blob: 4d5a8749c76c05a993239cd284a7767fa6bc94da [file] [log] [blame]
Raymond Hettinger40f62172002-12-29 23:03:38 +00001import unittest
R David Murraye3e1c172013-04-02 12:47:23 -04002import unittest.mock
Tim Peters46c04e12002-05-05 20:40:00 +00003import random
Raymond Hettinger40f62172002-12-29 23:03:38 +00004import time
Raymond Hettinger5f078ff2003-06-24 20:29:04 +00005import pickle
Raymond Hettinger2f726e92003-10-05 09:09:15 +00006import warnings
R David Murraye3e1c172013-04-02 12:47:23 -04007from functools import partial
Georg Brandl1b37e872010-03-14 10:45:50 +00008from math import log, exp, pi, fsum, sin
Benjamin Petersonee8712c2008-05-20 21:35:26 +00009from test import support
Raymond Hettingere8f1e002016-09-06 17:15:29 -070010from fractions import Fraction
Tim Peters46c04e12002-05-05 20:40:00 +000011
Ezio Melotti3e4a98b2013-04-19 05:45:27 +030012class TestBasicOps:
Raymond Hettinger40f62172002-12-29 23:03:38 +000013 # Superclass with tests common to all generators.
14 # Subclasses must arrange for self.gen to retrieve the Random instance
15 # to be tested.
Tim Peters46c04e12002-05-05 20:40:00 +000016
Raymond Hettinger40f62172002-12-29 23:03:38 +000017 def randomlist(self, n):
18 """Helper function to make a list of random numbers"""
Guido van Rossum805365e2007-05-07 22:24:25 +000019 return [self.gen.random() for i in range(n)]
Tim Peters46c04e12002-05-05 20:40:00 +000020
Raymond Hettinger40f62172002-12-29 23:03:38 +000021 def test_autoseed(self):
22 self.gen.seed()
23 state1 = self.gen.getstate()
Raymond Hettinger3081d592003-08-09 18:30:57 +000024 time.sleep(0.1)
Raymond Hettinger40f62172002-12-29 23:03:38 +000025 self.gen.seed() # diffent seeds at different times
26 state2 = self.gen.getstate()
27 self.assertNotEqual(state1, state2)
Tim Peters46c04e12002-05-05 20:40:00 +000028
Raymond Hettinger40f62172002-12-29 23:03:38 +000029 def test_saverestore(self):
30 N = 1000
31 self.gen.seed()
32 state = self.gen.getstate()
33 randseq = self.randomlist(N)
34 self.gen.setstate(state) # should regenerate the same sequence
35 self.assertEqual(randseq, self.randomlist(N))
36
37 def test_seedargs(self):
Mark Dickinson95aeae02012-06-24 11:05:30 +010038 # Seed value with a negative hash.
39 class MySeed(object):
40 def __hash__(self):
41 return -1729
Guido van Rossume2a383d2007-01-15 16:59:06 +000042 for arg in [None, 0, 0, 1, 1, -1, -1, 10**20, -(10**20),
Mark Dickinson95aeae02012-06-24 11:05:30 +010043 3.14, 1+2j, 'a', tuple('abc'), MySeed()]:
Raymond Hettinger40f62172002-12-29 23:03:38 +000044 self.gen.seed(arg)
Guido van Rossum805365e2007-05-07 22:24:25 +000045 for arg in [list(range(3)), dict(one=1)]:
Raymond Hettinger40f62172002-12-29 23:03:38 +000046 self.assertRaises(TypeError, self.gen.seed, arg)
Raymond Hettingerf763a722010-09-07 00:38:15 +000047 self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4)
Raymond Hettinger58335872004-07-09 14:26:18 +000048 self.assertRaises(TypeError, type(self.gen), [])
Raymond Hettinger40f62172002-12-29 23:03:38 +000049
R David Murraye3e1c172013-04-02 12:47:23 -040050 @unittest.mock.patch('random._urandom') # os.urandom
51 def test_seed_when_randomness_source_not_found(self, urandom_mock):
52 # Random.seed() uses time.time() when an operating system specific
53 # randomness source is not found. To test this on machines were it
54 # exists, run the above test, test_seedargs(), again after mocking
55 # os.urandom() so that it raises the exception expected when the
56 # randomness source is not available.
57 urandom_mock.side_effect = NotImplementedError
58 self.test_seedargs()
59
Antoine Pitrou5e394332012-11-04 02:10:33 +010060 def test_shuffle(self):
61 shuffle = self.gen.shuffle
62 lst = []
63 shuffle(lst)
64 self.assertEqual(lst, [])
65 lst = [37]
66 shuffle(lst)
67 self.assertEqual(lst, [37])
68 seqs = [list(range(n)) for n in range(10)]
69 shuffled_seqs = [list(range(n)) for n in range(10)]
70 for shuffled_seq in shuffled_seqs:
71 shuffle(shuffled_seq)
72 for (seq, shuffled_seq) in zip(seqs, shuffled_seqs):
73 self.assertEqual(len(seq), len(shuffled_seq))
74 self.assertEqual(set(seq), set(shuffled_seq))
Antoine Pitrou5e394332012-11-04 02:10:33 +010075 # The above tests all would pass if the shuffle was a
76 # no-op. The following non-deterministic test covers that. It
77 # asserts that the shuffled sequence of 1000 distinct elements
78 # must be different from the original one. Although there is
79 # mathematically a non-zero probability that this could
80 # actually happen in a genuinely random shuffle, it is
81 # completely negligible, given that the number of possible
82 # permutations of 1000 objects is 1000! (factorial of 1000),
83 # which is considerably larger than the number of atoms in the
84 # universe...
