blob: 76226c282d5e68d36bec415f0468194cdd00ca99 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001:mod:`math` --- Mathematical functions
2======================================
3
4.. module:: math
5 :synopsis: Mathematical functions (sin() etc.).
6
Łukasz Langa288234f2013-01-18 13:40:43 +01007.. testsetup::
8
9 from math import fsum
Georg Brandl116aa622007-08-15 14:28:22 +000010
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040011--------------
12
Georg Brandl116aa622007-08-15 14:28:22 +000013This module is always available. It provides access to the mathematical
14functions defined by the C standard.
15
16These functions cannot be used with complex numbers; use the functions of the
17same name from the :mod:`cmath` module if you require support for complex
18numbers. The distinction between functions which support complex numbers and
19those which don't is made since most users do not want to learn quite as much
20mathematics as required to understand complex numbers. Receiving an exception
21instead of a complex result allows earlier detection of the unexpected complex
22number used as a parameter, so that the programmer can determine how and why it
23was generated in the first place.
24
25The following functions are provided by this module. Except when explicitly
26noted otherwise, all return values are floats.
27
Georg Brandl116aa622007-08-15 14:28:22 +000028
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +000029Number-theoretic and representation functions
30---------------------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +000031
32.. function:: ceil(x)
33
Georg Brandl2a033732008-04-05 17:37:09 +000034 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
35 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030036 :class:`~numbers.Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000037
38
39.. function:: copysign(x, y)
40
Andrew Kuchling8cb1ec32014-02-16 11:11:25 -050041 Return a float with the magnitude (absolute value) of *x* but the sign of
42 *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)``
43 returns *-1.0*.
Christian Heimes072c0f12008-01-03 23:01:04 +000044
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030045
Georg Brandl116aa622007-08-15 14:28:22 +000046.. function:: fabs(x)
47
48 Return the absolute value of *x*.
49
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030050
Georg Brandlc28e1fa2008-06-10 19:20:26 +000051.. function:: factorial(x)
52
Benjamin Petersonfea6a942008-07-02 16:11:42 +000053 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Georg Brandlc28e1fa2008-06-10 19:20:26 +000054 is negative.
Georg Brandl116aa622007-08-15 14:28:22 +000055
Serhiy Storchakadbaf7462017-05-04 12:25:09 +030056
Georg Brandl116aa622007-08-15 14:28:22 +000057.. function:: floor(x)
58
Georg Brandl2a033732008-04-05 17:37:09 +000059 Return the floor of *x*, the largest integer less than or equal to *x*.
60 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
Serhiy Storchakabfdcd432013-10-13 23:09:14 +030061 :class:`~numbers.Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000062
63
64.. function:: fmod(x, y)
65
66 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
67 Python expression ``x % y`` may not return the same result. The intent of the C
68 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
69 precision) equal to ``x - n*y`` for some integer *n* such that the result has
70 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
71 returns a result with the sign of *y* instead, and may not be exactly computable
72 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
73 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
74 represented exactly as a float, and rounds to the surprising ``1e100``. For
75 this reason, function :func:`fmod` is generally preferred when working with
76 floats, while Python's ``x % y`` is preferred when working with integers.
77
78
79.. function:: frexp(x)
80
81 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
82 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
83 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
84 apart" the internal representation of a float in a portable way.
85
86
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000087.. function:: fsum(iterable)
88
89 Return an accurate floating point sum of values in the iterable. Avoids
Raymond Hettingerf3936f82009-02-19 05:48:05 +000090 loss of precision by tracking multiple intermediate partial sums::
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000091
Raymond Hettingerf3936f82009-02-19 05:48:05 +000092 >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
Mark Dickinson5a55b612009-06-28 20:59:42 +000093 0.9999999999999999
Raymond Hettingerf3936f82009-02-19 05:48:05 +000094 >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
95 1.0
Mark Dickinsonaa7633a2008-08-01 08:16:13 +000096
Raymond Hettingerf3936f82009-02-19 05:48:05 +000097 The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
98 typical case where the rounding mode is half-even. On some non-Windows
99 builds, the underlying C library uses extended precision addition and may
100 occasionally double-round an intermediate sum causing it to be off in its
101 least significant bit.
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000102
Raymond Hettinger477be822009-02-19 06:44:30 +0000103 For further discussion and two alternative approaches, see the `ASPN cookbook
104 recipes for accurate floating point summation
Georg Brandl5d941342016-02-26 19:37:12 +0100105 <https://code.activestate.com/recipes/393090/>`_\.
