blob: 0868e8eb10cf9256c182c1f662c7b5ee7cb481e4 [file] [log] [blame]
Georg Brandl116aa622007-08-15 14:28:22 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
24Number-theoretic and representation functions:
25
26
27.. function:: ceil(x)
28
Georg Brandl2a033732008-04-05 17:37:09 +000029 Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
30 If *x* is not a float, delegates to ``x.__ceil__()``, which should return an
31 :class:`Integral` value.
Christian Heimes072c0f12008-01-03 23:01:04 +000032
33
34.. function:: copysign(x, y)
35
36 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
37 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
38
Georg Brandl116aa622007-08-15 14:28:22 +000039
40.. function:: fabs(x)
41
42 Return the absolute value of *x*.
43
44
45.. function:: floor(x)
46
Georg Brandl2a033732008-04-05 17:37:09 +000047 Return the floor of *x*, the largest integer less than or equal to *x*.
48 If *x* is not a float, delegates to ``x.__floor__()``, which should return an
49 :class:`Integral` value.
Georg Brandl116aa622007-08-15 14:28:22 +000050
51
52.. function:: fmod(x, y)
53
54 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
55 Python expression ``x % y`` may not return the same result. The intent of the C
56 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
57 precision) equal to ``x - n*y`` for some integer *n* such that the result has
58 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
59 returns a result with the sign of *y* instead, and may not be exactly computable
60 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
61 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
62 represented exactly as a float, and rounds to the surprising ``1e100``. For
63 this reason, function :func:`fmod` is generally preferred when working with
64 floats, while Python's ``x % y`` is preferred when working with integers.
65
66
67.. function:: frexp(x)
68
69 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
70 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
71 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
72 apart" the internal representation of a float in a portable way.
73
74
Christian Heimes072c0f12008-01-03 23:01:04 +000075.. function:: isinf(x)
76
77 Checks if the float *x* is positive or negative infinite.
78
Christian Heimes072c0f12008-01-03 23:01:04 +000079
80.. function:: isnan(x)
81
82 Checks if the float *x* is a NaN (not a number). NaNs are part of the
83 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
84 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
85 a NaN.
86
Christian Heimes072c0f12008-01-03 23:01:04 +000087
Georg Brandl116aa622007-08-15 14:28:22 +000088.. function:: ldexp(x, i)
89
90 Return ``x * (2**i)``. This is essentially the inverse of function
91 :func:`frexp`.
92
93
94.. function:: modf(x)
95
96 Return the fractional and integer parts of *x*. Both results carry the sign of
97 *x*, and both are floats.
98
Benjamin Petersona37cfc62008-05-26 13:48:34 +000099.. function:: sum(iterable)
100
101 Return an accurate floating point sum of values in the iterable. Avoids
102 loss of precision by tracking multiple intermediate partial sums. The
103 algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
104 typical case where the rounding mode is half-even.
Christian Heimes400adb02008-02-01 08:12:03 +0000105
106.. function:: trunc(x)
107
108 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
109 a long integer). Delegates to ``x.__trunc__()``.
110
Christian Heimes400adb02008-02-01 08:12:03 +0000111
Georg Brandl116aa622007-08-15 14:28:22 +0000112Note that :func:`frexp` and :func:`modf` have a different call/return pattern
113than their C equivalents: they take a single argument and return a pair of
114values, rather than returning their second return value through an 'output
115parameter' (there is no such thing in Python).
116
117For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
118floating-point numbers of sufficiently large magnitude are exact integers.
119Python floats typically carry no more than 53 bits of precision (the same as the
120platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
121necessarily has no fractional bits.
122
123Power and logarithmic functions:
124
Georg Brandl116aa622007-08-15 14:28:22 +0000125.. function:: exp(x)
126
127 Return ``e**x``.
128
129
130.. function:: log(x[, base])
131
132 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
133 return the natural logarithm of *x* (that is, the logarithm to base *e*).
134
Georg Brandl116aa622007-08-15 14:28:22 +0000135
Christian Heimes53876d92008-04-19 00:31:39 +0000136.. function:: log1p(x)
137
138 Return the natural logarithm of *1+x* (base *e*). The
139 result is calculated in a way which is accurate for *x* near zero.