85 lst = list(range(1000))
86 shuffled_lst = list(range(1000))
87 shuffle(shuffled_lst)
88 self.assertTrue(lst != shuffled_lst)
89 shuffle(lst)
90 self.assertTrue(lst != shuffled_lst)
91
Raymond Hettingerdc4872e2010-09-07 10:06:56 +000092 def test_choice(self):
93 choice = self.gen.choice
94 with self.assertRaises(IndexError):
95 choice([])
96 self.assertEqual(choice([50]), 50)
97 self.assertIn(choice([25, 75]), [25, 75])
98
Raymond Hettinger40f62172002-12-29 23:03:38 +000099 def test_sample(self):
100 # For the entire allowable range of 0 <= k <= N, validate that
101 # the sample is of the correct length and contains only unique items
102 N = 100
Guido van Rossum805365e2007-05-07 22:24:25 +0000103 population = range(N)
104 for k in range(N+1):
Raymond Hettinger40f62172002-12-29 23:03:38 +0000105 s = self.gen.sample(population, k)
106 self.assertEqual(len(s), k)
Raymond Hettingera690a992003-11-16 16:17:49 +0000107 uniq = set(s)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000108 self.assertEqual(len(uniq), k)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000109 self.assertTrue(uniq <= set(population))
Raymond Hettinger8ec78812003-01-04 05:55:11 +0000110 self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
R David Murraye3e1c172013-04-02 12:47:23 -0400111 # Exception raised if size of sample exceeds that of population
112 self.assertRaises(ValueError, self.gen.sample, population, N+1)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000113
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000114 def test_sample_distribution(self):
115 # For the entire allowable range of 0 <= k <= N, validate that
116 # sample generates all possible permutations
117 n = 5
118 pop = range(n)
119 trials = 10000 # large num prevents false negatives without slowing normal case
120 def factorial(n):
Guido van Rossum89da5d72006-08-22 00:21:25 +0000121 if n == 0:
122 return 1
123 return n * factorial(n - 1)
Guido van Rossum805365e2007-05-07 22:24:25 +0000124 for k in range(n):
Raymond Hettingerffdb8bb2004-09-27 15:29:05 +0000125 expected = factorial(n) // factorial(n-k)
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000126 perms = {}
Guido van Rossum805365e2007-05-07 22:24:25 +0000127 for i in range(trials):
Raymond Hettinger7b0cf762003-01-17 17:23:23 +0000128 perms[tuple(self.gen.sample(pop, k))] = None
129 if len(perms) == expected:
130 break
131 else:
132 self.fail()
133
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000134 def test_sample_inputs(self):
135 # SF bug #801342 -- population can be any iterable defining __len__()
Raymond Hettingera690a992003-11-16 16:17:49 +0000136 self.gen.sample(set(range(20)), 2)
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000137 self.gen.sample(range(20), 2)
Guido van Rossum805365e2007-05-07 22:24:25 +0000138 self.gen.sample(range(20), 2)
Raymond Hettinger66d09f12003-09-06 04:25:54 +0000139 self.gen.sample(str('abcdefghijklmnopqrst'), 2)
140 self.gen.sample(tuple('abcdefghijklmnopqrst'), 2)
141
Thomas Wouters49fd7fa2006-04-21 10:40:58 +0000142 def test_sample_on_dicts(self):
Raymond Hettinger1acde192008-01-14 01:00:53 +0000143 self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2)
Thomas Wouters49fd7fa2006-04-21 10:40:58 +0000144
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700145 def test_choices(self):
146 choices = self.gen.choices
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700147 data = ['red', 'green', 'blue', 'yellow']
148 str_data = 'abcd'
149 range_data = range(4)
150 set_data = set(range(4))
151
152 # basic functionality
153 for sample in [
Raymond Hettinger9016f282016-09-26 21:45:57 -0700154 choices(data, k=5),
155 choices(data, range(4), k=5),
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700156 choices(k=5, population=data, weights=range(4)),
157 choices(k=5, population=data, cum_weights=range(4)),
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700158 ]:
159 self.assertEqual(len(sample), 5)
160 self.assertEqual(type(sample), list)
161 self.assertTrue(set(sample) <= set(data))
162
163 # test argument handling
Raymond Hettinger28aa4a02016-09-07 00:08:44 -0700164 with self.assertRaises(TypeError): # missing arguments
165 choices(2)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700166
Raymond Hettinger9016f282016-09-26 21:45:57 -0700167 self.assertEqual(choices(data, k=0), []) # k == 0
168 self.assertEqual(choices(data, k=-1), []) # negative k behaves like ``[0] * -1``
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700169 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700170 choices(data, k=2.5) # k is a float
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700171
Raymond Hettinger9016f282016-09-26 21:45:57 -0700172 self.assertTrue(set(choices(str_data, k=5)) <= set(str_data)) # population is a string sequence
173 self.assertTrue(set(choices(range_data, k=5)) <= set(range_data)) # population is a range
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700174 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700175 choices(set_data, k=2) # population is not a sequence
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700176
Raymond Hettinger9016f282016-09-26 21:45:57 -0700177 self.assertTrue(set(choices(data, None, k=5)) <= set(data)) # weights is None
178 self.assertTrue(set(choices(data, weights=None, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700179 with self.assertRaises(ValueError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700180 choices(data, [1,2], k=5) # len(weights) != len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700181 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700182 choices(data, 10, k=5) # non-iterable weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700183 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700184 choices(data, [None]*4, k=5) # non-numeric weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700185 for weights in [
186 [15, 10, 25, 30], # integer weights
187 [15.1, 10.2, 25.2, 30.3], # float weights
188 [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights
189 [True, False, True, False] # booleans (include / exclude)
190 ]:
Raymond Hettinger9016f282016-09-26 21:45:57 -0700191 self.assertTrue(set(choices(data, weights, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700192
193 with self.assertRaises(ValueError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700194 choices(data, cum_weights=[1,2], k=5) # len(weights) != len(population)
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700195 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700196 choices(data, cum_weights=10, k=5) # non-iterable cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700197 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700198 choices(data, cum_weights=[None]*4, k=5) # non-numeric cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700199 with self.assertRaises(TypeError):
Raymond Hettinger9016f282016-09-26 21:45:57 -0700200 choices(data, range(4), cum_weights=range(4), k=5) # both weights and cum_weights
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700201 for weights in [
202 [15, 10, 25, 30], # integer cum_weights
203 [15.1, 10.2, 25.2, 30.3], # float cum_weights
204 [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights
205 ]:
Raymond Hettinger9016f282016-09-26 21:45:57 -0700206 self.assertTrue(set(choices(data, cum_weights=weights, k=5)) <= set(data))
Raymond Hettingere8f1e002016-09-06 17:15:29 -0700207
Raymond Hettinger7b166522016-10-14 01:19:38 -0400208 # Test weight focused on a single element of the population
209 self.assertEqual(choices('abcd', [1, 0, 0, 0]), ['a'])
210 self.assertEqual(choices('abcd', [0, 1, 0, 0]), ['b'])
211 self.assertEqual(choices('abcd', [0, 0, 1, 0]), ['c'])
212 self.assertEqual(choices('abcd', [0, 0, 0, 1]), ['d'])
213
214 # Test consistency with random.choice() for empty population
215 with self.assertRaises(IndexError):
216 choices([], k=1)
217 with self.assertRaises(IndexError):
218 choices([], weights=[], k=1)
219 with self.assertRaises(IndexError):
220 choices([], cum_weights=[], k=5)
221
Raymond Hettinger40f62172002-12-29 23:03:38 +0000222 def test_gauss(self):
223 # Ensure that the seed() method initializes all the hidden state. In
224 # particular, through 2.2.1 it failed to reset a piece of state used
225 # by (and only by) the .gauss() method.
