| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 1 | ====================================== | 
 | 2 | Python IEEE 754 floating point support | 
 | 3 | ====================================== | 
 | 4 |  | 
 | 5 | >>> from sys import float_info as FI | 
 | 6 | >>> from math import * | 
 | 7 | >>> PI = pi | 
 | 8 | >>> E = e | 
 | 9 |  | 
 | 10 | You must never compare two floats with == because you are not going to get | 
 | 11 | what you expect. We treat two floats as equal if the difference between them | 
 | 12 | is small than epsilon. | 
 | 13 | >>> EPS = 1E-15 | 
 | 14 | >>> def equal(x, y): | 
 | 15 | ...     """Almost equal helper for floats""" | 
 | 16 | ...     return abs(x - y) < EPS | 
 | 17 |  | 
 | 18 |  | 
 | 19 | NaNs and INFs | 
 | 20 | ============= | 
 | 21 |  | 
 | 22 | In Python 2.6 and newer NaNs (not a number) and infinity can be constructed | 
 | 23 | from the strings 'inf' and 'nan'. | 
 | 24 |  | 
 | 25 | >>> INF = float('inf') | 
 | 26 | >>> NINF = float('-inf') | 
 | 27 | >>> NAN = float('nan') | 
 | 28 |  | 
 | 29 | >>> INF | 
 | 30 | inf | 
 | 31 | >>> NINF | 
 | 32 | -inf | 
 | 33 | >>> NAN | 
 | 34 | nan | 
 | 35 |  | 
 | 36 | The math module's ``isnan`` and ``isinf`` functions can be used to detect INF | 
 | 37 | and NAN: | 
 | 38 | >>> isinf(INF), isinf(NINF), isnan(NAN) | 
 | 39 | (True, True, True) | 
 | 40 | >>> INF == -NINF | 
 | 41 | True | 
 | 42 |  | 
 | 43 | Infinity | 
 | 44 | -------- | 
 | 45 |  | 
 | 46 | Ambiguous operations like ``0 * inf`` or ``inf - inf`` result in NaN. | 
 | 47 | >>> INF * 0 | 
 | 48 | nan | 
 | 49 | >>> INF - INF | 
 | 50 | nan | 
 | 51 | >>> INF / INF | 
 | 52 | nan | 
 | 53 |  | 
 | 54 | However unambigous operations with inf return inf: | 
 | 55 | >>> INF * INF | 
 | 56 | inf | 
 | 57 | >>> 1.5 * INF | 
 | 58 | inf | 
 | 59 | >>> 0.5 * INF | 
 | 60 | inf | 
 | 61 | >>> INF / 1000 | 
 | 62 | inf | 
 | 63 |  | 
 | 64 | Not a Number | 
 | 65 | ------------ | 
 | 66 |  | 
 | 67 | NaNs are never equal to another number, even itself | 
 | 68 | >>> NAN == NAN | 
 | 69 | False | 
 | 70 | >>> NAN < 0 | 
 | 71 | False | 
 | 72 | >>> NAN >= 0 | 
 | 73 | False | 
 | 74 |  | 
| Mark Dickinson | 9ab44b5 | 2009-12-30 16:22:49 +0000 | [diff] [blame] | 75 | All operations involving a NaN return a NaN except for nan**0 and 1**nan. | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 76 | >>> 1 + NAN | 
 | 77 | nan | 
 | 78 | >>> 1 * NAN | 
 | 79 | nan | 
 | 80 | >>> 0 * NAN | 
 | 81 | nan | 
 | 82 | >>> 1 ** NAN | 
 | 83 | 1.0 | 
| Mark Dickinson | 9ab44b5 | 2009-12-30 16:22:49 +0000 | [diff] [blame] | 84 | >>> NAN ** 0 | 
 | 85 | 1.0 | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 86 | >>> 0 ** NAN | 
| Mark Dickinson | 9ab44b5 | 2009-12-30 16:22:49 +0000 | [diff] [blame] | 87 | nan | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 88 | >>> (1.0 + FI.epsilon) * NAN | 
 | 89 | nan | 
 | 90 |  | 
 | 91 | Misc Functions | 
 | 92 | ============== | 
 | 93 |  | 
 | 94 | The power of 1 raised to x is always 1.0, even for special values like 0, | 
 | 95 | infinity and NaN. | 
 | 96 |  | 
 | 97 | >>> pow(1, 0) | 
 | 98 | 1.0 | 
 | 99 | >>> pow(1, INF) | 
 | 100 | 1.0 | 
 | 101 | >>> pow(1, -INF) | 
 | 102 | 1.0 | 
 | 103 | >>> pow(1, NAN) | 
 | 104 | 1.0 | 
 | 105 |  | 
 | 106 | The power of 0 raised to x is defined as 0, if x is positive. Negative | 