Raymond Hettinger477be822009-02-19 06:44:30 +0000106
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000107
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300108.. function:: gcd(a, b)
109
110 Return the greatest common divisor of the integers *a* and *b*. If either
111 *a* or *b* is nonzero, then the value of ``gcd(a, b)`` is the largest
112 positive integer that divides both *a* and *b*. ``gcd(0, 0)`` returns
113 ``0``.
114
Benjamin Petersone960d182015-05-12 17:24:17 -0400115 .. versionadded:: 3.5
116
Serhiy Storchaka48e47aa2015-05-13 00:19:51 +0300117
Tal Einatd5519ed2015-05-31 22:05:00 +0300118.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
119
120 Return ``True`` if the values *a* and *b* are close to each other and
121 ``False`` otherwise.
122
123 Whether or not two values are considered close is determined according to
124 given absolute and relative tolerances.
125
126 *rel_tol* is the relative tolerance -- it is the maximum allowed difference
127 between *a* and *b*, relative to the larger absolute value of *a* or *b*.
128 For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
129 tolerance is ``1e-09``, which assures that the two values are the same
130 within about 9 decimal digits. *rel_tol* must be greater than zero.
131
132 *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
133 zero. *abs_tol* must be at least zero.
134
135 If no errors occur, the result will be:
136 ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
137
138 The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
139 handled according to IEEE rules. Specifically, ``NaN`` is not considered
140 close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
141 considered close to themselves.
142
143 .. versionadded:: 3.5
144
145 .. seealso::
146
147 :pep:`485` -- A function for testing approximate equality
148
149
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000150.. function:: isfinite(x)
151
152 Return ``True`` if *x* is neither an infinity nor a NaN, and
153 ``False`` otherwise. (Note that ``0.0`` *is* considered finite.)
154
Mark Dickinsonc7622422010-07-11 19:47:37 +0000155 .. versionadded:: 3.2
156
Mark Dickinson8e0c9962010-07-11 17:38:24 +0000157
Christian Heimes072c0f12008-01-03 23:01:04 +0000158.. function:: isinf(x)
159
Mark Dickinsonc7622422010-07-11 19:47:37 +0000160 Return ``True`` if *x* is a positive or negative infinity, and
161 ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000162
Christian Heimes072c0f12008-01-03 23:01:04 +0000163
164.. function:: isnan(x)
165
Mark Dickinsonc7622422010-07-11 19:47:37 +0000166 Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
Christian Heimes072c0f12008-01-03 23:01:04 +0000167
Christian Heimes072c0f12008-01-03 23:01:04 +0000168
Georg Brandl116aa622007-08-15 14:28:22 +0000169.. function:: ldexp(x, i)
170
171 Return ``x * (2**i)``. This is essentially the inverse of function
172 :func:`frexp`.
173
174
175.. function:: modf(x)
176
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000177 Return the fractional and integer parts of *x*. Both results carry the sign
178 of *x* and are floats.
Georg Brandl116aa622007-08-15 14:28:22 +0000179
Christian Heimes400adb02008-02-01 08:12:03 +0000180
Mark Dickinsona0ce3752017-04-05 18:34:27 +0100181.. function:: remainder(x, y)
182
183 Return the IEEE 754-style remainder of *x* with respect to *y*. For
184 finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
185 where ``n`` is the closest integer to the exact value of the quotient ``x /
186 y``. If ``x / y`` is exactly halfway between two consecutive integers, the
187 nearest *even* integer is used for ``n``. The remainder ``r = remainder(x,
188 y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
189
190 Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
191 *x* for any finite *x*, and ``remainder(x, 0)`` and
192 ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
193 If the result of the remainder operation is zero, that zero will have
194 the same sign as *x*.
195
196 On platforms using IEEE 754 binary floating-point, the result of this
197 operation is always exactly representable: no rounding error is introduced.
198
199 .. versionadded:: 3.7
200
201
Christian Heimes400adb02008-02-01 08:12:03 +0000202.. function:: trunc(x)
203
Serhiy Storchakabfdcd432013-10-13 23:09:14 +0300204 Return the :class:`~numbers.Real` value *x* truncated to an
205 :class:`~numbers.Integral` (usually an integer). Delegates to
Eric Appelt308eab92018-03-10 02:44:12 -0600206 :meth:`x.__trunc__() <object.__trunc__>`.