226
227 for seed in 1, 12, 123, 1234, 12345, 123456, 654321:
228 self.gen.seed(seed)
229 x1 = self.gen.random()
230 y1 = self.gen.gauss(0, 1)
231
232 self.gen.seed(seed)
233 x2 = self.gen.random()
234 y2 = self.gen.gauss(0, 1)
235
236 self.assertEqual(x1, x2)
237 self.assertEqual(y1, y2)
238
Raymond Hettinger5f078ff2003-06-24 20:29:04 +0000239 def test_pickling(self):
Serhiy Storchakabad12572014-12-15 14:03:42 +0200240 for proto in range(pickle.HIGHEST_PROTOCOL + 1):
241 state = pickle.dumps(self.gen, proto)
242 origseq = [self.gen.random() for i in range(10)]
243 newgen = pickle.loads(state)
244 restoredseq = [newgen.random() for i in range(10)]
245 self.assertEqual(origseq, restoredseq)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000246
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000247 def test_bug_1727780(self):
248 # verify that version-2-pickles can be loaded
249 # fine, whether they are created on 32-bit or 64-bit
250 # platforms, and that version-3-pickles load fine.
251 files = [("randv2_32.pck", 780),
252 ("randv2_64.pck", 866),
253 ("randv3.pck", 343)]
254 for file, value in files:
Benjamin Petersonee8712c2008-05-20 21:35:26 +0000255 f = open(support.findfile(file),"rb")
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000256 r = pickle.load(f)
257 f.close()
Raymond Hettinger05156612010-09-07 04:44:52 +0000258 self.assertEqual(int(r.random()*1000), value)
259
260 def test_bug_9025(self):
261 # Had problem with an uneven distribution in int(n*random())
262 # Verify the fix by checking that distributions fall within expectations.
263 n = 100000
264 randrange = self.gen.randrange
265 k = sum(randrange(6755399441055744) % 3 == 2 for i in range(n))
266 self.assertTrue(0.30 < k/n < .37, (k/n))
Christian Heimescbf3b5c2007-12-03 21:02:03 +0000267
Ezio Melotti3e4a98b2013-04-19 05:45:27 +0300268try:
269 random.SystemRandom().random()
270except NotImplementedError:
271 SystemRandom_available = False
272else:
273 SystemRandom_available = True
274
275@unittest.skipUnless(SystemRandom_available, "random.SystemRandom not available")
276class SystemRandom_TestBasicOps(TestBasicOps, unittest.TestCase):
Raymond Hettinger23f12412004-09-13 22:23:21 +0000277 gen = random.SystemRandom()
Raymond Hettinger356a4592004-08-30 06:14:31 +0000278
279 def test_autoseed(self):
280 # Doesn't need to do anything except not fail
281 self.gen.seed()
282
283 def test_saverestore(self):
284 self.assertRaises(NotImplementedError, self.gen.getstate)
285 self.assertRaises(NotImplementedError, self.gen.setstate, None)
286
287 def test_seedargs(self):
288 # Doesn't need to do anything except not fail
289 self.gen.seed(100)
290
Raymond Hettinger356a4592004-08-30 06:14:31 +0000291 def test_gauss(self):
292 self.gen.gauss_next = None
293 self.gen.seed(100)
294 self.assertEqual(self.gen.gauss_next, None)
295
296 def test_pickling(self):
Serhiy Storchakabad12572014-12-15 14:03:42 +0200297 for proto in range(pickle.HIGHEST_PROTOCOL + 1):
298 self.assertRaises(NotImplementedError, pickle.dumps, self.gen, proto)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000299
300 def test_53_bits_per_float(self):
301 # This should pass whenever a C double has 53 bit precision.
302 span = 2 ** 53
303 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000304 for i in range(100):
Raymond Hettinger356a4592004-08-30 06:14:31 +0000305 cum |= int(self.gen.random() * span)
306 self.assertEqual(cum, span-1)
307
308 def test_bigrand(self):
309 # The randrange routine should build-up the required number of bits
310 # in stages so that all bit positions are active.
