03b412007-08-28 21:37:11 +00001170happened? Here are the steps of the ``rc.a, rc.b = rc.b, rc.a`` line above::
Georg Brandl116aa622007-08-15 14:28:22 +00001171
1172 >>> temp0, temp1 = rc.b, rc.a
1173 >>> rc.a = temp0
1174 >>> rc.b = temp1
1175 >>>
1176
1177Note that ``temp0`` and ``temp1`` are objects still using the internal buffer of
1178the ``rc`` object above. So executing ``rc.a = temp0`` copies the buffer
1179contents of ``temp0`` into ``rc`` 's buffer. This, in turn, changes the
1180contents of ``temp1``. So, the last assignment ``rc.b = temp1``, doesn't have
1181the expected effect.
1182
Thomas Woutersed03b412007-08-28 21:37:11 +00001183Keep in mind that retrieving sub-objects from Structure, Unions, and Arrays
1184doesn't *copy* the sub-object, instead it retrieves a wrapper object accessing
Georg Brandl116aa622007-08-15 14:28:22 +00001185the root-object's underlying buffer.
1186
1187Another example that may behave different from what one would expect is this::
1188
1189 >>> s = c_char_p()
1190 >>> s.value = "abc def ghi"
1191 >>> s.value
1192 'abc def ghi'
1193 >>> s.value is s.value
1194 False
1195 >>>
1196
1197Why is it printing ``False``? ctypes instances are objects containing a memory
Georg Brandl9afde1c2007-11-01 20:32:30 +00001198block plus some :term:`descriptor`\s accessing the contents of the memory.
1199Storing a Python object in the memory block does not store the object itself,
1200instead the ``contents`` of the object is stored. Accessing the contents again
1201constructs a new Python object each time!
Georg Brandl116aa622007-08-15 14:28:22 +00001202
1203
1204.. _ctypes-variable-sized-data-types:
1205
1206Variable-sized data types
1207^^^^^^^^^^^^^^^^^^^^^^^^^
1208
1209``ctypes`` provides some support for variable-sized arrays and structures (this
1210was added in version 0.9.9.7).
1211
1212The ``resize`` function can be used to resize the memory buffer of an existing
1213ctypes object. The function takes the object as first argument, and the
1214requested size in bytes as the second argument. The memory block cannot be made
1215smaller than the natural memory block specified by the objects type, a
1216``ValueError`` is raised if this is tried::
1217
1218 >>> short_array = (c_short * 4)()
Georg Brandl6911e3c2007-09-04 07:15:32 +00001219 >>> print(sizeof(short_array))
Georg Brandl116aa622007-08-15 14:28:22 +00001220 8
1221 >>> resize(short_array, 4)
1222 Traceback (most recent call last):
1223 ...
1224 ValueError: minimum size is 8
1225 >>> resize(short_array, 32)
1226 >>> sizeof(short_array)
1227 32
1228 >>> sizeof(type(short_array))
1229 8
1230 >>>
1231
1232This is nice and fine, but how would one access the additional elements
1233contained in this array? Since the type still only knows about 4 elements, we
1234get errors accessing other elements::
1235
1236 >>> short_array[:]
1237 [0, 0, 0, 0]
1238 >>> short_array[7]
1239 Traceback (most recent call last):
1240 ...
1241 IndexError: invalid index
1242 >>>
1243
1244Another way to use variable-sized data types with ``ctypes`` is to use the
1245dynamic nature of Python, and (re-)define the data type after the required size
1246is already known, on a case by case basis.
1247
1248
1249.. _ctypes-bugs-todo-non-implemented-things:
1250
1251Bugs, ToDo and non-implemented things
1252^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1253
1254Enumeration types are not implemented. You can do it easily yourself, using
1255:class:`c_int` as the base class.
1256
1257``long double`` is not implemented.
1258
1259.. % Local Variables:
1260.. % compile-command: "make.bat"
1261.. % End:
1262
1263
1264.. _ctypes-ctypes-reference:
1265
1266ctypes reference
1267----------------
1268
1269
1270.. _ctypes-finding-shared-libraries:
1271
1272Finding shared libraries
1273^^^^^^^^^^^^^^^^^^^^^^^^
1274
1275When programming in a compiled language, shared libraries are accessed when
1276compiling/linking a program, and when the program is run.
1277
1278The purpose of the ``find_library`` function is to locate a library in a way
1279similar to what the compiler does (on platforms with several versions of a
1280shared library the most recent should be loaded), while the ctypes library
1281loaders act like when a program is run, and call the runtime loader directly.
1282
1283The ``ctypes.util`` module provides a function which can help to determine the
1284library to load.
1285
1286
1287.. data:: find_library(name)
1288 :noindex:
1289
1290 Try to find a library and return a pathname. *name* is the library name without
1291 any prefix like *lib*, suffix like ``.so``, ``.dylib`` or version number (this
1292 is the form used for the posix linker option :option:`-l`). If no library can
1293 be found, returns ``None``.
1294
Thomas Woutersed03b412007-08-28 21:37:11 +00001295The exact functionality is system dependent.