Christian Heimes400adb02008-02-01 08:12:03 +0000207
Christian Heimes400adb02008-02-01 08:12:03 +0000208
Georg Brandl116aa622007-08-15 14:28:22 +0000209Note that :func:`frexp` and :func:`modf` have a different call/return pattern
210than their C equivalents: they take a single argument and return a pair of
211values, rather than returning their second return value through an 'output
212parameter' (there is no such thing in Python).
213
214For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
215floating-point numbers of sufficiently large magnitude are exact integers.
216Python floats typically carry no more than 53 bits of precision (the same as the
217platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
218necessarily has no fractional bits.
219
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000220
221Power and logarithmic functions
222-------------------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000223
Georg Brandl116aa622007-08-15 14:28:22 +0000224.. function:: exp(x)
225
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300226 Return *e* raised to the power *x*, where *e* = 2.718281... is the base
227 of natural logarithms. This is usually more accurate than ``math.e ** x``
228 or ``pow(math.e, x)``.
229
Georg Brandl116aa622007-08-15 14:28:22 +0000230
Mark Dickinson664b5112009-12-16 20:23:42 +0000231.. function:: expm1(x)
232
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300233 Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural
234 logarithms. For small floats *x*, the subtraction in ``exp(x) - 1``
Raymond Hettinger1081d482011-03-31 12:04:53 -0700235 can result in a `significant loss of precision
Georg Brandl5d941342016-02-26 19:37:12 +0100236 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
Raymond Hettinger1081d482011-03-31 12:04:53 -0700237 function provides a way to compute this quantity to full precision::
Mark Dickinson664b5112009-12-16 20:23:42 +0000238
239 >>> from math import exp, expm1
240 >>> exp(1e-5) - 1 # gives result accurate to 11 places
241 1.0000050000069649e-05
242 >>> expm1(1e-5) # result accurate to full precision
243 1.0000050000166668e-05
244
Mark Dickinson45f992a2009-12-19 11:20:49 +0000245 .. versionadded:: 3.2
246
Mark Dickinson664b5112009-12-16 20:23:42 +0000247
Georg Brandl116aa622007-08-15 14:28:22 +0000248.. function:: log(x[, base])
249
Georg Brandla6053b42009-09-01 08:11:14 +0000250 With one argument, return the natural logarithm of *x* (to base *e*).
251
252 With two arguments, return the logarithm of *x* to the given *base*,
253 calculated as ``log(x)/log(base)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000254
Georg Brandl116aa622007-08-15 14:28:22 +0000255
Christian Heimes53876d92008-04-19 00:31:39 +0000256.. function:: log1p(x)
257
258 Return the natural logarithm of *1+x* (base *e*). The
259 result is calculated in a way which is accurate for *x* near zero.
260
Christian Heimes53876d92008-04-19 00:31:39 +0000261
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200262.. function:: log2(x)
263
Benjamin Petersoneaee1382011-05-08 19:48:08 -0500264 Return the base-2 logarithm of *x*. This is usually more accurate than
265 ``log(x, 2)``.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200266
267 .. versionadded:: 3.3
268
Victor Stinner9415afc2011-09-21 03:35:18 +0200269 .. seealso::
270
271 :meth:`int.bit_length` returns the number of bits necessary to represent
272 an integer in binary, excluding the sign and leading zeros.
273
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200274
Georg Brandl116aa622007-08-15 14:28:22 +0000275.. function:: log10(x)
276
Georg Brandla6053b42009-09-01 08:11:14 +0000277 Return the base-10 logarithm of *x*. This is usually more accurate
278 than ``log(x, 10)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000279
280
281.. function:: pow(x, y)
282
Christian Heimesa342c012008-04-20 21:01:16 +0000283 Return ``x`` raised to the power ``y``. Exceptional cases follow
284 Annex 'F' of the C99 standard as far as possible. In particular,
285 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
286 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
287 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
288 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000289
Ezio Melotti739d5492013-02-23 04:53:44 +0200290 Unlike the built-in ``**`` operator, :func:`math.pow` converts both
291 its arguments to type :class:`float`. Use ``**`` or the built-in
292 :func:`pow` function for computing exact integer powers.
293
Georg Brandl116aa622007-08-15 14:28:22 +0000294
295.. function:: sqrt(x)
296
297 Return the square root of *x*.
298
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300299
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000300Trigonometric functions
301-----------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000302
Georg Brandl116aa622007-08-15 14:28:22 +0000303.. function:: acos(x)
304
305 Return the arc cosine of *x*, in radians.
306
307
308.. function:: asin(x)
309
310 Return the arc sine of *x*, in radians.
311
312
313.. function:: atan(x)
314
315 Return the arc tangent of *x*, in radians.
316
317
318.. function:: atan2(y, x)
319
320 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
321 The vector in the plane from the origin to point ``(x, y)`` makes this angle
322 with the positive X axis. The point of :func:`atan2` is that the signs of both
323 inputs are known to it, so it can compute the correct quadrant for the angle.