311 span = 2 ** 500
312 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000313 for i in range(100):
Raymond Hettinger356a4592004-08-30 06:14:31 +0000314 r = self.gen.randrange(span)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000315 self.assertTrue(0 <= r < span)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000316 cum |= r
317 self.assertEqual(cum, span-1)
318
319 def test_bigrand_ranges(self):
320 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
Zachary Warea6edea52013-11-26 14:50:10 -0600321 start = self.gen.randrange(2 ** (i-2))
322 stop = self.gen.randrange(2 ** i)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000323 if stop <= start:
Zachary Warea6edea52013-11-26 14:50:10 -0600324 continue
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000325 self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000326
327 def test_rangelimits(self):
328 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
329 self.assertEqual(set(range(start,stop)),
Guido van Rossum805365e2007-05-07 22:24:25 +0000330 set([self.gen.randrange(start,stop) for i in range(100)]))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000331
R David Murraye3e1c172013-04-02 12:47:23 -0400332 def test_randrange_nonunit_step(self):
333 rint = self.gen.randrange(0, 10, 2)
334 self.assertIn(rint, (0, 2, 4, 6, 8))
335 rint = self.gen.randrange(0, 2, 2)
336 self.assertEqual(rint, 0)
337
338 def test_randrange_errors(self):
339 raises = partial(self.assertRaises, ValueError, self.gen.randrange)
340 # Empty range
341 raises(3, 3)
342 raises(-721)
343 raises(0, 100, -12)
344 # Non-integer start/stop
345 raises(3.14159)
346 raises(0, 2.71828)
347 # Zero and non-integer step
348 raises(0, 42, 0)
349 raises(0, 42, 3.14159)
350
Raymond Hettinger356a4592004-08-30 06:14:31 +0000351 def test_genrandbits(self):
352 # Verify ranges
Guido van Rossum805365e2007-05-07 22:24:25 +0000353 for k in range(1, 1000):
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000354 self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
Raymond Hettinger356a4592004-08-30 06:14:31 +0000355
356 # Verify all bits active
357 getbits = self.gen.getrandbits
358 for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
359 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000360 for i in range(100):
Raymond Hettinger356a4592004-08-30 06:14:31 +0000361 cum |= getbits(span)
362 self.assertEqual(cum, 2**span-1)
363
364 # Verify argument checking
365 self.assertRaises(TypeError, self.gen.getrandbits)
366 self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
367 self.assertRaises(ValueError, self.gen.getrandbits, 0)
368 self.assertRaises(ValueError, self.gen.getrandbits, -1)
369 self.assertRaises(TypeError, self.gen.getrandbits, 10.1)
370
371 def test_randbelow_logic(self, _log=log, int=int):
372 # check bitcount transition points: 2**i and 2**(i+1)-1
373 # show that: k = int(1.001 + _log(n, 2))
374 # is equal to or one greater than the number of bits in n
Guido van Rossum805365e2007-05-07 22:24:25 +0000375 for i in range(1, 1000):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000376 n = 1 << i # check an exact power of two
Raymond Hettinger356a4592004-08-30 06:14:31 +0000377 numbits = i+1
378 k = int(1.00001 + _log(n, 2))
379 self.assertEqual(k, numbits)
Guido van Rossume61fd5b2007-07-11 12:20:59 +0000380 self.assertEqual(n, 2**(k-1))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000381
382 n += n - 1 # check 1 below the next power of two
383 k = int(1.00001 + _log(n, 2))
Benjamin Peterson577473f2010-01-19 00:09:57 +0000384 self.assertIn(k, [numbits, numbits+1])
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000385 self.assertTrue(2**k > n > 2**(k-2))
Raymond Hettinger356a4592004-08-30 06:14:31 +0000386
387 n -= n >> 15 # check a little farther below the next power of two
388 k = int(1.00001 + _log(n, 2))
389 self.assertEqual(k, numbits) # note the stronger assertion
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000390 self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
Raymond Hettinger356a4592004-08-30 06:14:31 +0000391
392
Ezio Melotti3e4a98b2013-04-19 05:45:27 +0300393class MersenneTwister_TestBasicOps(TestBasicOps, unittest.TestCase):
Raymond Hettinger40f62172002-12-29 23:03:38 +0000394 gen = random.Random()
395
Raymond Hettingerf763a722010-09-07 00:38:15 +0000396 def test_guaranteed_stable(self):
397 # These sequences are guaranteed to stay the same across versions of python
398 self.gen.seed(3456147, version=1)
399 self.assertEqual([self.gen.random().hex() for i in range(4)],
400 ['0x1.ac362300d90d2p-1', '0x1.9d16f74365005p-1',
401 '0x1.1ebb4352e4c4dp-1', '0x1.1a7422abf9c11p-1'])
Raymond Hettingerf763a722010-09-07 00:38:15 +0000402 self.gen.seed("the quick brown fox", version=2)
403 self.assertEqual([self.gen.random().hex() for i in range(4)],
Raymond Hettinger3fcf0022010-12-08 01:13:53 +0000404 ['0x1.1239ddfb11b7cp-3', '0x1.b3cbb5c51b120p-4',
405 '0x1.8c4f55116b60fp-1', '0x1.63eb525174a27p-1'])
Raymond Hettingerf763a722010-09-07 00:38:15 +0000406
Raymond Hettingerc7bab7c2016-08-31 15:01:08 -0700407 def test_bug_27706(self):
408 # Verify that version 1 seeds are unaffected by hash randomization
409
410 self.gen.seed('nofar', version=1) # hash('nofar') == 5990528763808513177
411 self.assertEqual([self.gen.random().hex() for i in range(4)],