Georg Brandl116aa622007-08-15 14:28:22 +00001296
1297On Linux, ``find_library`` tries to run external programs (/sbin/ldconfig, gcc,
1298and objdump) to find the library file. It returns the filename of the library
Thomas Woutersed03b412007-08-28 21:37:11 +00001299file. Here are some examples::
Georg Brandl116aa622007-08-15 14:28:22 +00001300
1301 >>> from ctypes.util import find_library
1302 >>> find_library("m")
1303 'libm.so.6'
1304 >>> find_library("c")
1305 'libc.so.6'
1306 >>> find_library("bz2")
1307 'libbz2.so.1.0'
1308 >>>
1309
1310On OS X, ``find_library`` tries several predefined naming schemes and paths to
Thomas Woutersed03b412007-08-28 21:37:11 +00001311locate the library, and returns a full pathname if successful::
Georg Brandl116aa622007-08-15 14:28:22 +00001312
1313 >>> from ctypes.util import find_library
1314 >>> find_library("c")
1315 '/usr/lib/libc.dylib'
1316 >>> find_library("m")
1317 '/usr/lib/libm.dylib'
1318 >>> find_library("bz2")
1319 '/usr/lib/libbz2.dylib'
1320 >>> find_library("AGL")
1321 '/System/Library/Frameworks/AGL.framework/AGL'
1322 >>>
1323
1324On Windows, ``find_library`` searches along the system search path, and returns
1325the full pathname, but since there is no predefined naming scheme a call like
1326``find_library("c")`` will fail and return ``None``.
1327
1328If wrapping a shared library with ``ctypes``, it *may* be better to determine
1329the shared library name at development type, and hardcode that into the wrapper
1330module instead of using ``find_library`` to locate the library at runtime.
1331
1332
1333.. _ctypes-loading-shared-libraries:
1334
1335Loading shared libraries
1336^^^^^^^^^^^^^^^^^^^^^^^^
1337
1338There are several ways to loaded shared libraries into the Python process. One
1339way is to instantiate one of the following classes:
1340
1341
1342.. class:: CDLL(name, mode=DEFAULT_MODE, handle=None)
1343
1344 Instances of this class represent loaded shared libraries. Functions in these
1345 libraries use the standard C calling convention, and are assumed to return
1346 ``int``.
1347
1348
1349.. class:: OleDLL(name, mode=DEFAULT_MODE, handle=None)
1350
1351 Windows only: Instances of this class represent loaded shared libraries,
1352 functions in these libraries use the ``stdcall`` calling convention, and are
1353 assumed to return the windows specific :class:`HRESULT` code. :class:`HRESULT`
1354 values contain information specifying whether the function call failed or
1355 succeeded, together with additional error code. If the return value signals a
1356 failure, an :class:`WindowsError` is automatically raised.
1357
1358
1359.. class:: WinDLL(name, mode=DEFAULT_MODE, handle=None)
1360
1361 Windows only: Instances of this class represent loaded shared libraries,
1362 functions in these libraries use the ``stdcall`` calling convention, and are
1363 assumed to return ``int`` by default.
1364
1365 On Windows CE only the standard calling convention is used, for convenience the
1366 :class:`WinDLL` and :class:`OleDLL` use the standard calling convention on this
1367 platform.
1368
Georg Brandl9afde1c2007-11-01 20:32:30 +00001369The Python :term:`global interpreter lock` is released before calling any
1370function exported by these libraries, and reacquired afterwards.
Georg Brandl116aa622007-08-15 14:28:22 +00001371
1372
1373.. class:: PyDLL(name, mode=DEFAULT_MODE, handle=None)
1374
1375 Instances of this class behave like :class:`CDLL` instances, except that the
1376 Python GIL is *not* released during the function call, and after the function
1377 execution the Python error flag is checked. If the error flag is set, a Python
1378 exception is raised.
1379
1380 Thus, this is only useful to call Python C api functions directly.
1381
1382All these classes can be instantiated by calling them with at least one
1383argument, the pathname of the shared library. If you have an existing handle to
1384an already loaded shard library, it can be passed as the ``handle`` named
1385parameter, otherwise the underlying platforms ``dlopen`` or :meth:`LoadLibrary`
1386function is used to load the library into the process, and to get a handle to
1387it.
1388
1389The *mode* parameter can be used to specify how the library is loaded. For
1390details, consult the ``dlopen(3)`` manpage, on Windows, *mode* is ignored.
1391
1392
1393.. data:: RTLD_GLOBAL
1394 :noindex:
1395
1396 Flag to use as *mode* parameter. On platforms where this flag is not available,
1397 it is defined as the integer zero.
1398
1399
1400.. data:: RTLD_LOCAL
1401 :noindex:
1402
1403 Flag to use as *mode* parameter. On platforms where this is not available, it
1404 is the same as *RTLD_GLOBAL*.
1405
1406
1407.. data:: DEFAULT_MODE
1408 :noindex:
1409
1410 The default mode which is used to load shared libraries. On OSX 10.3, this is
1411 *RTLD_GLOBAL*, otherwise it is the same as *RTLD_LOCAL*.
1412
1413Instances of these classes have no public methods, however :meth:`__getattr__`
Thomas Woutersed03b412007-08-28 21:37:11 +00001414and :meth:`__getitem__` have special behavior: functions exported by the shared
Georg Brandl116aa622007-08-15 14:28:22 +00001415library can be accessed as attributes of by index. Please note that both
1416:meth:`__getattr__` and :meth:`__getitem__` cache their result, so calling them
1417repeatedly returns the same object each time.
1418
1419The following public attributes are available, their name starts with an
1420underscore to not clash with exported function names:
1421
1422
1423.. attribute:: PyDLL._handle
1424
1425 The system handle used to access the library.
1426
1427
1428.. attribute:: PyDLL._name
1429
Thomas Woutersed03b412007-08-28 21:37:11 +00001430 The name of the library passed in the constructor.
Georg Brandl116aa622007-08-15 14:28:22 +00001431
1432Shared libraries can also be loaded by using one of the prefabricated objects,
1433which are instances of the :class:`LibraryLoader` class, either by calling the
1434:meth:`LoadLibrary` method, or by retrieving the library as attribute of the
1435loader instance.
1436
1437
1438.. class:: LibraryLoader(dlltype)
1439
1440 Class which loads shared libraries. ``dlltype`` should be one of the
1441 :class:`CDLL`, :class:`PyDLL`, :class:`WinDLL`, or :class:`OleDLL` types.