Mark Dickinson603b7532010-04-06 19:55:03 +0000324 For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
Georg Brandl116aa622007-08-15 14:28:22 +0000325 -1)`` is ``-3*pi/4``.
326
327
328.. function:: cos(x)
329
330 Return the cosine of *x* radians.
331
332
Raymond Hettinger9c18b1a2018-07-31 00:45:49 -0700333.. function:: dist(p, q)
334
335 Return the Euclidean distance between two points *p* and *q*, each
336 given as a tuple of coordinates. The two tuples must be the same size.
337
338 Roughly equivalent to::
339
340 sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
341
342 .. versionadded:: 3.8
343
344
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700345.. function:: hypot(*coordinates)
Georg Brandl116aa622007-08-15 14:28:22 +0000346
Raymond Hettingerc6dabe32018-07-28 07:48:04 -0700347 Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
348 This is the length of the vector from the origin to the point
349 given by the coordinates.
350
351 For a two dimensional point ``(x, y)``, this is equivalent to computing
352 the hypotenuse of a right triangle using the Pythagorean theorem,
353 ``sqrt(x*x + y*y)``.
354
355 .. versionchanged:: 3.8
356 Added support for n-dimensional points. Formerly, only the two
357 dimensional case was supported.
Georg Brandl116aa622007-08-15 14:28:22 +0000358
359
360.. function:: sin(x)
361
362 Return the sine of *x* radians.
363
364
365.. function:: tan(x)
366
367 Return the tangent of *x* radians.
368
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300369
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000370Angular conversion
371------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000372
Georg Brandl116aa622007-08-15 14:28:22 +0000373.. function:: degrees(x)
374
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400375 Convert angle *x* from radians to degrees.
Georg Brandl116aa622007-08-15 14:28:22 +0000376
377
378.. function:: radians(x)
379
Benjamin Peterson19a3f172015-05-12 19:15:53 -0400380 Convert angle *x* from degrees to radians.
Georg Brandl116aa622007-08-15 14:28:22 +0000381
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300382
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000383Hyperbolic functions
384--------------------
Georg Brandl116aa622007-08-15 14:28:22 +0000385
Georg Brandl5d941342016-02-26 19:37:12 +0100386`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
Raymond Hettinger1081d482011-03-31 12:04:53 -0700387are analogs of trigonometric functions that are based on hyperbolas
388instead of circles.
Georg Brandl116aa622007-08-15 14:28:22 +0000389
Christian Heimesa342c012008-04-20 21:01:16 +0000390.. function:: acosh(x)
391
392 Return the inverse hyperbolic cosine of *x*.
393
Christian Heimesa342c012008-04-20 21:01:16 +0000394
395.. function:: asinh(x)
396
397 Return the inverse hyperbolic sine of *x*.
398
Christian Heimesa342c012008-04-20 21:01:16 +0000399
400.. function:: atanh(x)
401
402 Return the inverse hyperbolic tangent of *x*.
403
Christian Heimesa342c012008-04-20 21:01:16 +0000404
Georg Brandl116aa622007-08-15 14:28:22 +0000405.. function:: cosh(x)
406
407 Return the hyperbolic cosine of *x*.
408
409
410.. function:: sinh(x)
411
412 Return the hyperbolic sine of *x*.
413
414
415.. function:: tanh(x)
416
417 Return the hyperbolic tangent of *x*.
418
Christian Heimes53876d92008-04-19 00:31:39 +0000419
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000420Special functions
421-----------------
422
Mark Dickinson45f992a2009-12-19 11:20:49 +0000423.. function:: erf(x)
424
Georg Brandl5d941342016-02-26 19:37:12 +0100425 Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
Raymond Hettinger1081d482011-03-31 12:04:53 -0700426 *x*.