412 ['0x1.8645314505ad7p-1', '0x1.afb1f82e40a40p-5',
413 '0x1.2a59d2285e971p-1', '0x1.56977142a7880p-6'])
414
415 self.gen.seed('rachel', version=1) # hash('rachel') == -9091735575445484789
416 self.assertEqual([self.gen.random().hex() for i in range(4)],
417 ['0x1.0b294cc856fcdp-1', '0x1.2ad22d79e77b8p-3',
418 '0x1.3052b9c072678p-2', '0x1.578f332106574p-3'])
419
420 self.gen.seed('', version=1) # hash('') == 0
421 self.assertEqual([self.gen.random().hex() for i in range(4)],
422 ['0x1.b0580f98a7dbep-1', '0x1.84129978f9c1ap-1',
423 '0x1.aeaa51052e978p-2', '0x1.092178fb945a6p-2'])
424
Raymond Hettinger58335872004-07-09 14:26:18 +0000425 def test_setstate_first_arg(self):
426 self.assertRaises(ValueError, self.gen.setstate, (1, None, None))
427
428 def test_setstate_middle_arg(self):
429 # Wrong type, s/b tuple
430 self.assertRaises(TypeError, self.gen.setstate, (2, None, None))
431 # Wrong length, s/b 625
432 self.assertRaises(ValueError, self.gen.setstate, (2, (1,2,3), None))
433 # Wrong type, s/b tuple of 625 ints
434 self.assertRaises(TypeError, self.gen.setstate, (2, ('a',)*625, None))
435 # Last element s/b an int also
436 self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
Serhiy Storchaka178f0b62015-07-24 09:02:53 +0300437 # Last element s/b between 0 and 624
438 with self.assertRaises((ValueError, OverflowError)):
439 self.gen.setstate((2, (1,)*624+(625,), None))
440 with self.assertRaises((ValueError, OverflowError)):
441 self.gen.setstate((2, (1,)*624+(-1,), None))
Raymond Hettinger58335872004-07-09 14:26:18 +0000442
R David Murraye3e1c172013-04-02 12:47:23 -0400443 # Little trick to make "tuple(x % (2**32) for x in internalstate)"
444 # raise ValueError. I cannot think of a simple way to achieve this, so
445 # I am opting for using a generator as the middle argument of setstate
446 # which attempts to cast a NaN to integer.
447 state_values = self.gen.getstate()[1]
448 state_values = list(state_values)
449 state_values[-1] = float('nan')
450 state = (int(x) for x in state_values)
451 self.assertRaises(TypeError, self.gen.setstate, (2, state, None))
452
Raymond Hettinger40f62172002-12-29 23:03:38 +0000453 def test_referenceImplementation(self):
454 # Compare the python implementation with results from the original
455 # code. Create 2000 53-bit precision random floats. Compare only
456 # the last ten entries to show that the independent implementations
457 # are tracking. Here is the main() function needed to create the
458 # list of expected random numbers:
459 # void main(void){
460 # int i;
461 # unsigned long init[4]={61731, 24903, 614, 42143}, length=4;
462 # init_by_array(init, length);
463 # for (i=0; i<2000; i++) {
464 # printf("%.15f ", genrand_res53());
465 # if (i%5==4) printf("\n");
466 # }
467 # }
468 expected = [0.45839803073713259,
469 0.86057815201978782,
470 0.92848331726782152,
471 0.35932681119782461,
472 0.081823493762449573,
473 0.14332226470169329,
474 0.084297823823520024,
475 0.53814864671831453,
476 0.089215024911993401,
477 0.78486196105372907]
478
Guido van Rossume2a383d2007-01-15 16:59:06 +0000479 self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
Raymond Hettinger40f62172002-12-29 23:03:38 +0000480 actual = self.randomlist(2000)[-10:]
481 for a, e in zip(actual, expected):
482 self.assertAlmostEqual(a,e,places=14)
483
484 def test_strong_reference_implementation(self):
485 # Like test_referenceImplementation, but checks for exact bit-level
486 # equality. This should pass on any box where C double contains
487 # at least 53 bits of precision (the underlying algorithm suffers
488 # no rounding errors -- all results are exact).
489 from math import ldexp
490
Guido van Rossume2a383d2007-01-15 16:59:06 +0000491 expected = [0x0eab3258d2231f,
492 0x1b89db315277a5,
493 0x1db622a5518016,
494 0x0b7f9af0d575bf,
495 0x029e4c4db82240,
496 0x04961892f5d673,
497 0x02b291598e4589,
498 0x11388382c15694,
499 0x02dad977c9e1fe,
500 0x191d96d4d334c6]
501 self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
Raymond Hettinger40f62172002-12-29 23:03:38 +0000502 actual = self.randomlist(2000)[-10:]
503 for a, e in zip(actual, expected):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000504 self.assertEqual(int(ldexp(a, 53)), e)
Raymond Hettinger40f62172002-12-29 23:03:38 +0000505
506 def test_long_seed(self):
507 # This is most interesting to run in debug mode, just to make sure
508 # nothing blows up. Under the covers, a dynamically resized array
509 # is allocated, consuming space proportional to the number of bits
510 # in the seed. Unfortunately, that's a quadratic-time algorithm,
511 # so don't make this horribly big.
Guido van Rossume2a383d2007-01-15 16:59:06 +0000512 seed = (1 << (10000 * 8)) - 1 # about 10K bytes
Raymond Hettinger40f62172002-12-29 23:03:38 +0000513 self.gen.seed(seed)
514
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000515 def test_53_bits_per_float(self):
516 # This should pass whenever a C double has 53 bit precision.
517 span = 2 ** 53
518 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000519 for i in range(100):
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000520 cum |= int(self.gen.random() * span)
521 self.assertEqual(cum, span-1)
522
523 def test_bigrand(self):
524 # The randrange routine should build-up the required number of bits
525 # in stages so that all bit positions are active.