1442
Thomas Woutersed03b412007-08-28 21:37:11 +00001443 :meth:`__getattr__` has special behavior: It allows to load a shared library by
Georg Brandl116aa622007-08-15 14:28:22 +00001444 accessing it as attribute of a library loader instance. The result is cached,
1445 so repeated attribute accesses return the same library each time.
1446
1447
1448.. method:: LibraryLoader.LoadLibrary(name)
1449
1450 Load a shared library into the process and return it. This method always
1451 returns a new instance of the library.
1452
1453These prefabricated library loaders are available:
1454
1455
1456.. data:: cdll
1457 :noindex:
1458
1459 Creates :class:`CDLL` instances.
1460
1461
1462.. data:: windll
1463 :noindex:
1464
1465 Windows only: Creates :class:`WinDLL` instances.
1466
1467
1468.. data:: oledll
1469 :noindex:
1470
1471 Windows only: Creates :class:`OleDLL` instances.
1472
1473
1474.. data:: pydll
1475 :noindex:
1476
1477 Creates :class:`PyDLL` instances.
1478
1479For accessing the C Python api directly, a ready-to-use Python shared library
1480object is available:
1481
1482
1483.. data:: pythonapi
1484 :noindex:
1485
1486 An instance of :class:`PyDLL` that exposes Python C api functions as attributes.
1487 Note that all these functions are assumed to return C ``int``, which is of
1488 course not always the truth, so you have to assign the correct :attr:`restype`
1489 attribute to use these functions.
1490
1491
1492.. _ctypes-foreign-functions:
1493
1494Foreign functions
1495^^^^^^^^^^^^^^^^^
1496
1497As explained in the previous section, foreign functions can be accessed as
1498attributes of loaded shared libraries. The function objects created in this way
1499by default accept any number of arguments, accept any ctypes data instances as
1500arguments, and return the default result type specified by the library loader.
1501They are instances of a private class:
1502
1503
1504.. class:: _FuncPtr
1505
1506 Base class for C callable foreign functions.
1507
1508Instances of foreign functions are also C compatible data types; they represent
1509C function pointers.
1510
Thomas Woutersed03b412007-08-28 21:37:11 +00001511This behavior can be customized by assigning to special attributes of the
Georg Brandl116aa622007-08-15 14:28:22 +00001512foreign function object.
1513
1514
1515.. attribute:: _FuncPtr.restype
1516
1517 Assign a ctypes type to specify the result type of the foreign function. Use
1518 ``None`` for ``void`` a function not returning anything.
1519
1520 It is possible to assign a callable Python object that is not a ctypes type, in
1521 this case the function is assumed to return a C ``int``, and the callable will
1522 be called with this integer, allowing to do further processing or error
Thomas Woutersed03b412007-08-28 21:37:11 +00001523 checking. Using this is deprecated, for more flexible post processing or error
Georg Brandl116aa622007-08-15 14:28:22 +00001524 checking use a ctypes data type as :attr:`restype` and assign a callable to the
1525 :attr:`errcheck` attribute.
1526
1527
1528.. attribute:: _FuncPtr.argtypes
1529
1530 Assign a tuple of ctypes types to specify the argument types that the function
1531 accepts. Functions using the ``stdcall`` calling convention can only be called
1532 with the same number of arguments as the length of this tuple; functions using
1533 the C calling convention accept additional, unspecified arguments as well.
1534
1535 When a foreign function is called, each actual argument is passed to the
1536 :meth:`from_param` class method of the items in the :attr:`argtypes` tuple, this
1537 method allows to adapt the actual argument to an object that the foreign
1538 function accepts. For example, a :class:`c_char_p` item in the :attr:`argtypes`
1539 tuple will convert a unicode string passed as argument into an byte string using
1540 ctypes conversion rules.
1541
1542 New: It is now possible to put items in argtypes which are not ctypes types, but
1543 each item must have a :meth:`from_param` method which returns a value usable as
1544 argument (integer, string, ctypes instance). This allows to define adapters
1545 that can adapt custom objects as function parameters.
1546
1547
1548.. attribute:: _FuncPtr.errcheck
1549
1550 Assign a Python function or another callable to this attribute. The callable
1551 will be called with three or more arguments:
1552
1553
1554.. function:: callable(result, func, arguments)
1555 :noindex:
1556
1557 ``result`` is what the foreign function returns, as specified by the
1558 :attr:`restype` attribute.
1559
1560 ``func`` is the foreign function object itself, this allows to reuse the same
Thomas Woutersed03b412007-08-28 21:37:11 +00001561 callable object to check or post process the results of several functions.
Georg Brandl116aa622007-08-15 14:28:22 +00001562
1563 ``arguments`` is a tuple containing the parameters originally passed to the
Thomas Woutersed03b412007-08-28 21:37:11 +00001564 function call, this allows to specialize the behavior on the arguments used.
Georg Brandl116aa622007-08-15 14:28:22 +00001565
1566 The object that this function returns will be returned from the foreign function
1567 call, but it can also check the result value and raise an exception if the
1568 foreign function call failed.
1569
1570
1571.. exception:: ArgumentError()
1572
1573 This exception is raised when a foreign function call cannot convert one of the
1574 passed arguments.
1575
1576
1577.. _ctypes-function-prototypes:
1578
1579Function prototypes
1580^^^^^^^^^^^^^^^^^^^
1581
1582Foreign functions can also be created by instantiating function prototypes.
1583Function prototypes are similar to function prototypes in C; they describe a
1584function (return type, argument types, calling convention) without defining an
1585implementation. The factory functions must be called with the desired result
1586type and the argument types of the function.
1587
1588
1589.. function:: CFUNCTYPE(restype, *argtypes)
1590
1591 The returned function prototype creates functions that use the standard C
1592 calling convention. The function will release the GIL during the call.