140
Christian Heimes53876d92008-04-19 00:31:39 +0000141
Georg Brandl116aa622007-08-15 14:28:22 +0000142.. function:: log10(x)
143
144 Return the base-10 logarithm of *x*.
145
146
147.. function:: pow(x, y)
148
Christian Heimesa342c012008-04-20 21:01:16 +0000149 Return ``x`` raised to the power ``y``. Exceptional cases follow
150 Annex 'F' of the C99 standard as far as possible. In particular,
151 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
152 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
153 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
154 is undefined, and raises :exc:`ValueError`.
Christian Heimes53876d92008-04-19 00:31:39 +0000155
Georg Brandl116aa622007-08-15 14:28:22 +0000156
157.. function:: sqrt(x)
158
159 Return the square root of *x*.
160
161Trigonometric functions:
162
163
164.. function:: acos(x)
165
166 Return the arc cosine of *x*, in radians.
167
168
169.. function:: asin(x)
170
171 Return the arc sine of *x*, in radians.
172
173
174.. function:: atan(x)
175
176 Return the arc tangent of *x*, in radians.
177
178
179.. function:: atan2(y, x)
180
181 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
182 The vector in the plane from the origin to point ``(x, y)`` makes this angle
183 with the positive X axis. The point of :func:`atan2` is that the signs of both
184 inputs are known to it, so it can compute the correct quadrant for the angle.
185 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
186 -1)`` is ``-3*pi/4``.
187
188
189.. function:: cos(x)
190
191 Return the cosine of *x* radians.
192
193
194.. function:: hypot(x, y)
195
196 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
197 from the origin to point ``(x, y)``.
198
199
200.. function:: sin(x)
201
202 Return the sine of *x* radians.
203
204
205.. function:: tan(x)
206
207 Return the tangent of *x* radians.
208
209Angular conversion:
210
211
212.. function:: degrees(x)
213
214 Converts angle *x* from radians to degrees.
215
216
217.. function:: radians(x)
218
219 Converts angle *x* from degrees to radians.
220
221Hyperbolic functions:
222
223
Christian Heimesa342c012008-04-20 21:01:16 +0000224.. function:: acosh(x)
225
226 Return the inverse hyperbolic cosine of *x*.
227
Christian Heimesa342c012008-04-20 21:01:16 +0000228
229.. function:: asinh(x)
230
231 Return the inverse hyperbolic sine of *x*.
232
Christian Heimesa342c012008-04-20 21:01:16 +0000233
234.. function:: atanh(x)
235
236 Return the inverse hyperbolic tangent of *x*.
237
Christian Heimesa342c012008-04-20 21:01:16 +0000238
Georg Brandl116aa622007-08-15 14:28:22 +0000239.. function:: cosh(x)
240
241 Return the hyperbolic cosine of *x*.
242
243
244.. function:: sinh(x)
245
246 Return the hyperbolic sine of *x*.
247
248
249.. function:: tanh(x)
250
251 Return the hyperbolic tangent of *x*.
252
Christian Heimes53876d92008-04-19 00:31:39 +0000253
Christian Heimes53876d92008-04-19 00:31:39 +0000254
Georg Brandl116aa622007-08-15 14:28:22 +0000255The module also defines two mathematical constants:
256
257
258.. data:: pi
259
260 The mathematical constant *pi*.
261
262
263.. data:: e
264
265 The mathematical constant *e*.
266
Christian Heimes53876d92008-04-19 00:31:39 +0000267
Georg Brandl116aa622007-08-15 14:28:22 +0000268.. note::
269
270 The :mod:`math` module consists mostly of thin wrappers around the platform C
271 math library functions. Behavior in exceptional cases is loosely specified
272 by the C standards, and Python inherits much of its math-function
273 error-reporting behavior from the platform C implementation. As a result,
274 the specific exceptions raised in error cases (and even whether some
275 arguments are considered to be exceptional at all) are not defined in any
276 useful cross-platform or cross-release way. For example, whether
277 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
278 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
279 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
280
Christian Heimesa342c012008-04-20 21:01:16 +0000281 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Christian Heimes53876d92008-04-19 00:31:39 +0000282 Signaling *NaN*s raise an exception. The exception type still depends on the
283 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
284 and :exc:`OverflowError` for errno *ERANGE*.
285
Georg Brandl116aa622007-08-15 14:28:22 +0000286
287.. seealso::
288
289 Module :mod:`cmath`
290 Complex number versions of many of these functions.