526 span = 2 ** 500
527 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000528 for i in range(100):
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000529 r = self.gen.randrange(span)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000530 self.assertTrue(0 <= r < span)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000531 cum |= r
532 self.assertEqual(cum, span-1)
533
534 def test_bigrand_ranges(self):
535 for i in [40,80, 160, 200, 211, 250, 375, 512, 550]:
Zachary Warea6edea52013-11-26 14:50:10 -0600536 start = self.gen.randrange(2 ** (i-2))
537 stop = self.gen.randrange(2 ** i)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000538 if stop <= start:
Zachary Warea6edea52013-11-26 14:50:10 -0600539 continue
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000540 self.assertTrue(start <= self.gen.randrange(start, stop) < stop)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000541
542 def test_rangelimits(self):
543 for start, stop in [(-2,0), (-(2**60)-2,-(2**60)), (2**60,2**60+2)]:
Raymond Hettingera690a992003-11-16 16:17:49 +0000544 self.assertEqual(set(range(start,stop)),
Guido van Rossum805365e2007-05-07 22:24:25 +0000545 set([self.gen.randrange(start,stop) for i in range(100)]))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000546
547 def test_genrandbits(self):
548 # Verify cross-platform repeatability
549 self.gen.seed(1234567)
550 self.assertEqual(self.gen.getrandbits(100),
Guido van Rossume2a383d2007-01-15 16:59:06 +0000551 97904845777343510404718956115)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000552 # Verify ranges
Guido van Rossum805365e2007-05-07 22:24:25 +0000553 for k in range(1, 1000):
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000554 self.assertTrue(0 <= self.gen.getrandbits(k) < 2**k)
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000555
556 # Verify all bits active
557 getbits = self.gen.getrandbits
558 for span in [1, 2, 3, 4, 31, 32, 32, 52, 53, 54, 119, 127, 128, 129]:
559 cum = 0
Guido van Rossum805365e2007-05-07 22:24:25 +0000560 for i in range(100):
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000561 cum |= getbits(span)
562 self.assertEqual(cum, 2**span-1)
563
Raymond Hettinger58335872004-07-09 14:26:18 +0000564 # Verify argument checking
565 self.assertRaises(TypeError, self.gen.getrandbits)
566 self.assertRaises(TypeError, self.gen.getrandbits, 'a')
567 self.assertRaises(TypeError, self.gen.getrandbits, 1, 2)
568 self.assertRaises(ValueError, self.gen.getrandbits, 0)
569 self.assertRaises(ValueError, self.gen.getrandbits, -1)
570
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000571 def test_randbelow_logic(self, _log=log, int=int):
572 # check bitcount transition points: 2**i and 2**(i+1)-1
573 # show that: k = int(1.001 + _log(n, 2))
574 # is equal to or one greater than the number of bits in n
Guido van Rossum805365e2007-05-07 22:24:25 +0000575 for i in range(1, 1000):
Guido van Rossume2a383d2007-01-15 16:59:06 +0000576 n = 1 << i # check an exact power of two
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000577 numbits = i+1
578 k = int(1.00001 + _log(n, 2))
579 self.assertEqual(k, numbits)
Guido van Rossume61fd5b2007-07-11 12:20:59 +0000580 self.assertEqual(n, 2**(k-1))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000581
582 n += n - 1 # check 1 below the next power of two
583 k = int(1.00001 + _log(n, 2))
Benjamin Peterson577473f2010-01-19 00:09:57 +0000584 self.assertIn(k, [numbits, numbits+1])
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000585 self.assertTrue(2**k > n > 2**(k-2))
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000586
587 n -= n >> 15 # check a little farther below the next power of two
588 k = int(1.00001 + _log(n, 2))
589 self.assertEqual(k, numbits) # note the stronger assertion
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000590 self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
Raymond Hettinger2f726e92003-10-05 09:09:15 +0000591
R David Murraye3e1c172013-04-02 12:47:23 -0400592 @unittest.mock.patch('random.Random.random')
Martin Pantere26da7c2016-06-02 10:07:09 +0000593 def test_randbelow_overridden_random(self, random_mock):
R David Murraye3e1c172013-04-02 12:47:23 -0400594 # Random._randbelow() can only use random() when the built-in one
595 # has been overridden but no new getrandbits() method was supplied.
596 random_mock.side_effect = random.SystemRandom().random
597 maxsize = 1<<random.BPF
598 with warnings.catch_warnings():
599 warnings.simplefilter("ignore", UserWarning)
600 # Population range too large (n >= maxsize)
601 self.gen._randbelow(maxsize+1, maxsize = maxsize)
602 self.gen._randbelow(5640, maxsize = maxsize)
603
604 # This might be going too far to test a single line, but because of our
605 # noble aim of achieving 100% test coverage we need to write a case in
606 # which the following line in Random._randbelow() gets executed:
607 #
608 # rem = maxsize % n
609 # limit = (maxsize - rem) / maxsize
610 # r = random()
611 # while r >= limit:
612 # r = random() # <== *This line* <==<
613 #
614 # Therefore, to guarantee that the while loop is executed at least
615 # once, we need to mock random() so that it returns a number greater
616 # than 'limit' the first time it gets called.