1593
1594
1595.. function:: WINFUNCTYPE(restype, *argtypes)
1596
1597 Windows only: The returned function prototype creates functions that use the
1598 ``stdcall`` calling convention, except on Windows CE where :func:`WINFUNCTYPE`
1599 is the same as :func:`CFUNCTYPE`. The function will release the GIL during the
1600 call.
1601
1602
1603.. function:: PYFUNCTYPE(restype, *argtypes)
1604
1605 The returned function prototype creates functions that use the Python calling
1606 convention. The function will *not* release the GIL during the call.
1607
1608Function prototypes created by the factory functions can be instantiated in
1609different ways, depending on the type and number of the parameters in the call.
1610
1611
1612.. function:: prototype(address)
1613 :noindex:
1614
1615 Returns a foreign function at the specified address.
1616
1617
1618.. function:: prototype(callable)
1619 :noindex:
1620
1621 Create a C callable function (a callback function) from a Python ``callable``.
1622
1623
1624.. function:: prototype(func_spec[, paramflags])
1625 :noindex:
1626
1627 Returns a foreign function exported by a shared library. ``func_spec`` must be a
1628 2-tuple ``(name_or_ordinal, library)``. The first item is the name of the
1629 exported function as string, or the ordinal of the exported function as small
1630 integer. The second item is the shared library instance.
1631
1632
1633.. function:: prototype(vtbl_index, name[, paramflags[, iid]])
1634 :noindex:
1635
1636 Returns a foreign function that will call a COM method. ``vtbl_index`` is the
Thomas Woutersed03b412007-08-28 21:37:11 +00001637 index into the virtual function table, a small non-negative integer. *name* is
Georg Brandl116aa622007-08-15 14:28:22 +00001638 name of the COM method. *iid* is an optional pointer to the interface identifier
1639 which is used in extended error reporting.
1640
1641 COM methods use a special calling convention: They require a pointer to the COM
1642 interface as first argument, in addition to those parameters that are specified
1643 in the :attr:`argtypes` tuple.
1644
1645The optional *paramflags* parameter creates foreign function wrappers with much
1646more functionality than the features described above.
1647
1648*paramflags* must be a tuple of the same length as :attr:`argtypes`.
1649
1650Each item in this tuple contains further information about a parameter, it must
1651be a tuple containing 1, 2, or 3 items.
1652
1653The first item is an integer containing flags for the parameter:
1654
1655
1656.. data:: 1
1657 :noindex:
1658
1659 Specifies an input parameter to the function.
1660
1661
1662.. data:: 2
1663 :noindex:
1664
1665 Output parameter. The foreign function fills in a value.
1666
1667
1668.. data:: 4
1669 :noindex:
1670
1671 Input parameter which defaults to the integer zero.
1672
1673The optional second item is the parameter name as string. If this is specified,
1674the foreign function can be called with named parameters.
1675
1676The optional third item is the default value for this parameter.
1677
1678This example demonstrates how to wrap the Windows ``MessageBoxA`` function so
1679that it supports default parameters and named arguments. The C declaration from
1680the windows header file is this::
1681
1682 WINUSERAPI int WINAPI
1683 MessageBoxA(
1684 HWND hWnd ,
1685 LPCSTR lpText,
1686 LPCSTR lpCaption,
1687 UINT uType);
1688
1689Here is the wrapping with ``ctypes``:
1690
1691 ::
1692
1693 >>> from ctypes import c_int, WINFUNCTYPE, windll
1694 >>> from ctypes.wintypes import HWND, LPCSTR, UINT
1695 >>> prototype = WINFUNCTYPE(c_int, HWND, LPCSTR, LPCSTR, UINT)
1696 >>> paramflags = (1, "hwnd", 0), (1, "text", "Hi"), (1, "caption", None), (1, "flags", 0)
1697 >>> MessageBox = prototype(("MessageBoxA", windll.user32), paramflags)
1698 >>>
1699
1700The MessageBox foreign function can now be called in these ways::
1701
1702 >>> MessageBox()
1703 >>> MessageBox(text="Spam, spam, spam")
1704 >>> MessageBox(flags=2, text="foo bar")
1705 >>>
1706
1707A second example demonstrates output parameters. The win32 ``GetWindowRect``
1708function retrieves the dimensions of a specified window by copying them into
1709``RECT`` structure that the caller has to supply. Here is the C declaration::
1710
1711 WINUSERAPI BOOL WINAPI
1712 GetWindowRect(
1713 HWND hWnd,
1714 LPRECT lpRect);
1715
1716Here is the wrapping with ``ctypes``:
1717
1718 ::
1719
1720 >>> from ctypes import POINTER, WINFUNCTYPE, windll, WinError
1721 >>> from ctypes.wintypes import BOOL, HWND, RECT
1722 >>> prototype = WINFUNCTYPE(BOOL, HWND, POINTER(RECT))
1723 >>> paramflags = (1, "hwnd"), (2, "lprect")
1724 >>> GetWindowRect = prototype(("GetWindowRect", windll.user32), paramflags)
1725 >>>
1726
1727Functions with output parameters will automatically return the output parameter
1728value if there is a single one, or a tuple containing the output parameter
1729values when there are more than one, so the GetWindowRect function now returns a
1730RECT instance, when called.