 | 107 | values are a domain error or zero division error and NaN result in a | 
 | 108 | silent NaN. | 
 | 109 |  | 
 | 110 | >>> pow(0, 0) | 
 | 111 | 1.0 | 
 | 112 | >>> pow(0, INF) | 
 | 113 | 0.0 | 
 | 114 | >>> pow(0, -INF) | 
 | 115 | Traceback (most recent call last): | 
 | 116 | ... | 
 | 117 | ValueError: math domain error | 
 | 118 | >>> 0 ** -1 | 
 | 119 | Traceback (most recent call last): | 
 | 120 | ... | 
 | 121 | ZeroDivisionError: 0.0 cannot be raised to a negative power | 
 | 122 | >>> pow(0, NAN) | 
 | 123 | nan | 
 | 124 |  | 
 | 125 |  | 
 | 126 | Trigonometric Functions | 
 | 127 | ======================= | 
 | 128 |  | 
 | 129 | >>> sin(INF) | 
 | 130 | Traceback (most recent call last): | 
 | 131 | ... | 
| Mark Dickinson | 66bada5 | 2008-06-18 10:04:31 +0000 | [diff] [blame] | 132 | ValueError: math domain error | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 133 | >>> sin(NINF) | 
 | 134 | Traceback (most recent call last): | 
 | 135 | ... | 
| Mark Dickinson | 66bada5 | 2008-06-18 10:04:31 +0000 | [diff] [blame] | 136 | ValueError: math domain error | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 137 | >>> sin(NAN) | 
 | 138 | nan | 
 | 139 | >>> cos(INF) | 
 | 140 | Traceback (most recent call last): | 
 | 141 | ... | 
| Mark Dickinson | 66bada5 | 2008-06-18 10:04:31 +0000 | [diff] [blame] | 142 | ValueError: math domain error | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 143 | >>> cos(NINF) | 
 | 144 | Traceback (most recent call last): | 
 | 145 | ... | 
| Mark Dickinson | 66bada5 | 2008-06-18 10:04:31 +0000 | [diff] [blame] | 146 | ValueError: math domain error | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 147 | >>> cos(NAN) | 
 | 148 | nan | 
 | 149 | >>> tan(INF) | 
 | 150 | Traceback (most recent call last): | 
 | 151 | ... | 
| Mark Dickinson | 66bada5 | 2008-06-18 10:04:31 +0000 | [diff] [blame] | 152 | ValueError: math domain error | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 153 | >>> tan(NINF) | 
 | 154 | Traceback (most recent call last): | 
 | 155 | ... | 
| Mark Dickinson | 66bada5 | 2008-06-18 10:04:31 +0000 | [diff] [blame] | 156 | ValueError: math domain error | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 157 | >>> tan(NAN) | 
 | 158 | nan | 
 | 159 |  | 
 | 160 | Neither pi nor tan are exact, but you can assume that tan(pi/2) is a large value | 
 | 161 | and tan(pi) is a very small value: | 
 | 162 | >>> tan(PI/2) > 1E10 | 
 | 163 | True | 
 | 164 | >>> -tan(-PI/2) > 1E10 | 
 | 165 | True | 
 | 166 | >>> tan(PI) < 1E-15 | 
 | 167 | True | 
 | 168 |  | 
 | 169 | >>> asin(NAN), acos(NAN), atan(NAN) | 
 | 170 | (nan, nan, nan) | 
 | 171 | >>> asin(INF), asin(NINF) | 
 | 172 | Traceback (most recent call last): | 
 | 173 | ... | 
| Mark Dickinson | 66bada5 | 2008-06-18 10:04:31 +0000 | [diff] [blame] | 174 | ValueError: math domain error | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 175 | >>> acos(INF), acos(NINF) | 
 | 176 | Traceback (most recent call last): | 
 | 177 | ... | 
| Mark Dickinson | 66bada5 | 2008-06-18 10:04:31 +0000 | [diff] [blame] | 178 | ValueError: math domain error | 
| Christian Heimes | 53876d9 | 2008-04-19 00:31:39 +0000 | [diff] [blame] | 179 | >>> equal(atan(INF), PI/2), equal(atan(NINF), -PI/2) | 
 | 180 | (True, True) | 
 | 181 |  | 
 | 182 |  | 
 | 183 | Hyberbolic Functions | 
 | 184 | ==================== | 
 | 185 |  |