617
618 n = 42
619 epsilon = 0.01
620 limit = (maxsize - (maxsize % n)) / maxsize
621 random_mock.side_effect = [limit + epsilon, limit - epsilon]
622 self.gen._randbelow(n, maxsize = maxsize)
623
Thomas Wouters902d6eb2007-01-09 23:18:33 +0000624 def test_randrange_bug_1590891(self):
625 start = 1000000000000
626 stop = -100000000000000000000
627 step = -200
628 x = self.gen.randrange(start, stop, step)
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000629 self.assertTrue(stop < x <= start)
Thomas Wouters902d6eb2007-01-09 23:18:33 +0000630 self.assertEqual((x+stop)%step, 0)
631
Raymond Hettinger2d0c2562009-02-19 09:53:18 +0000632def gamma(z, sqrt2pi=(2.0*pi)**0.5):
633 # Reflection to right half of complex plane
634 if z < 0.5:
635 return pi / sin(pi*z) / gamma(1.0-z)
636 # Lanczos approximation with g=7
637 az = z + (7.0 - 0.5)
638 return az ** (z-0.5) / exp(az) * sqrt2pi * fsum([
639 0.9999999999995183,
640 676.5203681218835 / z,
641 -1259.139216722289 / (z+1.0),
642 771.3234287757674 / (z+2.0),
643 -176.6150291498386 / (z+3.0),
644 12.50734324009056 / (z+4.0),
645 -0.1385710331296526 / (z+5.0),
646 0.9934937113930748e-05 / (z+6.0),
647 0.1659470187408462e-06 / (z+7.0),
648 ])
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000649
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000650class TestDistributions(unittest.TestCase):
651 def test_zeroinputs(self):
652 # Verify that distributions can handle a series of zero inputs'
653 g = random.Random()
Guido van Rossum805365e2007-05-07 22:24:25 +0000654 x = [g.random() for i in range(50)] + [0.0]*5
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000655 g.random = x[:].pop; g.uniform(1,10)
656 g.random = x[:].pop; g.paretovariate(1.0)
657 g.random = x[:].pop; g.expovariate(1.0)
658 g.random = x[:].pop; g.weibullvariate(1.0, 1.0)
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200659 g.random = x[:].pop; g.vonmisesvariate(1.0, 1.0)
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000660 g.random = x[:].pop; g.normalvariate(0.0, 1.0)
661 g.random = x[:].pop; g.gauss(0.0, 1.0)
662 g.random = x[:].pop; g.lognormvariate(0.0, 1.0)
663 g.random = x[:].pop; g.vonmisesvariate(0.0, 1.0)
664 g.random = x[:].pop; g.gammavariate(0.01, 1.0)
665 g.random = x[:].pop; g.gammavariate(1.0, 1.0)
666 g.random = x[:].pop; g.gammavariate(200.0, 1.0)
667 g.random = x[:].pop; g.betavariate(3.0, 3.0)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000668 g.random = x[:].pop; g.triangular(0.0, 1.0, 1.0/3.0)
Raymond Hettinger15ec3732003-01-05 01:08:34 +0000669
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000670 def test_avg_std(self):
671 # Use integration to test distribution average and standard deviation.
672 # Only works for distributions which do not consume variates in pairs
673 g = random.Random()
674 N = 5000
Guido van Rossum805365e2007-05-07 22:24:25 +0000675 x = [i/float(N) for i in range(1,N)]
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000676 for variate, args, mu, sigmasqrd in [
677 (g.uniform, (1.0,10.0), (10.0+1.0)/2, (10.0-1.0)**2/12),
Christian Heimesfe337bf2008-03-23 21:54:12 +0000678 (g.triangular, (0.0, 1.0, 1.0/3.0), 4.0/9.0, 7.0/9.0/18.0),
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000679 (g.expovariate, (1.5,), 1/1.5, 1/1.5**2),
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200680 (g.vonmisesvariate, (1.23, 0), pi, pi**2/3),
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000681 (g.paretovariate, (5.0,), 5.0/(5.0-1),
682 5.0/((5.0-1)**2*(5.0-2))),
683 (g.weibullvariate, (1.0, 3.0), gamma(1+1/3.0),
684 gamma(1+2/3.0)-gamma(1+1/3.0)**2) ]:
685 g.random = x[:].pop
686 y = []
Guido van Rossum805365e2007-05-07 22:24:25 +0000687 for i in range(len(x)):
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000688 try:
689 y.append(variate(*args))
690 except IndexError:
691 pass
692 s1 = s2 = 0
693 for e in y:
694 s1 += e
695 s2 += (e - mu) ** 2
696 N = len(y)
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200697 self.assertAlmostEqual(s1/N, mu, places=2,
698 msg='%s%r' % (variate.__name__, args))
699 self.assertAlmostEqual(s2/(N-1), sigmasqrd, places=2,
700 msg='%s%r' % (variate.__name__, args))
701
702 def test_constant(self):
703 g = random.Random()
704 N = 100
705 for variate, args, expected in [
706 (g.uniform, (10.0, 10.0), 10.0),
707 (g.triangular, (10.0, 10.0), 10.0),
Raymond Hettinger978c6ab2014-05-25 17:25:27 -0700708 (g.triangular, (10.0, 10.0, 10.0), 10.0),
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200709 (g.expovariate, (float('inf'),), 0.0),
710 (g.vonmisesvariate, (3.0, float('inf')), 3.0),
711 (g.gauss, (10.0, 0.0), 10.0),
712 (g.lognormvariate, (0.0, 0.0), 1.0),
713 (g.lognormvariate, (-float('inf'), 0.0), 0.0),
714 (g.normalvariate, (10.0, 0.0), 10.0),
715 (g.paretovariate, (float('inf'),), 1.0),
716 (g.weibullvariate, (10.0, float('inf')), 10.0),
717 (g.weibullvariate, (0.0, 10.0), 0.0),
718 ]:
719 for i in range(N):
720 self.assertEqual(variate(*args), expected)
Raymond Hettinger3dd990c2003-01-05 09:20:06 +0000721
Mark Dickinsonbe5f9192013-02-10 14:16:10 +0000722 def test_von_mises_range(self):
723 # Issue 17149: von mises variates were not consistently in the
724 # range [0, 2*PI].
725 g = random.Random()
726 N = 100
727 for mu in 0.0, 0.1, 3.1, 6.2:
728 for kappa in 0.0, 2.3, 500.0:
729 for _ in range(N):
730 sample = g.vonmisesvariate(mu, kappa)
731 self.assertTrue(
732 0 <= sample <= random.TWOPI,
733 msg=("vonmisesvariate({}, {}) produced a result {} out"
734 " of range [0, 2*pi]").format(mu, kappa, sample))
735
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200736 def test_von_mises_large_kappa(self):
737 # Issue #17141: vonmisesvariate() was hang for large kappas
738 random.vonmisesvariate(0, 1e15)
739 random.vonmisesvariate(0, 1e100)
740
R David Murraye3e1c172013-04-02 12:47:23 -0400741 def test_gammavariate_errors(self):
742 # Both alpha and beta must be > 0.0
743 self.assertRaises(ValueError, random.gammavariate, -1, 3)
744 self.assertRaises(ValueError, random.gammavariate, 0, 2)
745 self.assertRaises(ValueError, random.gammavariate, 2, 0)
746 self.assertRaises(ValueError, random.gammavariate, 1, -3)
747
748 @unittest.mock.patch('random.Random.random')
749 def test_gammavariate_full_code_coverage(self, random_mock):
750 # There are three different possibilities in the current implementation
751 # of random.gammavariate(), depending on the value of 'alpha'. What we
752 # are going to do here is to fix the values returned by random() to
753 # generate test cases that provide 100% line coverage of the method.