1731
1732Output parameters can be combined with the :attr:`errcheck` protocol to do
1733further output processing and error checking. The win32 ``GetWindowRect`` api
1734function returns a ``BOOL`` to signal success or failure, so this function could
1735do the error checking, and raises an exception when the api call failed::
1736
1737 >>> def errcheck(result, func, args):
1738 ... if not result:
1739 ... raise WinError()
1740 ... return args
1741 >>> GetWindowRect.errcheck = errcheck
1742 >>>
1743
1744If the :attr:`errcheck` function returns the argument tuple it receives
1745unchanged, ``ctypes`` continues the normal processing it does on the output
1746parameters. If you want to return a tuple of window coordinates instead of a
1747``RECT`` instance, you can retrieve the fields in the function and return them
1748instead, the normal processing will no longer take place::
1749
1750 >>> def errcheck(result, func, args):
1751 ... if not result:
1752 ... raise WinError()
1753 ... rc = args[1]
1754 ... return rc.left, rc.top, rc.bottom, rc.right
1755 >>>
1756 >>> GetWindowRect.errcheck = errcheck
1757 >>>
1758
1759
1760.. _ctypes-utility-functions:
1761
1762Utility functions
1763^^^^^^^^^^^^^^^^^
1764
1765
1766.. function:: addressof(obj)
1767
1768 Returns the address of the memory buffer as integer. ``obj`` must be an
1769 instance of a ctypes type.
1770
1771
1772.. function:: alignment(obj_or_type)
1773
1774 Returns the alignment requirements of a ctypes type. ``obj_or_type`` must be a
1775 ctypes type or instance.
1776
1777
1778.. function:: byref(obj)
1779
1780 Returns a light-weight pointer to ``obj``, which must be an instance of a ctypes
1781 type. The returned object can only be used as a foreign function call parameter.
1782 It behaves similar to ``pointer(obj)``, but the construction is a lot faster.
1783
1784
1785.. function:: cast(obj, type)
1786
1787 This function is similar to the cast operator in C. It returns a new instance of
1788 ``type`` which points to the same memory block as ``obj``. ``type`` must be a
1789 pointer type, and ``obj`` must be an object that can be interpreted as a
1790 pointer.
1791
1792
1793.. function:: create_string_buffer(init_or_size[, size])
1794
1795 This function creates a mutable character buffer. The returned object is a
1796 ctypes array of :class:`c_char`.
1797
1798 ``init_or_size`` must be an integer which specifies the size of the array, or a
1799 string which will be used to initialize the array items.
1800
1801 If a string is specified as first argument, the buffer is made one item larger
1802 than the length of the string so that the last element in the array is a NUL
1803 termination character. An integer can be passed as second argument which allows
1804 to specify the size of the array if the length of the string should not be used.
1805
1806 If the first parameter is a unicode string, it is converted into an 8-bit string
1807 according to ctypes conversion rules.
1808
1809
1810.. function:: create_unicode_buffer(init_or_size[, size])
1811
1812 This function creates a mutable unicode character buffer. The returned object is
1813 a ctypes array of :class:`c_wchar`.
1814
1815 ``init_or_size`` must be an integer which specifies the size of the array, or a
1816 unicode string which will be used to initialize the array items.
1817
1818 If a unicode string is specified as first argument, the buffer is made one item
1819 larger than the length of the string so that the last element in the array is a
1820 NUL termination character. An integer can be passed as second argument which
1821 allows to specify the size of the array if the length of the string should not
1822 be used.
1823
1824 If the first parameter is a 8-bit string, it is converted into an unicode string
1825 according to ctypes conversion rules.
1826
1827
1828.. function:: DllCanUnloadNow()
1829
Thomas Woutersed03b412007-08-28 21:37:11 +00001830 Windows only: This function is a hook which allows to implement in-process COM
Georg Brandl116aa622007-08-15 14:28:22 +00001831 servers with ctypes. It is called from the DllCanUnloadNow function that the
1832 _ctypes extension dll exports.
1833
1834
1835.. function:: DllGetClassObject()
1836
Thomas Woutersed03b412007-08-28 21:37:11 +00001837 Windows only: This function is a hook which allows to implement in-process COM
Georg Brandl116aa622007-08-15 14:28:22 +00001838 servers with ctypes. It is called from the DllGetClassObject function that the
1839 ``_ctypes`` extension dll exports.
1840
1841
1842.. function:: FormatError([code])
1843
1844 Windows only: Returns a textual description of the error code. If no error code
1845 is specified, the last error code is used by calling the Windows api function
1846 GetLastError.
1847
1848
1849.. function:: GetLastError()
1850
1851 Windows only: Returns the last error code set by Windows in the calling thread.
1852
1853
1854.. function:: memmove(dst, src, count)
1855
1856 Same as the standard C memmove library function: copies *count* bytes from
1857 ``src`` to *dst*. *dst* and ``src`` must be integers or ctypes instances that
1858 can be converted to pointers.
1859
1860
1861.. function:: memset(dst, c, count)
1862
1863 Same as the standard C memset library function: fills the memory block at
1864 address *dst* with *count* bytes of value *c*. *dst* must be an integer
1865 specifying an address, or a ctypes instance.
1866
1867
1868.. function:: POINTER(type)
1869
1870 This factory function creates and returns a new ctypes pointer type. Pointer
1871 types are cached an reused internally, so calling this function repeatedly is
1872 cheap. type must be a ctypes type.
1873
1874
1875.. function:: pointer(obj)
1876
1877 This function creates a new pointer instance, pointing to ``obj``. The returned
1878 object is of the type POINTER(type(obj)).
1879
1880 Note: If you just want to pass a pointer to an object to a foreign function
1881 call, you should use ``byref(obj)`` which is much faster.
1882
1883
1884.. function:: resize(obj, size)
1885
1886 This function resizes the internal memory buffer of obj, which must be an
1887 instance of a ctypes type. It is not possible to make the buffer smaller than
1888 the native size of the objects type, as given by sizeof(type(obj)), but it is
1889 possible to enlarge the buffer.
1890
1891
1892.. function:: set_conversion_mode(encoding, errors)
1893
1894 This function sets the rules that ctypes objects use when converting between
1895 8-bit strings and unicode strings. encoding must be a string specifying an
1896 encoding, like ``'utf-8'`` or ``'mbcs'``, errors must be a string specifying the
1897 error handling on encoding/decoding errors. Examples of possible values are
1898 ``"strict"``, ``"replace"``, or ``"ignore"``.