427
428 The :func:`erf` function can be used to compute traditional statistical
429 functions such as the `cumulative standard normal distribution
Georg Brandl5d941342016-02-26 19:37:12 +0100430 <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function>`_::
Raymond Hettinger1081d482011-03-31 12:04:53 -0700431
432 def phi(x):
433 'Cumulative distribution function for the standard normal distribution'
434 return (1.0 + erf(x / sqrt(2.0))) / 2.0
Mark Dickinson45f992a2009-12-19 11:20:49 +0000435
436 .. versionadded:: 3.2
437
438
439.. function:: erfc(x)
440
Raymond Hettinger1081d482011-03-31 12:04:53 -0700441 Return the complementary error function at *x*. The `complementary error
Georg Brandl5d941342016-02-26 19:37:12 +0100442 function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700443 ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction
444 from one would cause a `loss of significance
Georg Brandl5d941342016-02-26 19:37:12 +0100445 <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
Mark Dickinson45f992a2009-12-19 11:20:49 +0000446
447 .. versionadded:: 3.2
448
449
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000450.. function:: gamma(x)
451
Georg Brandl5d941342016-02-26 19:37:12 +0100452 Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
Raymond Hettinger12e6c252011-03-31 13:59:24 -0700453 *x*.
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000454
Mark Dickinson56e09662009-10-01 16:13:29 +0000455 .. versionadded:: 3.2
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000456
457
Mark Dickinson05d2e082009-12-11 20:17:17 +0000458.. function:: lgamma(x)
459
460 Return the natural logarithm of the absolute value of the Gamma
461 function at *x*.
462
Mark Dickinson45f992a2009-12-19 11:20:49 +0000463 .. versionadded:: 3.2
Mark Dickinson05d2e082009-12-11 20:17:17 +0000464
465
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +0000466Constants
Mark Dickinson60fe6b02009-06-02 12:53:15 +0000467---------
Georg Brandl116aa622007-08-15 14:28:22 +0000468
469.. data:: pi
470
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300471 The mathematical constant *π* = 3.141592..., to available precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000472
473
474.. data:: e
475
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300476 The mathematical constant *e* = 2.718281..., to available precision.
477
Georg Brandl116aa622007-08-15 14:28:22 +0000478
Guido van Rossum0a891d72016-08-15 09:12:52 -0700479.. data:: tau
480
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300481 The mathematical constant *τ* = 6.283185..., to available precision.
482 Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
Guido van Rossum0a891d72016-08-15 09:12:52 -0700483 its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
484 Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
Sanyam Khurana338cd832018-01-20 05:55:37 +0530485 `Tau day <https://tauday.com/>`_ by eating twice as much pie!
Christian Heimes53876d92008-04-19 00:31:39 +0000486
Georg Brandl4770d6e2016-08-16 07:08:46 +0200487 .. versionadded:: 3.6
488
Serhiy Storchakadbaf7462017-05-04 12:25:09 +0300489
Mark Dickinsona5d0c7c2015-01-11 11:55:29 +0000490.. data:: inf
491
492 A floating-point positive infinity. (For negative infinity, use
493 ``-math.inf``.) Equivalent to the output of ``float('inf')``.
494
495 .. versionadded:: 3.5
496
497
498.. data:: nan
499
500 A floating-point "not a number" (NaN) value. Equivalent to the output of
501 ``float('nan')``.
502
503 .. versionadded:: 3.5
504
505
Georg Brandl495f7b52009-10-27 15:28:25 +0000506.. impl-detail::
Georg Brandl116aa622007-08-15 14:28:22 +0000507
508 The :mod:`math` module consists mostly of thin wrappers around the platform C
Mark Dickinson603b7532010-04-06 19:55:03 +0000509 math library functions. Behavior in exceptional cases follows Annex F of
510 the C99 standard where appropriate. The current implementation will raise
511 :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
512 (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
513 and :exc:`OverflowError` for results that overflow (for example,
Benjamin Peterson08bf91c2010-04-11 16:12:57 +0000514 ``exp(1000.0)``). A NaN will not be returned from any of the functions
515 above unless one or more of the input arguments was a NaN; in that case,
516 most functions will return a NaN, but (again following C99 Annex F) there
Mark Dickinson603b7532010-04-06 19:55:03 +0000517 are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
518 ``hypot(float('nan'), float('inf'))``.
Georg Brandl116aa622007-08-15 14:28:22 +0000519
Mark Dickinson42dfeec2010-04-06 22:13:37 +0000520 Note that Python makes no effort to distinguish signaling NaNs from
521 quiet NaNs, and behavior for signaling NaNs remains unspecified.
522 Typical behavior is to treat all NaNs as though they were quiet.
Christian Heimes53876d92008-04-19 00:31:39 +0000523
Georg Brandl116aa622007-08-15 14:28:22 +0000524
525.. seealso::
526
527 Module :mod:`cmath`
528 Complex number versions of many of these functions.