754
755 # #1: alpha > 1.0: we want the first random number to be outside the
756 # [1e-7, .9999999] range, so that the continue statement executes
757 # once. The values of u1 and u2 will be 0.5 and 0.3, respectively.
758 random_mock.side_effect = [1e-8, 0.5, 0.3]
759 returned_value = random.gammavariate(1.1, 2.3)
760 self.assertAlmostEqual(returned_value, 2.53)
761
762 # #2: alpha == 1: first random number less than 1e-7 to that the body
763 # of the while loop executes once. Then random.random() returns 0.45,
764 # which causes while to stop looping and the algorithm to terminate.
765 random_mock.side_effect = [1e-8, 0.45]
766 returned_value = random.gammavariate(1.0, 3.14)
767 self.assertAlmostEqual(returned_value, 2.507314166123803)
768
769 # #3: 0 < alpha < 1. This is the most complex region of code to cover,
770 # as there are multiple if-else statements. Let's take a look at the
771 # source code, and determine the values that we need accordingly:
772 #
773 # while 1:
774 # u = random()
775 # b = (_e + alpha)/_e
776 # p = b*u
777 # if p <= 1.0: # <=== (A)
778 # x = p ** (1.0/alpha)
779 # else: # <=== (B)
780 # x = -_log((b-p)/alpha)
781 # u1 = random()
782 # if p > 1.0: # <=== (C)
783 # if u1 <= x ** (alpha - 1.0): # <=== (D)
784 # break
785 # elif u1 <= _exp(-x): # <=== (E)
786 # break
787 # return x * beta
788 #
789 # First, we want (A) to be True. For that we need that:
790 # b*random() <= 1.0
791 # r1 = random() <= 1.0 / b
792 #
793 # We now get to the second if-else branch, and here, since p <= 1.0,
794 # (C) is False and we take the elif branch, (E). For it to be True,
795 # so that the break is executed, we need that:
796 # r2 = random() <= _exp(-x)
797 # r2 <= _exp(-(p ** (1.0/alpha)))
798 # r2 <= _exp(-((b*r1) ** (1.0/alpha)))
799
800 _e = random._e
801 _exp = random._exp
802 _log = random._log
803 alpha = 0.35
804 beta = 1.45
805 b = (_e + alpha)/_e
806 epsilon = 0.01
807
808 r1 = 0.8859296441566 # 1.0 / b
809 r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha)))
810
811 # These four "random" values result in the following trace:
812 # (A) True, (E) False --> [next iteration of while]
813 # (A) True, (E) True --> [while loop breaks]
814 random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
815 returned_value = random.gammavariate(alpha, beta)
816 self.assertAlmostEqual(returned_value, 1.4499999999997544)
817
818 # Let's now make (A) be False. If this is the case, when we get to the
819 # second if-else 'p' is greater than 1, so (C) evaluates to True. We
820 # now encounter a second if statement, (D), which in order to execute
821 # must satisfy the following condition:
822 # r2 <= x ** (alpha - 1.0)
823 # r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0)
824 # r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0)
825 r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False
826 r2 = 0.9445400408898141
827
828 # And these four values result in the following trace:
829 # (B) and (C) True, (D) False --> [next iteration of while]
830 # (B) and (C) True, (D) True [while loop breaks]
831 random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
832 returned_value = random.gammavariate(alpha, beta)
833 self.assertAlmostEqual(returned_value, 1.5830349561760781)
834
835 @unittest.mock.patch('random.Random.gammavariate')
836 def test_betavariate_return_zero(self, gammavariate_mock):
837 # betavariate() returns zero when the Gamma distribution
838 # that it uses internally returns this same value.
839 gammavariate_mock.return_value = 0.0
840 self.assertEqual(0.0, random.betavariate(2.71828, 3.14159))
Serhiy Storchaka6c22b1d2013-02-10 19:28:56 +0200841
Raymond Hettinger40f62172002-12-29 23:03:38 +0000842class TestModule(unittest.TestCase):
843 def testMagicConstants(self):
844 self.assertAlmostEqual(random.NV_MAGICCONST, 1.71552776992141)
845 self.assertAlmostEqual(random.TWOPI, 6.28318530718)
846 self.assertAlmostEqual(random.LOG4, 1.38629436111989)
847 self.assertAlmostEqual(random.SG_MAGICCONST, 2.50407739677627)
848
849 def test__all__(self):
850 # tests validity but not completeness of the __all__ list
Benjamin Petersonc9c0f202009-06-30 23:06:06 +0000851 self.assertTrue(set(random.__all__) <= set(dir(random)))
Raymond Hettinger40f62172002-12-29 23:03:38 +0000852
Thomas Woutersb2137042007-02-01 18:02:27 +0000853 def test_random_subclass_with_kwargs(self):
854 # SF bug #1486663 -- this used to erroneously raise a TypeError
855 class Subclass(random.Random):
856 def __init__(self, newarg=None):
857 random.Random.__init__(self)
858 Subclass(newarg=1)
859
860
Raymond Hettinger40f62172002-12-29 23:03:38 +0000861if __name__ == "__main__":
Ezio Melotti3e4a98b2013-04-19 05:45:27 +0300862 unittest.main()