1899
1900 ``set_conversion_mode`` returns a 2-tuple containing the previous conversion
1901 rules. On windows, the initial conversion rules are ``('mbcs', 'ignore')``, on
1902 other systems ``('ascii', 'strict')``.
1903
1904
1905.. function:: sizeof(obj_or_type)
1906
1907 Returns the size in bytes of a ctypes type or instance memory buffer. Does the
1908 same as the C ``sizeof()`` function.
1909
1910
1911.. function:: string_at(address[, size])
1912
1913 This function returns the string starting at memory address address. If size
1914 is specified, it is used as size, otherwise the string is assumed to be
1915 zero-terminated.
1916
1917
1918.. function:: WinError(code=None, descr=None)
1919
1920 Windows only: this function is probably the worst-named thing in ctypes. It
1921 creates an instance of WindowsError. If *code* is not specified,
1922 ``GetLastError`` is called to determine the error code. If ``descr`` is not
Thomas Woutersed03b412007-08-28 21:37:11 +00001923 specified, :func:`FormatError` is called to get a textual description of the
Georg Brandl116aa622007-08-15 14:28:22 +00001924 error.
1925
1926
1927.. function:: wstring_at(address)
1928
1929 This function returns the wide character string starting at memory address
1930 ``address`` as unicode string. If ``size`` is specified, it is used as the
1931 number of characters of the string, otherwise the string is assumed to be
1932 zero-terminated.
1933
1934
1935.. _ctypes-data-types:
1936
1937Data types
1938^^^^^^^^^^
1939
1940
1941.. class:: _CData
1942
1943 This non-public class is the common base class of all ctypes data types. Among
1944 other things, all ctypes type instances contain a memory block that hold C
1945 compatible data; the address of the memory block is returned by the
1946 ``addressof()`` helper function. Another instance variable is exposed as
1947 :attr:`_objects`; this contains other Python objects that need to be kept alive
1948 in case the memory block contains pointers.
1949
1950Common methods of ctypes data types, these are all class methods (to be exact,
Georg Brandl9afde1c2007-11-01 20:32:30 +00001951they are methods of the :term:`metaclass`):
Georg Brandl116aa622007-08-15 14:28:22 +00001952
1953
1954.. method:: _CData.from_address(address)
1955
1956 This method returns a ctypes type instance using the memory specified by address
1957 which must be an integer.
1958
1959
1960.. method:: _CData.from_param(obj)
1961
1962 This method adapts obj to a ctypes type. It is called with the actual object
1963 used in a foreign function call, when the type is present in the foreign
1964 functions :attr:`argtypes` tuple; it must return an object that can be used as
1965 function call parameter.
1966
1967 All ctypes data types have a default implementation of this classmethod,
1968 normally it returns ``obj`` if that is an instance of the type. Some types
1969 accept other objects as well.
1970
1971
1972.. method:: _CData.in_dll(library, name)
1973
1974 This method returns a ctypes type instance exported by a shared library. *name*
1975 is the name of the symbol that exports the data, *library* is the loaded shared
1976 library.
1977
1978Common instance variables of ctypes data types:
1979
1980
1981.. attribute:: _CData._b_base_
1982
1983 Sometimes ctypes data instances do not own the memory block they contain,
1984 instead they share part of the memory block of a base object. The
Thomas Woutersed03b412007-08-28 21:37:11 +00001985 :attr:`_b_base_` read-only member is the root ctypes object that owns the memory
Georg Brandl116aa622007-08-15 14:28:22 +00001986 block.
1987
1988
1989.. attribute:: _CData._b_needsfree_
1990
Thomas Woutersed03b412007-08-28 21:37:11 +00001991 This read-only variable is true when the ctypes data instance has allocated the
Georg Brandl116aa622007-08-15 14:28:22 +00001992 memory block itself, false otherwise.
1993
1994
1995.. attribute:: _CData._objects
1996
1997 This member is either ``None`` or a dictionary containing Python objects that
1998 need to be kept alive so that the memory block contents is kept valid. This
1999 object is only exposed for debugging; never modify the contents of this
2000 dictionary.
2001
2002
2003.. _ctypes-fundamental-data-types-2:
2004
2005Fundamental data types
2006^^^^^^^^^^^^^^^^^^^^^^
2007
2008
2009.. class:: _SimpleCData
2010
2011 This non-public class is the base class of all fundamental ctypes data types. It
2012 is mentioned here because it contains the common attributes of the fundamental
2013 ctypes data types. ``_SimpleCData`` is a subclass of ``_CData``, so it inherits
2014 their methods and attributes.
2015
2016Instances have a single attribute:
2017
2018
2019.. attribute:: _SimpleCData.value
2020
2021 This attribute contains the actual value of the instance. For integer and
2022 pointer types, it is an integer, for character types, it is a single character
2023 string, for character pointer types it is a Python string or unicode string.
2024
2025 When the ``value`` attribute is retrieved from a ctypes instance, usually a new
2026 object is returned each time. ``ctypes`` does *not* implement original object
2027 return, always a new object is constructed. The same is true for all other
2028 ctypes object instances.
2029
2030Fundamental data types, when returned as foreign function call results, or, for
2031example, by retrieving structure field members or array items, are transparently
2032converted to native Python types. In other words, if a foreign function has a
2033:attr:`restype` of :class:`c_char_p`, you will always receive a Python string,
2034*not* a :class:`c_char_p` instance.
2035
Thomas Woutersed03b412007-08-28 21:37:11 +00002036Subclasses of fundamental data types do *not* inherit this behavior. So, if a
Georg Brandl116aa622007-08-15 14:28:22 +00002037foreign functions :attr:`restype` is a subclass of :class:`c_void_p`, you will
2038receive an instance of this subclass from the function call. Of course, you can
2039get the value of the pointer by accessing the ``value`` attribute.
2040
2041These are the fundamental ctypes data types:
2042
2043
2044.. class:: c_byte
2045
2046 Represents the C signed char datatype, and interprets the value as small
2047 integer. The constructor accepts an optional integer initializer; no overflow
2048 checking is done.
2049
2050
2051.. class:: c_char
2052
2053 Represents the C char datatype, and interprets the value as a single character.
2054 The constructor accepts an optional string initializer, the length of the string
2055 must be exactly one character.
2056
2057
2058.. class:: c_char_p
2059
2060 Represents the C char \* datatype, which must be a pointer to a zero-terminated
2061 string. The constructor accepts an integer address, or a string.
2062
2063
2064.. class:: c_double
2065
2066 Represents the C double datatype. The constructor accepts an optional float
2067 initializer.
2068
2069
Thomas Wouters89d996e2007-09-08 17:39:28 +00002070.. class:: c_longdouble
2071
2072 Represents the C long double datatype. The constructor accepts an
2073 optional float initializer. On platforms where ``sizeof(long
2074 double) == sizeof(double)`` it is an alias to :class:`c_double`.
2075
2076
Georg Brandl116aa622007-08-15 14:28:22 +00002077.. class:: c_float
2078
Thomas Wouters89d996e2007-09-08 17:39:28 +00002079 Represents the C float datatype. The constructor accepts an optional float
Georg Brandl116aa622007-08-15 14:28:22 +00002080 initializer.
2081
2082
2083.. class:: c_int
2084
2085 Represents the C signed int datatype. The constructor accepts an optional
2086 integer initializer; no overflow checking is done. On platforms where
2087 ``sizeof(int) == sizeof(long)`` it is an alias to :class:`c_long`.
2088
2089
2090.. class:: c_int8
2091
2092 Represents the C 8-bit ``signed int`` datatype. Usually an alias for
2093 :class:`c_byte`.
2094
2095
2096.. class:: c_int16
2097
2098 Represents the C 16-bit signed int datatype. Usually an alias for
2099 :class:`c_short`.
2100
2101
2102.. class:: c_int32
2103
2104 Represents the C 32-bit signed int datatype. Usually an alias for
2105 :class:`c_int`.
2106
2107
2108.. class:: c_int64
2109
2110 Represents the C 64-bit ``signed int`` datatype. Usually an alias for
2111 :class:`c_longlong`.
2112
2113
2114.. class:: c_long
2115
2116 Represents the C ``signed long`` datatype. The constructor accepts an optional
2117 integer initializer; no overflow checking is done.
2118
2119
2120.. class:: c_longlong
2121
2122 Represents the C ``signed long long`` datatype. The constructor accepts an
2123 optional integer initializer; no overflow checking is done.
2124
2125
2126.. class:: c_short
2127
2128 Represents the C ``signed short`` datatype. The constructor accepts an optional
2129 integer initializer; no overflow checking is done.
2130
2131
2132.. class:: c_size_t
2133
2134 Represents the C ``size_t`` datatype.
2135
2136
2137.. class:: c_ubyte
2138
2139 Represents the C ``unsigned char`` datatype, it interprets the value as small
2140 integer. The constructor accepts an optional integer initializer; no overflow
2141 checking is done.
2142
2143
2144.. class:: c_uint
2145
2146 Represents the C ``unsigned int`` datatype. The constructor accepts an optional
2147 integer initializer; no overflow checking is done. On platforms where
2148 ``sizeof(int) == sizeof(long)`` it is an alias for :class:`c_ulong`.
2149
2150
2151.. class:: c_uint8
2152
2153 Represents the C 8-bit unsigned int datatype. Usually an alias for
2154 :class:`c_ubyte`.
2155
2156
2157.. class:: c_uint16
2158
2159 Represents the C 16-bit unsigned int datatype. Usually an alias for
2160 :class:`c_ushort`.
2161
2162
2163.. class:: c_uint32
2164
2165 Represents the C 32-bit unsigned int datatype. Usually an alias for
2166 :class:`c_uint`.
2167
2168
2169.. class:: c_uint64
2170
2171 Represents the C 64-bit unsigned int datatype. Usually an alias for
2172 :class:`c_ulonglong`.
2173
2174
2175.. class:: c_ulong
2176
2177 Represents the C ``unsigned long`` datatype. The constructor accepts an optional
2178 integer initializer; no overflow checking is done.
2179
2180
2181.. class:: c_ulonglong
2182
2183 Represents the C ``unsigned long long`` datatype. The constructor accepts an
2184 optional integer initializer; no overflow checking is done.
2185
2186
2187.. class:: c_ushort
2188
2189 Represents the C ``unsigned short`` datatype. The constructor accepts an
2190 optional integer initializer; no overflow checking is done.
2191
2192
2193.. class:: c_void_p
2194
2195 Represents the C ``void *`` type. The value is represented as integer. The
2196 constructor accepts an optional integer initializer.
2197
2198
2199.. class:: c_wchar
2200
2201 Represents the C ``wchar_t`` datatype, and interprets the value as a single
2202 character unicode string. The constructor accepts an optional string
2203 initializer, the length of the string must be exactly one character.
2204
2205
2206.. class:: c_wchar_p
2207
2208 Represents the C ``wchar_t *`` datatype, which must be a pointer to a
2209 zero-terminated wide character string. The constructor accepts an integer
2210 address, or a string.
2211
2212
2213.. class:: c_bool
2214
2215 Represent the C ``bool`` datatype (more accurately, _Bool from C99). Its value
2216 can be True or False, and the constructor accepts any object that has a truth
2217 value.
2218
Georg Brandl116aa622007-08-15 14:28:22 +00002219
2220.. class:: HRESULT
2221
2222 Windows only: Represents a :class:`HRESULT` value, which contains success or
2223 error information for a function or method call.
2224
2225
2226.. class:: py_object
2227
2228 Represents the C ``PyObject *`` datatype. Calling this without an argument
2229 creates a ``NULL`` ``PyObject *`` pointer.
2230
2231The ``ctypes.wintypes`` module provides quite some other Windows specific data
2232types, for example ``HWND``, ``WPARAM``, or ``DWORD``. Some useful structures
2233like ``MSG`` or ``RECT`` are also defined.
2234
2235
2236.. _ctypes-structured-data-types:
2237
2238Structured data types
2239^^^^^^^^^^^^^^^^^^^^^
2240
2241
2242.. class:: Union(*args, **kw)
2243
2244 Abstract base class for unions in native byte order.
2245
2246
2247.. class:: BigEndianStructure(*args, **kw)
2248
2249 Abstract base class for structures in *big endian* byte order.
2250
2251
2252.. class:: LittleEndianStructure(*args, **kw)
2253
2254 Abstract base class for structures in *little endian* byte order.
2255
2256Structures with non-native byte order cannot contain pointer type fields, or any
2257other data types containing pointer type fields.
2258
2259
2260.. class:: Structure(*args, **kw)
2261
2262 Abstract base class for structures in *native* byte order.
2263
2264Concrete structure and union types must be created by subclassing one of these
2265types, and at least define a :attr:`_fields_` class variable. ``ctypes`` will
Georg Brandl9afde1c2007-11-01 20:32:30 +00002266create :term:`descriptor`\s which allow reading and writing the fields by direct
Georg Brandl116aa622007-08-15 14:28:22 +00002267attribute accesses. These are the
2268
2269
2270.. attribute:: Structure._fields_
2271
2272 A sequence defining the structure fields. The items must be 2-tuples or
2273 3-tuples. The first item is the name of the field, the second item specifies
2274 the type of the field; it can be any ctypes data type.
2275
2276 For integer type fields like :class:`c_int`, a third optional item can be given.
2277 It must be a small positive integer defining the bit width of the field.
2278
2279 Field names must be unique within one structure or union. This is not checked,
2280 only one field can be accessed when names are repeated.
2281
2282 It is possible to define the :attr:`_fields_` class variable *after* the class
2283 statement that defines the Structure subclass, this allows to create data types
2284 that directly or indirectly reference themselves::
2285
2286 class List(Structure):
2287 pass
2288 List._fields_ = [("pnext", POINTER(List)),
2289 ...
2290 ]
2291
2292 The :attr:`_fields_` class variable must, however, be defined before the type is
2293 first used (an instance is created, ``sizeof()`` is called on it, and so on).
2294 Later assignments to the :attr:`_fields_` class variable will raise an
2295 AttributeError.
2296
2297 Structure and union subclass constructors accept both positional and named
2298 arguments. Positional arguments are used to initialize the fields in the same
2299 order as they appear in the :attr:`_fields_` definition, named arguments are
2300 used to initialize the fields with the corresponding name.
2301
2302 It is possible to defined sub-subclasses of structure types, they inherit the
2303 fields of the base class plus the :attr:`_fields_` defined in the sub-subclass,
2304 if any.
2305
2306
2307.. attribute:: Structure._pack_
2308
2309 An optional small integer that allows to override the alignment of structure
2310 fields in the instance. :attr:`_pack_` must already be defined when
2311 :attr:`_fields_` is assigned, otherwise it will have no effect.
2312
2313
2314.. attribute:: Structure._anonymous_
2315
2316 An optional sequence that lists the names of unnamed (anonymous) fields.
2317 ``_anonymous_`` must be already defined when :attr:`_fields_` is assigned,
2318 otherwise it will have no effect.
2319
2320 The fields listed in this variable must be structure or union type fields.
2321 ``ctypes`` will create descriptors in the structure type that allows to access
2322 the nested fields directly, without the need to create the structure or union
2323 field.
2324
2325 Here is an example type (Windows)::
2326
2327 class _U(Union):
2328 _fields_ = [("lptdesc", POINTER(TYPEDESC)),
2329 ("lpadesc", POINTER(ARRAYDESC)),
2330 ("hreftype", HREFTYPE)]
2331
2332 class TYPEDESC(Structure):
2333 _fields_ = [("u", _U),
2334 ("vt", VARTYPE)]
2335
2336 _anonymous_ = ("u",)
2337
2338 The ``TYPEDESC`` structure describes a COM data type, the ``vt`` field specifies
2339 which one of the union fields is valid. Since the ``u`` field is defined as
2340 anonymous field, it is now possible to access the members directly off the
2341 TYPEDESC instance. ``td.lptdesc`` and ``td.u.lptdesc`` are equivalent, but the
2342 former is faster since it does not need to create a temporary union instance::
2343
2344 td = TYPEDESC()
2345 td.vt = VT_PTR
2346 td.lptdesc = POINTER(some_type)
2347 td.u.lptdesc = POINTER(some_type)
2348
2349It is possible to defined sub-subclasses of structures, they inherit the fields
2350of the base class. If the subclass definition has a separate :attr:`_fields_`
2351variable, the fields specified in this are appended to the fields of the base
2352class.
2353
2354Structure and union constructors accept both positional and keyword arguments.
2355Positional arguments are used to initialize member fields in the same order as
2356they are appear in :attr:`_fields_`. Keyword arguments in the constructor are
2357interpreted as attribute assignments, so they will initialize :attr:`_fields_`
2358with the same name, or create new attributes for names not present in
2359:attr:`_fields_`.
2360
2361
2362.. _ctypes-arrays-pointers:
2363
2364Arrays and pointers
2365^^^^^^^^^^^^^^^^^^^
2366
2367Not yet written - please see the sections :ref:`ctypes-pointers` and
2368section :ref:`ctypes-arrays` in the tutorial.
2369